
EXPERIENCE REPORT ON THE USE OF CORBA AS THE SOLE MIDDLEWARE

SOLUTION IN SCA-BASED SDR ENVIRONMENTS

Fabio Casalino (SELEX Communications, Pomezia (Rome), Italy;

fabio.casalino@selex-comms.com)

Giovanni Middioni (SELEX Communications, Pomezia (Rome), Italy;

giovanni.middioni@selex-comms.com)

Dominick Paniscotti (PrismTech Solutions Americas, Saddle Brook, NJ, USA;

dominick.paniscotti@prismtechusa.com)

ABSTRACT

This paper is an experience report detailing SELEX

Communications’ findings in the use of CORBA as the sole

middleware in SCA-based Software Defined Radios.

This paper describes the different approaches used

historically by SCA based systems to connect general-

purpose processors to resource constrained processing

elements such as FPGAs and DSPs. Following this, focus is

turned to asserting that CORBA technology is ready to be

fully exploited on SDRs, by describing how CORBA

pluggable transports in SCA-based radio systems can be

used to reduce the latency and throughput overhead

associated with using CORBA’s default transport (TCP/IP).

As an experience report, benchmarks will be provided,

presenting findings for a custom CORBA transport, based

on RapidIO interconnect, used among heterogeneous

devices.

1. INTRODUCTION

The Software Communications Architecture (SCA) [1]

favors the use of CORBA to connect waveform and platform

components to create the connections required to implement

data and control flows within an SDR. CORBA is favored

as it can support myriad heterogeneous distributed hardware

across various bus architectures. However, in order to

achieve this, implementations of both CORBA and

associated CORBA-transports must exist (or be developed)

to support the array of hardware and networking elements

used.

Moreover, the SCA allows communication between

processing elements not supporting CORBA defining the

MHAL (Modem Hardware Abstraction Layer).

If CORBA were available for all the key processing

elements (GPP, DSP, FPGA) used in SDRs, then the MHAL

communication service would not be needed anymore.

CORBA solutions are today available for most types of

GPPs and, contrary to common belief, they are also a reality

for DSPs and FPGAs.

2. SCA COMPLIANT CONNECTIVITY:

CORBA AND MHAL

2.1 MHAL connectivity

MHAL has been adopted and standardized by the JTRS

program to move data to and from modem hardware

elements. The MHAL specifies the interfaces to be used and

the command, control and data messages that flow across

these interfaces. The intent of the MHAL specification is to

offer an alternative to CORBA when dealing with processor

and bus technologies that have no off the shelf CORBA

support.

“ Waveforms shall use the MHAL Communications Service

for all data and control flowing between software

components residing in different CEs (Computational

Elements) where at least one CE does not support CORBA

…”[2]

Figure 1 illustrates how MHAL is used in an SCA-based

radio. The concept is to create a proxy on a processor

supporting CORBA that implements the CORBA interfaces

Figure 1 MHAL deployment diagram

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

using an SCA Device component. The proxy further

implements a proprietary protocol engine that is used to

move data to another processor. This processor (typically,

non-CORBA capable) adopts a corresponding

implementation of the proprietary protocol engine.

The MHAL standard provides an asynchronous variable

length messaging service to be used between Data Sources

and Data Sinks. This data structure is illustrated in Figure 2.

Figure 2 Standard message structure for MHAL

Communicating Data Sources and Sinks may be located in

separate CEs or within the same CE.

The MHAL extends CF::Device by adding data/command

input and output ports (as shown in Figure 3) and defines a

message structure used to pass data to those ports (for

transmission to other MHAL compliant processors) rather

than defining strongly typed interfaces that express the

behavior needed or provided by the port.

In order to isolate assembly waveform component (e.g.

BaseBand Component) from MHAL message oriented

protocol interface component, adapters are often used. This

isolation allows reuse of “true” waveform components but

adds additional middleware latencies otherwise not required.

Figure 3: MHAL used in a Waveform

Although MHAL solves the problem of moving data to the

modem hardware elements, it has several issues that can not

be ignored:

• The interface between components is defined as a

simple stream

• The interface semantics are captured in the protocol

messages that travel over that stream

• The “on the wire” definition of the protocol is left to

each developer to implement (and as such may not

agree)

• As the MHAL message ports only serve to act as a

conduit to move MHAL message commands and data,

each message must be cataloged and the equivalent of

an ICD must accompany an MHAL implementation to

express the dataflow. This can create significant

ambiguity and lead to inconsistencies in implementation

(as the message definition is not expressed in a strongly

typed language such as IDL or UML). Further

compounding matters, this type of implementation

limits the ability to transform the interface definitions

using automated processes (ie. Using IDL compilers).

