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ABSTRACT 

 

This paper is an experience report detailing SELEX 

Communications’ findings in the use of CORBA as the sole 

middleware in SCA-based Software Defined Radios. 

This paper describes the different approaches used 

historically by SCA based systems to connect general-

purpose processors to resource constrained processing 

elements such as FPGAs and DSPs.  Following this, focus is 

turned to asserting that CORBA technology is ready to be 

fully exploited on SDRs, by describing how CORBA 

pluggable transports in SCA-based radio systems can be 

used to reduce the latency and throughput overhead 

associated with using CORBA’s default transport (TCP/IP).   

 

As an experience report, benchmarks will be provided, 

presenting findings for a custom CORBA transport, based 

on RapidIO interconnect, used among heterogeneous 

devices. 

 

1. INTRODUCTION 

 

The Software Communications Architecture (SCA) [1] 

favors the use of CORBA to connect waveform and platform 

components to create the connections required to implement 

data and control flows within an SDR.  CORBA is favored 

as it can support myriad heterogeneous distributed hardware 

across various bus architectures.  However, in order to 

achieve this, implementations of both CORBA and 

associated CORBA-transports must exist (or be developed) 

to support the array of hardware and networking elements 

used.   

 

Moreover, the SCA allows communication between 

processing elements not supporting CORBA defining the 

MHAL (Modem Hardware Abstraction Layer).  

If CORBA were available for all the key processing 

elements (GPP, DSP, FPGA) used in SDRs, then the MHAL 

communication service would not be needed anymore.   

CORBA solutions are today available for most types of 

GPPs and, contrary to common belief, they are also a reality 

for DSPs and FPGAs.   

 

 

2. SCA COMPLIANT CONNECTIVITY: 

CORBA AND MHAL 

 

2.1 MHAL connectivity 

 

MHAL has been adopted and standardized by the JTRS 

program to move data to and from modem hardware 

elements.  The MHAL specifies the interfaces to be used and 

the command, control and data messages that flow across 

these interfaces.  The intent of the MHAL specification is to 

offer an alternative to CORBA when dealing with processor 

and bus technologies that have no off the shelf CORBA 

support. 

 

“  Waveforms shall use the MHAL Communications Service 

for all data and control flowing between software 

components residing in different CEs (Computational 

Elements) where at least one CE does not support CORBA 

…”[2] 

 

Figure 1 illustrates how MHAL is used in an SCA-based 

radio.  The concept is to create a proxy on a processor  

supporting CORBA that implements the CORBA interfaces  

 

 

Figure 1 MHAL deployment diagram 
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using an SCA Device component.  The proxy further 

implements a proprietary protocol engine that is used to 

move data to another processor.  This processor (typically, 

non-CORBA capable) adopts a corresponding 

implementation of the proprietary protocol engine. 

The MHAL standard provides an asynchronous variable 

length messaging service to be used between Data Sources 

and Data Sinks.  This data structure is illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Standard message structure for MHAL 

 

Communicating Data Sources and Sinks may be located in 

separate CEs or within the same CE. 

 

The MHAL extends CF::Device by adding data/command 

input and output ports (as shown in Figure 3) and defines a 

message structure used to pass data to those ports (for 

transmission to other MHAL compliant processors) rather 

than defining strongly typed interfaces that express the 

behavior needed or provided by the port. 

In order to isolate assembly waveform component (e.g. 

BaseBand Component) from MHAL message oriented 

protocol interface component, adapters are often used.  This 

isolation allows reuse of “true” waveform components but 

adds additional middleware latencies otherwise not required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: MHAL used in a Waveform 

 

Although MHAL solves the problem of moving data to the 

modem hardware elements, it has several issues that can not 

be ignored: 

• The interface between components is defined as a 

simple stream 

• The interface semantics are captured in the protocol 

messages that travel over that stream 

• The “on the wire” definition of the protocol is left to 

each developer to implement (and as such may not 

agree) 

• As the MHAL message ports only serve to act as a 

conduit to move MHAL message commands and data, 

each message must be cataloged and the equivalent of 

an ICD must accompany an MHAL implementation to 

express the dataflow.  This can create significant 

ambiguity and lead to inconsistencies in implementation 

(as the message definition is not expressed in a strongly 

typed language such as IDL or UML).  Further 

compounding matters, this type of implementation 

limits the ability to transform the interface definitions 

using automated processes (ie. Using IDL compilers). 

 

2.2 CORBA Connectivity 

 

CORBA middleware can be thought of as a “Logic Bus” 

which enables distributed processing by allowing software 

entities (called “CORBA objects”) to communicate with 

each other. 

 

 

 

 

 

 

 

Figure 4: CORBA as a logic bus 

 

The “Logic Bus” is actually based on transport mechanisms 

that provide a service for reliable delivery of GIOP (General 

Inter-ORB Protocol) messages exchanged by ORBs. 

