
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

EXPERIENCE REPORT: RAPID MODEL-DRIVEN WAVEFORM 

DEVELOPMENT WITH UML 
 

Shaw-Ping Lee  
(Thales Technology Centre Singapore, Singapore, shawping.lee@asia.thalesgroup.com); 

 Mark Hermeling  
(Zeligsoft Inc., Quebec, Canada, mark@zeligsoft.com); 

Chueh-Min Poh  
(Thales Technology Centre Singapore, Singapore, steven.poh@asia.thalesgroup.com) 

 
 

ABSTRACT 
 
Of great value to the Software Defined Radio (SDR) 
application developer is an integrated tool chain that 
combines a domain-specific SCA tool for the development 
of SCA artifacts with a general-purpose UML-based tool for 
the development of component artifacts.  We have defined a 
process which integrates Zeligsoft CE™ with Telelogic 
Rhapsody to achieve waveform modeling and component 
development in tandem in three independent and repeatable 
steps.  The three steps involve reverse-engineering a 
component C++ worker class in Rhapsody, modeling the 
component function in UML, and configuring the Operating 
Environment (OE) to compile the framework code with the 
component code.  This process has been applied to develop 
successfully two waveforms from a single architecture 
model for two OEs.  Engineers truly benefit from using this 
process in term of time saving, shorter learning curve, and 
reduced porting effort. 
 

1. INTRODUCTION 
 

In 2005, Thales Technology Centre Singapore (TTCS) 
collaborated with Thales Defense Deutschland (TDD) to 
design and develop a SCA SDR WNW waveform. This 
R&D project aims to create competency in SDR and SCA in 
the Asia region. TTCS was the lead on the project and 
combined TDD’s expertise in Physical layer protocols with 
TTCS’s own experience in building upper level protocols. 
Zeligsoft was brought in to the project to provide tools, 
training and consulting to TTCS in the use of the Software 
Communications Architecture (SCA) standard for SDR 
deployment and configuration. 
 
As often with embedded software development projects, 
hardware was not available at the beginning of the project. 
Hence, TTCS decided to start development using the 
HARRIS dmTK SCA Core Framework (CF) running on an 
MS-Windows PC and then transfer the project to the actual 

radio hardware once it became available. As a result, the 
solution that TTCS adopted had to consider portability and 
reusability. The TTCS engineers are most comfortable with 
the model driven approach for code development and hence 
one of the requirements for the development solution was 
that it incorporate a UML modeling tool as well as SCA 
domain knowledge. 
 
Together with Zeligsoft, TTCS defined a development 
process that integrates Zeligsoft Component Enabler (CE™) 
with Telelogic Rhapsody to achieve waveform modeling 
and component development in tandem. Transformation of 
SCA models from Zeligsoft CE to Rhapsody’s UML 
environment was greatly simplified as Zeligsoft CE’s SCA 
models are also UML-based.  
 
The approach comprises a three-step process with the ability 
to repeat each step independently in order to provide 
iterative workflows. Step one involves transforming an SCA 
component’s functional code, produced by Zeligsoft Code 
Generator, to Rhapsody through the use of the reverse 
engineering capability in Rhapsody. Step two involves 
developing and generating component functional code in 
Rhapsody. Finally, step three involves configuring the 
operating environment in Zeligsoft CE to compile the 
framework code with the functional code generated by 
Rhapsody. Additional details about these three steps will be 
described in section 2 
 
This process was applied to develop a WNW waveform for 
two hardware platforms: HARRIS dmTK CF running on a 
MS-Windows PC and SCARI++ CF running on Spectrum 
Signal Processing’s SDR-4000. This process simplified 
component behavior modeling in Rhapsody, with the SCA 
framework code handled by Zeligsoft’s UCG. In addition, it 
significantly reduced the time and effort required to port the 
application from the PC environment to the SDR-4000 
environment to roughly 1 week per component. This 
flexibility is a testament to both tools’ breadth of support for 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

multiple operating environments. Engineers truly benefit 
from the integrated tool chain as they can quickly develop 
their components, even with limited SCA knowledge. This 
ultimately translates to spending less time tackling the 
intricacies of framework code and more time focusing on 
the value provided by the component’s function. In addition, 
less time spent on the low level details of component 
structure means less chance of bugs slipping into the 
project, reducing project risk. 
 