2.2 CORBA Connectivity

CORBA middleware can be thought of as a “Logic Bus”

which enables distributed processing by allowing software

entities (called “CORBA objects”) to communicate with

each other.

Figure 4: CORBA as a logic bus

The “Logic Bus” is actually based on transport mechanisms

that provide a service for reliable delivery of GIOP (General

Inter-ORB Protocol) messages exchanged by ORBs.

The use of the CORBA technology offers several advantages

over alternative connectivity solutions:

• Object Location Transparency - The client does not

need to know where an object is physically located.

• Language Transparency - Client and server can be

written in different languages.

• Implementation Transparency - The client is

unaware of how objects are implemented.

• Architecture Transparency - The idiosyncrasies of

CPU architectures are hidden from both clients and

servers (for example, endianess).

Logic Bus

CORBA objects

Logic Bus

CORBA objects

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

• Operating System Transparency - Client and server

are unaffected by each other's operating system.

• Protocol Transparency - Clients and servers do not

care about the data link and transport layer.

All these advantages are key factors for considering a

CORBA everywhere approach in SDR sets.

3. CORBA EVERYWHERE SOLUTION

As was mentioned earlier, the SCA favors the use of

CORBA wherever possible. As CORBA is available for

most types of GPPs, then our focus shifts to DSPs and

FPGAs.

Contrary to common belief, CORBA implementations for

DSPs are available. In fact, support for both the C++ and C

languages are available by COTS vendors, and have been

for many years. These ORBs also are quite small and

designed to fit into the internal memory provided by many

DSPs. Typical implementations of CORBA ORBs on DSPs

are in the 100kByte memory range or less. Choosing the C

CORBA bindings also allows application implementations

to remain quite small (often yielding an order of magnitude

smaller implementation than for C++).

Which leaves us with CORBA on FPGAs. Here we find a

few ways to implement CORBA. The first is to simply

purchase an FPGA that includes a microprocessor as part of

its architecture and run CORBA on the microprocessor.

Another would be to instantiate a microprocessor within an

FPGA using an IP core, and run CORBA there. Each of

these approaches has drawbacks. These drawbacks fall into

categories such as performance (e.g. not being able to clock

these processors at high enough speeds), or size (e.g. the IP

core taking up large amounts of gates). But we will not

focus on these issues, instead we will focus in section 5 on

the recent trend of ORB vendors to implement ORBs

natively in gates within FPGAs.

Figure 5: “CORBA Everywhere” scenario

Regardless of how one implements an ORB in an FPGA

however, it should be noted than once all SDR processors

are CORBA enabled it serves to eliminate the use of adapter

patterns (such as MHAL) and:

• Reduce complexity

• Support waveform component location

transparency (thereby easing waveform porting).

• Obviate the need for proprietary communication

protocols

• Eliminate reimplementation of Device adapters

when porting to a new hardware platform

• Likely reduce latency and increase throughput in

the waveform communication path.

4. CORBA TRANSPORTS

It has been widely demonstrated that CORBA “latencies”

are mainly due to the underlying transport protocol used.

The default CORBA Transport is IIOP (Internet Inter-ORB-

Protocol), which is based on the TCP/IP protocol stack.

It must be said that TCP/IP is a reliable communication

protocol, but in real-time embedded systems it is often not

appropriate as the transport infrastructure for CORBA.

The main disadvantages are: TCP/IP software processing is

very resource consuming; it is intrinsically non-

deterministic, with variable latencies which increase

according with the traffic and network complexity; the stack

implementation on FPGAs suffers for the limited

performances of embedded processors.

In conclusion, IIOP is not well suited in these real-time

embedded environments (and software defined radios

typically fall into this category). This is the reason why

there is the need of an optimized transport protocol.

CORBA middleware can potentially use any data transport

mechanism; in fact, ORB vendors allow the plug-in of

custom transports, in order to optimize data transfer

performance.

The interface between the ORB and the transport can be

ORB’s proprietary or may use ETF (Extended Transport

Framework), which is an OMG standard presently in the

finalization phase.