The use of the CORBA technology offers several advantages 

over alternative connectivity solutions: 

 

• Object Location Transparency - The client does not 

need to know where an object is physically located. 

• Language Transparency - Client and server can be 

written in different languages. 

• Implementation Transparency - The client is 

unaware of how objects are implemented. 

• Architecture Transparency - The idiosyncrasies of 

CPU architectures are hidden from both clients and 

servers (for example, endianess). 

Logic Bus

CORBA objects

Logic Bus

CORBA objects
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• Operating System Transparency - Client and server 

are unaffected by each other's operating system. 

• Protocol Transparency - Clients and servers do not 

care about the data link and transport layer. 

 

All these advantages are key factors for considering a 

CORBA everywhere approach in SDR sets. 

 

3. CORBA EVERYWHERE SOLUTION 

 

As was mentioned earlier, the SCA favors the use of 

CORBA wherever possible.  As CORBA is available for 

most types of GPPs, then our focus shifts to DSPs and 

FPGAs.   

 

Contrary to common belief, CORBA implementations for 

DSPs are available.  In fact, support for both the C++ and C 

languages are available by COTS vendors, and have been 

for many years.  These ORBs also are quite small and 

designed to fit into the internal memory provided by many 

DSPs.  Typical implementations of CORBA ORBs on DSPs 

are in the 100kByte memory range or less.  Choosing the C 

CORBA bindings also allows application implementations 

to remain quite small (often yielding an order of magnitude 

smaller implementation than for C++). 

 

Which leaves us with CORBA on FPGAs.  Here we find a 

few ways to implement CORBA. The first is to simply 

purchase an FPGA that includes a microprocessor as part of 

its architecture and run CORBA on the microprocessor.  

Another would be to instantiate a microprocessor within an 

FPGA using an IP core, and run CORBA there. Each of 

these approaches has drawbacks. These drawbacks fall into 

categories such as performance (e.g. not being able to clock 

these processors at high enough speeds), or size (e.g. the IP 

core taking up large amounts of gates).  But we will not 

focus on these issues, instead we will focus in section 5 on 

the recent trend of ORB vendors to implement ORBs 

natively in gates within FPGAs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: “CORBA Everywhere” scenario 

 

Regardless of how one implements an ORB in an FPGA 

however, it should be noted than once all SDR processors 

are CORBA enabled it serves to eliminate the use of adapter 

patterns (such as MHAL) and: 

•  Reduce complexity 

•  Support waveform component location 

transparency (thereby easing waveform porting). 

•  Obviate the need for proprietary communication 

protocols 

•  Eliminate reimplementation of Device adapters 

when porting to a new hardware platform  

• Likely reduce latency and increase throughput in 

the waveform communication path. 

 

4. CORBA TRANSPORTS 

 

It has been widely demonstrated that CORBA “latencies” 

are mainly due to the underlying transport protocol used. 

The default CORBA Transport is IIOP (Internet Inter-ORB-

Protocol), which is based on the TCP/IP protocol stack. 

It must be said that TCP/IP is a reliable communication 

protocol, but in real-time embedded systems it is often not 

appropriate as the transport infrastructure for CORBA. 

The main disadvantages are: TCP/IP software processing is 

very resource consuming; it is intrinsically non-

deterministic, with variable latencies which increase 

according with the traffic and network complexity; the stack 

implementation on FPGAs suffers for the limited 

performances of embedded processors.  

 

In conclusion, IIOP is not well suited in these real-time 

embedded environments (and software defined radios 

typically fall into this category).  This is the reason why 

there is the need of an optimized transport protocol.  

CORBA middleware can potentially use any data transport 

mechanism; in fact, ORB vendors allow the plug-in of 

custom transports, in order to optimize data transfer 

performance. 

The interface between the ORB and the transport can be 

ORB’s proprietary or may use ETF (Extended Transport 

Framework), which is an OMG standard presently in the 

finalization phase. 

The differences between the ETF interface and a generic  

ORB proprietary interface are usually not so wide, so the 

eventual migration to the ETF standard is expected not to 

require much effort, affecting only the higher layer of the 

transport. 

 

4.1 “CORBA over RapidIO” transport 

 

Selex Communications has matured a consolidated 

experience in the development of custom CORBA 

transports, starting from the “CORBA over VMEbus”, the 
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transport protocol developed for the “SW Radio 

Demonstrator” project [3]. 

 

Exploiting this important experience, Selex Communications 

has then developed a CORBA transport for its vehicular 

SDR, the “CORBA over RapidIO” transport. 

 

The “CORBA over RapidIO” is the transport used by the 

ORBs hosted on all the devices (GPP, DSP, FPGA) to inter-

communicate (i.e. to exchange GIOP messages), through the 

physical Rapid I/O interconnect. 