The differences between the ETF interface and a generic

ORB proprietary interface are usually not so wide, so the

eventual migration to the ETF standard is expected not to

require much effort, affecting only the higher layer of the

transport.

4.1 “CORBA over RapidIO” transport

Selex Communications has matured a consolidated

experience in the development of custom CORBA

transports, starting from the “CORBA over VMEbus”, the

Hi Speed Transport

T

ORB

WFC1 WFC2

GPP

T

ORB

WFC3

DSP

T

ORB

WFC4

FPGA

Digital IF

IDL IDL IDL

IDL2CPP IDL2C IDL2VHDL

Hi Speed Transport

T

ORB

WFC1 WFC2

GPP

T

ORB

WFC3

DSP

T

ORB

WFC4

FPGA

Digital IF

IDL IDL IDL

IDL2CPP IDL2C IDL2VHDL

T

ORB

WFC1 WFC2

GPP

T

ORB

WFC3

DSP

T

ORB

WFC4

FPGA

Digital IF

IDL IDL IDL

IDL2CPP IDL2C IDL2VHDL

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

transport protocol developed for the “SW Radio

Demonstrator” project [3].

Exploiting this important experience, Selex Communications

has then developed a CORBA transport for its vehicular

SDR, the “CORBA over RapidIO” transport.

The “CORBA over RapidIO” is the transport used by the

ORBs hosted on all the devices (GPP, DSP, FPGA) to inter-

communicate (i.e. to exchange GIOP messages), through the

physical Rapid I/O interconnect.

Rapid I/O is an open-standard defining a packet-switched

interconnect, enabling chip-to-chip and board-to-board high

performance serial and parallel communications [4].

Three distinct implementations of the “CORBA over

RapidIO” transport have been developed for GPP, DSP and

FPGA, which are interoperable in order to assure the

communication among ORBs executed on heterogeneous

Processing Elements. In fact a CORBA object has to be able

to invoke the methods of another CORBA object, regardless

of where the latter is hosted (“location transparency”).

The Selex Comms “CORBA over RapidIO” transport is

logically partitioned into three distinct levels: RIO-IOP,

RIO-Transport and RIO-Drivers.

Processes executed

on GPP/DSP/FPGA

RapidIO Interconnect

CORBA over RapidIO
Transport

CORBA Objects

ORB

GIOP

Objec

t

Objec

t

Objec
t

RIO-IOP

RIO-Transport

RIO-Drivers

Figure 6: “CORBA over RapidIO” transport layers

RIO-IOP is the transport’s ‘highest’ layer, whose

responsibility is the implementation of the interface

expected by the ORB to interact, through the GIOP layer,

with the transport.

RIO-Transport layer enables connection-oriented

communications among processes executed both on the

same processing element and on other PEs.

In the RapidIO network each processing element is

univocally identified by its “device id”, instead at the RIO-

Transport level processes on the same PE are discriminated

by “ports”. RIO-Transport “port” concept is analogous to

TCP port.

The RIO-Transport layer provides the means to: 1) create

connections; 2) use connections for data transmission and

reception; 3) shutdown connections. That is, it allows the

management of the entire life-cycle of a connection.

A “connection” can be thought as a virtual “pipe” used by

two processes to exchange data in both directions (similarly

to a TCP socket).

RIO-Drivers is the transport’s ‘lowest’ layer: it is a medium

used by the above RIO-Transport layer to access the

RapidIO interconnect.

The RIO-Drivers layer provides an interface to access

RapidIO without having to know the involved hardware

mechanisms. The 3-layers Rapid I/O stack (Input/Output

Logical, Common Transport, 1x Serial Physical) is

implemented as an IP Core on FPGA.

Every CORBA transport defines its own “endpoint string”

format, where the addressing information is coded. The

general format is:

transport_name://address_information

The endpoint string format of the “CORBA over RapidIO”

transport is:

rio://<Device id>:<Port number>

where: “rio” is the transport name (in fact an ORB can use

more transports contemporaneously, each with its name);

<Device id> is an integer number (one byte) which

univocally identifies a processing element in the Rapid I/O

interconnect ; <Port number> is an integer number (one

byte) which univocally identifies a process/ORB hosted on a

processing element.

In the Selex Communications vehicular SDR, the non real-

time (controls, configurations) and real-time data (with the

only exception of the high-speed I/Q base band samples

traffic to/from DUC/DDC) information streams are

transferred by means of the “CORBA over RapidIO”

transport.