Rapid I/O is an open-standard defining a packet-switched 

interconnect, enabling chip-to-chip and board-to-board high 

performance serial and parallel communications [4]. 

 

Three distinct implementations of the “CORBA over 

RapidIO” transport have been developed for GPP, DSP and 

FPGA, which are interoperable in order to assure the 

communication among ORBs executed on heterogeneous 

Processing Elements. In fact a CORBA object has to be able 

to invoke the methods of another CORBA object, regardless 

of where the latter is hosted (“location transparency”). 

 

The Selex Comms “CORBA over RapidIO” transport is 

logically partitioned into three distinct levels: RIO-IOP, 

RIO-Transport and RIO-Drivers. 

 
 

Processes executed 

on GPP/DSP/FPGA 
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Figure 6: “CORBA over RapidIO” transport layers 

 

RIO-IOP is the transport’s ‘highest’ layer, whose 

responsibility is the implementation of the interface 

expected by the ORB to interact, through the GIOP layer, 

with the transport. 

RIO-Transport layer enables connection-oriented 

communications among processes executed both on the 

same processing element and on other PEs. 

In the RapidIO network each processing element is 

univocally identified by its “device id”, instead at the RIO-

Transport level processes on the same PE are discriminated 

by “ports”. RIO-Transport “port” concept is analogous to 

TCP port. 

The RIO-Transport layer provides the means to: 1) create 

connections; 2) use connections for data transmission and 

reception; 3) shutdown connections. That is, it allows the 

management of the entire life-cycle of a connection. 

A “connection” can be thought as a virtual “pipe” used by 

two processes to exchange data in both directions (similarly 

to a TCP socket). 

RIO-Drivers is the transport’s ‘lowest’ layer: it is a medium 

used by the above RIO-Transport layer to access the 

RapidIO interconnect. 

The RIO-Drivers layer provides an interface to access 

RapidIO without having to know the involved hardware 

mechanisms. The 3-layers Rapid I/O stack (Input/Output 

Logical, Common Transport, 1x Serial Physical) is 

implemented as an IP Core on FPGA. 

 

Every CORBA transport defines its own “endpoint string” 

format, where the addressing information is coded. The 

general format is: 

 
transport_name://address_information 

 

The endpoint string format of the “CORBA over RapidIO” 

transport is: 

 
rio://<Device id>:<Port number> 

 

where: “rio” is the transport name (in fact an ORB can use 

more transports contemporaneously, each with its name); 

<Device id> is an integer number (one byte) which 

univocally identifies a processing element in the Rapid I/O 

interconnect ; <Port number> is an integer number (one 

byte) which univocally identifies a process/ORB hosted on a 

processing element. 

 

In the Selex Communications vehicular SDR, the non real-

time (controls, configurations) and real-time data (with the 

only exception of the high-speed I/Q base band samples 

traffic to/from DUC/DDC) information streams are 

transferred by means of the “CORBA over RapidIO” 

transport. 

 

 

5. CORBA ON FPGA 

 

As described earlier, this paper will focus on the recent trend 

of ORB vendors to produce native gate level implementation 

of ORBs.  In this section will be discussed one such 

implementation, PrismTech’s Integrated Circuit ORB (ICO).  

With such an ORB the need to develop custom proxies on 

General Purpose Processors (GPPs) and Digital Signal 

Processors (DSPs) that are solely used to establish 
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communication to waveform objects residing within FPGAs 

can be eliminated.  These proxies, are used when designing 

to Software Defined Radio (SDR) architectures such as the 

SCA and are meant to increase portability and re-use, but in 

practice, they tend to increase latency, reduce throughput, 

and lower re-use. 

ICO additionally serves to eliminate the need to embed 

general purpose processing cores into FPGAs in order to 

offer software ORB capability.  Although a viable approach, 

it tends to require significant gate count and memory 

utilization and generally these processing cores cannot be 

clocked fast enough to deal with the ever-increasing 

performance requirements of SDR applications. 

The ICO engine, is delivered as an IP core, and is 

responsible for implementing the transfer syntax used in 

CORBA messages.  The engine unmarshals an incoming 

GIOP stream and extracts header and data fields.  Endian 

conversion is performed on all incoming data based on 

information in the GIOP message header.  In the incoming 

direction, the engine performs operation named 

demultiplexing to determine which object the data in the 

GIOP message is being transferred to.  Message data is then 

extracted for transfer to the appropriate logic. 

If a message indicates that a response is expected, the ICO 

engine generates a reply message.  The engine will perform 

a read operation to an object, if necessary, to obtain data for 

the reply.  When a reply message has been built, the ICO 

engine transfers the data to the outside world via a FIFO-like 

interface. 