5. CORBA ON FPGA

As described earlier, this paper will focus on the recent trend

of ORB vendors to produce native gate level implementation

of ORBs. In this section will be discussed one such

implementation, PrismTech’s Integrated Circuit ORB (ICO).

With such an ORB the need to develop custom proxies on

General Purpose Processors (GPPs) and Digital Signal

Processors (DSPs) that are solely used to establish

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

communication to waveform objects residing within FPGAs

can be eliminated. These proxies, are used when designing

to Software Defined Radio (SDR) architectures such as the

SCA and are meant to increase portability and re-use, but in

practice, they tend to increase latency, reduce throughput,

and lower re-use.

ICO additionally serves to eliminate the need to embed

general purpose processing cores into FPGAs in order to

offer software ORB capability. Although a viable approach,

it tends to require significant gate count and memory

utilization and generally these processing cores cannot be

clocked fast enough to deal with the ever-increasing

performance requirements of SDR applications.

The ICO engine, is delivered as an IP core, and is

responsible for implementing the transfer syntax used in

CORBA messages. The engine unmarshals an incoming

GIOP stream and extracts header and data fields. Endian

conversion is performed on all incoming data based on

information in the GIOP message header. In the incoming

direction, the engine performs operation named

demultiplexing to determine which object the data in the

GIOP message is being transferred to. Message data is then

extracted for transfer to the appropriate logic.

If a message indicates that a response is expected, the ICO

engine generates a reply message. The engine will perform

a read operation to an object, if necessary, to obtain data for

the reply. When a reply message has been built, the ICO

engine transfers the data to the outside world via a FIFO-like

interface.

Similar to IDL compilers offered by software ORBs that

convert IDL into software languages, an IDL to VHDL

compiler accompanies ICO. This compiler is also

responsible for generating configuration parameters needed

by the ICO engine to perform operation name

demultiplexing and data routing described earlier.

Using this IDL compiler, IDL such as that which

accompanies the SCA and user defined component

interfaces, can be compiled and supported in a native FPGA

implementation of an SCA component, thereby eliminating

the need for the MHAL in such CORBA-enabled

environment.

The hardware developer treats ICO as any other IP interface

core. The core can be instantiated in the HDL capture of the

FPGA design between the native waveform logic and the

system side (transport). The system side of the core appears

as a typical FIFO interface. The native side of the core has a

simple and open interface to communicate with the

waveform logic.

Software developers treat ICO components as they would

any other CORBA object. This design approach makes

communication between the S/W and H/W objects seamless.

Using ICO, radio developers can host radio elements in an

FPGA and still have them be addressable and callable from

an SCA-compliant software as though it was an SCA object

and not residing in an FPGA.

Figure 7: ICO employment

6. CORBA OVER RAPID I/O:

PERFORMANCES

The “CORBA over RapidIO” transport performances have

been measured in two distinct benchmarks:

1. GPP-to-GPP

2. GPP-to-FPGA

The GPP device is a PowerQUICC II Pro (Freescale), with

VxWorks (Wind River) as RTOS and ORBexpress RT

(OIS) as ORB.

The FPGA device is a Stratix (Altera) with ICO

(PrismTech) as hardware ORB.

In both test facilities, the measurements have been obtained

with a CORBA Client invoking on a CORBA Servant the

operation pushPacket(), which has only one “in”

parameter of OctetSequence type (byte buffer to be pushed

to the Servant), returning an octet as a result of the

operation.

The CORBA Client is hosted on GPP in both the

benchmarks, whereas the CORBA Servant is executed on

another GPP in the first test facility and on FPGA in the

second test facility, as shown in Figure 8 e Figure 9.

ICO

Local Transport Interface

Waveform

Logic

Waveform

Logic

Waveform

Logic

FPGA

Data, Command and Control from / to GPP, DSP

ICO

Local Transport Interface

Waveform

Logic

Waveform

Logic

Waveform

Logic

FPGA

Data, Command and Control from / to GPP, DSP

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

RapidIO
Switch

GPP 1 400MHz, 800MIPS

ORB

Client

TRANSPORT
(GPP implementation)

GPP 2 400MHz, 800MIPS

ORB

Server

TRANSPORT
(GPP implementation)

octet pushPacket (OctetSequence in payload) ;

GIOP message GIOP message

Scope

I/O output I/O output

TOGGLE TOGGLE

RapidIO
Switch

GPP 1 400MHz, 800MIPS

ORB

Client

TRANSPORT
(GPP implementation)

GPP 1 400MHz, 800MIPS

ORB

Client

TRANSPORT
(GPP implementation)

GPP 2 400MHz, 800MIPS

ORB

Server

TRANSPORT
(GPP implementation)

octet pushPacket (OctetSequence in payload) ;

GIOP message GIOP message

Scope

I/O output I/O output

TOGGLE TOGGLE

Figure 8: GPP-to-GPP test facility

RapidIO
Switch

GPP 400MHz, 800MIPS

ORB

Client

TRANSPORT
(GPP implementation)

FPGA

ICO

Server

TRANSPORT
(FPGA implementation)

octet pushPacket (OctetSequence in payload) ;

GIOP message GIOP message

Scope

I/O output I/O output

TOGGLE TOGGLE

RapidIO
Switch

GPP 400MHz, 800MIPS

ORB

Client

TRANSPORT
(GPP implementation)

GPP 400MHz, 800MIPS

ORB

Client

TRANSPORT
(GPP implementation)

FPGA

ICO

Server

TRANSPORT
(FPGA implementation)

octet pushPacket (OctetSequence in payload) ;

GIOP message GIOP message

Scope

I/O output I/O output

TOGGLE TOGGLE

Figure 9: GPP-to-FPGA test facility

The “CORBA over RapidIO” transport is used by both

ORBs (ORBexpress RT on GPP and ICO on FPGA) to

exchange GIOP messages carrying CORBA requests and

replies.

The time latency between the instant just before the

pushPacket() method invocation in the Client side and the

instant when the execution of the method actually starts in

the Server side has been measured using hardware tools.

Two distinct physical signals (coming from the GPP for the

Client side and from the other GPP or the FPGA for the

Server side) are asserted in correspondence of each event.

The two digital signals are displayed in an oscilloscope, in

order to measure the time interval between their up edges.

This procedure is repeated at least ten times in order to get a

statistically valid average from the obtained values (which

actually show a very little variance), representing the time

latency for the delivery of a byte buffer of a defined size.

The entire process is in turn repeated for different values of

the OctetSequence parameter length, doubling the payload

size starting from 32 bytes up to 4 Kbytes.

The “CORBA over RapidIO” performances measured

through the two described benchmarks are reported in Table

1 and displayed in Figure 10 e Figure 11.

Packet Size

(Bytes)

GPP-to-GPP

Latency (us)

GPP-to-FPGA

Latency (us)

32 114 51

64 122 51

128 121 55

256 118 48

512 121 60

1024 132 73

2048 152 92

4096 180 148

Table 1 "CORBA over RapidIO" Transport

performances

GPP-to-GPP ORB via Rapid I/O - Latency (microseconds)

y = 0,0158x + 116,4

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Packet Size (Bytes)

L
a
te
n
c
y
 (
u
S
e
c
)

Measured values
Linear (Measured values)

Figure 10 GPP-to-GPP performances

GPP-to-FPGA ORB via Rapid I/O - Latency (microseconds)

y = 0,0238x + 47,94

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Packet Size (Bytes)

L
a
te
n
c
y
 (
u
S
e
c
)

Measured values
Linear (Measured values)

Figure 11 GPP-to-FPGA performances

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 10 and Figure 11 clearly show the high linearity of all

measured delays: the dots refer to actual measured values

and the straight line represents the best fit (trend line).

7. CONCLUSION

This paper describes how a ‘CORBA everywhere’ solution,

e.g. a solution where CORBA is used also in resource-

constrained processing elements such as FPGAs and DSPs,

is today feasible and actually represents a preferable choice

than MHAL.

The development of an adequate transport, that can be

plugged into ORB implementations, is the key factor to

achieve best performances in terms of latency and

throughput.

In particular, benchmarks regarding GIOP message transfers

between an ORB on a GPP and an ORB on FPGA (ICO),

show the applicability of CORBA technology in such

environments.

8. REFERENCES

[1] SOFTWARE COMMUNICATIONS

ARCHITECTURE SPECIFICATION Version 2.2.2 -

FINAL / 15 May 2006

[2] Joint Tactical Radio System (JTRS) Standard

Modem Hardware Abstraction Layer Application Program

Interface (API) -Version: 2.11.1 - 02 May 2007

[3] Giovanni Middioni, “CORBA over VMEbus

Transport for Software Defined Radios”, 2005

[4] http://www.rapidio.org/home

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