Similar to IDL compilers offered by software ORBs that 

convert IDL into software languages, an IDL to VHDL 

compiler accompanies ICO.  This compiler is also 

responsible for generating configuration parameters needed 

by the ICO engine to perform operation name 

demultiplexing and data routing described earlier. 

Using this IDL compiler, IDL such as that which 

accompanies the SCA and user defined component 

interfaces, can be compiled and supported in a native FPGA 

implementation of an SCA component, thereby eliminating 

the need for the MHAL in such CORBA-enabled 

environment.  

 

The hardware developer treats ICO as any other IP interface 

core.  The core can be instantiated in the HDL capture of the 

FPGA design between the native waveform logic and the 

system side (transport).  The system side of the core appears 

as a typical FIFO interface.  The native side of the core has a 

simple and open interface to communicate with the 

waveform logic. 

Software developers treat ICO components as they would 

any other CORBA object.  This design approach makes 

communication between the S/W and H/W objects seamless.  

Using ICO, radio developers can host radio elements in an 

FPGA and still have them be addressable and callable from 

an SCA-compliant software as though it was an SCA object 

and not residing in an FPGA. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: ICO employment 

 

6. CORBA OVER RAPID I/O:  

PERFORMANCES 

 

The “CORBA over RapidIO” transport performances have 

been measured in two distinct benchmarks: 

 

1. GPP-to-GPP 

2. GPP-to-FPGA 

 

The GPP device is a PowerQUICC II Pro (Freescale), with 

VxWorks (Wind River) as RTOS and ORBexpress RT 

(OIS) as ORB. 

The FPGA device is a Stratix (Altera) with ICO 

(PrismTech) as hardware ORB. 

 

In both test facilities, the measurements have been obtained 

with a CORBA Client invoking on a CORBA Servant the 

operation pushPacket(), which has only one “in” 

parameter of OctetSequence type (byte buffer to be pushed 

to the Servant), returning an octet as a result of the 

operation. 

 

The CORBA Client is hosted on GPP in both the 

benchmarks, whereas the CORBA Servant is executed on 

another GPP in the first test facility and on FPGA in the 

second test facility, as shown in Figure 8 e Figure 9. 
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Figure 8: GPP-to-GPP test facility 
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Figure 9: GPP-to-FPGA test facility 

 
The “CORBA over RapidIO” transport is used by both  

ORBs (ORBexpress RT on GPP and ICO on FPGA) to 

exchange GIOP messages carrying CORBA requests and 

replies. 

 

The time latency between the instant just before the 

pushPacket() method invocation in the Client side and the 

instant when the execution of the method actually starts in 

the Server side has been measured using hardware tools. 

Two distinct physical signals (coming from the GPP for the 

Client side and from the other GPP or the FPGA for the 

Server side) are asserted in correspondence of each event. 

The two digital signals are displayed in an oscilloscope, in 

order to measure the time interval between their up edges. 

This procedure is repeated at least ten times in order to get a 

statistically valid average from the obtained values (which 

actually show a very little variance), representing the time 

latency for the delivery of a byte buffer of a defined size. 

 

The entire process is in turn repeated for different values of 

the OctetSequence parameter length, doubling the payload 

size starting from 32 bytes up to 4 Kbytes. 

 

The “CORBA over RapidIO” performances measured 

through the two described benchmarks are reported in Table 

1 and displayed in Figure 10 e Figure 11. 

 

 

Packet Size 

(Bytes) 

GPP-to-GPP 

Latency (us) 

GPP-to-FPGA 

Latency (us) 

32 114 51 

64 122 51 

128 121 55 

256 118 48 

512 121 60 

1024 132 73 

2048 152 92 

4096 180 148 

 

Table 1 "CORBA over RapidIO" Transport 

performances 
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Figure 10 GPP-to-GPP performances 

 

 

GPP-to-FPGA ORB via Rapid I/O - Latency (microseconds)

y = 0,0238x + 47,94

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Packet Size (Bytes)

L
a
te
n
c
y
 (
u
S
e
c
)

Measured values
Linear (Measured values)

 

Figure 11 GPP-to-FPGA performances 
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Figure 10 and Figure 11 clearly show the high linearity of all 

measured delays: the dots refer to actual measured values 

and the straight line represents the best fit (trend line). 

 

 

7. CONCLUSION 

 

This paper describes how a ‘CORBA everywhere’ solution, 

e.g. a solution where CORBA is used also in resource-

constrained processing elements such as FPGAs and DSPs, 

is today feasible and actually represents a preferable choice 

than MHAL. 

The development of an adequate transport, that can be 

plugged into ORB implementations, is the key factor to 

achieve best performances in terms of latency and 

throughput. 

In particular, benchmarks regarding GIOP message transfers 

between an ORB on a GPP and an ORB on FPGA (ICO), 

show the applicability of CORBA technology in such 

environments. 
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