The Zeligsoft SCA development solution comprises a 
modeling environment and a code generator. The Zeligsoft 
code generator strictly separates Common Object Request 
Broker Architecture (CORBA) and SCA infrastructure code 
from the functional behavior. The functional behavior is 
implemented by the engineer using his or her favorite 
Integrated Development Environment (IDE), or a UML tool 
such as Telelogic Rhapsody. The functional behavior is 
typically referred to as “the Worker”. The Worker class can 
easily be reverse-engineered into a UML tool and extended 
through that means. The separation between CORBA and 
SCA code and the Worker allows the engineer to focus on 
implementing behavior rather then implementing SCA. 
TTCS adopted Zeligsoft’s solution [1] and used this as part 
of the development process for the protocol components on 
the General Purpose Processor (GPP). 
 
1.1. Existing Tools and Methodology 
 
The Software Communications Architecture (SCA) 
improves portability and re-usability through the use of 
components: independently deployable artifacts with strong 
encapsulation. A component in the SCA is defined by well-
defined and strongly typed interfaces and is realized by one 
or more implementations: binary files that are compiled for 
a specific OE comprising Real-Time Operating System 
(RTOS), processors, CORBA ORB and SCA CF. 
 
An SDR adhering to the SCA consists of a component-
based platform and a component-based application 
(waveform). The latter is deployed (instantiated) on the 
former. For this to work a component needs to implement 
certain infrastructure code as documented by the SCA 
standard. The easiest way to think about a component is that 
it is an autonomous binary that can be started and then 
connected with other components to form an application. 
 
Thus to implement a component, one must implement the 
infrastructure code as well as the actual functional behavior 
of the component. The interface code is not difficult to 
write, but it requires attention to detail and precise 
understanding of the standard. This makes it an error-prone 
activity with little added value. As with any piece of code, 
there are multiple ways to implement the infrastructure code 

(as for example, there can be many implementations found 
for the Queens [2] problem). 
There are a number of SCA development tools available in 
the market for both research and commercial applications. 
Some tools are open-source and they all vary in terms of 
features and capabilities. These tools are domain-specific, 
that is, they understand the SCA domain. They understand 
SCA concepts such as components and ports and have built-
in knowledge of how to translate that component and that 
port into source code. Each tool has its own way of 
implementing the infrastructure code. The infrastructure 
code usually has a placeholder for the component behavior 
code that the user can either author in his/her favorite IDE, 
in the SCA tool itself or in a general UML tool. 
 
The true challenge is integrating the domain-specific tool 
with a general UML tool like Rhapsody. Rhapsody does not 
have knowledge about the SCA and does not require that 
knowledge as the goal is to abstract that detail from the user. 
The ideal solution is a model-to-model transformation from 
SCA to general UML and tight linking between the two 
tools, if possible using same user interface. Ideally the 
engineer’s changes to the SCA diagram will translate into 
the model in the UML tool directly and vice-versa. 
 
As mentioned before, the code representation of a 
component contains functional and infrastructure code. This 
infrastructure code can be completely handled by the SCA 
tool, the UML tool is used to model the functional parts of 
the component. Hence the model-to-model transformation 
should take an SCA model and create a UML model of the 
functional code only, abstracting away (or hiding) the 
infrastructure code. 
 
This way of working can be extrapolated to extend not just 
general UML tools, but also signal processing tools like The 
MathWorks/Simulink. Again, with this example there is 
infrastructure code and functional code (in this case signal 
processing). The latter is handled in The MathWorks 
Simulink. 
 
For now, the available SCA tools generate source code that 
implements the infrastructure parts that can be combined 
with the functional code that is implemented in the generic 
UML tool (or in a signal processing tool). SCA tool vendors 
can be contacted for more details on this. 
 

2. DEVELOPMENT PROCESS 
 

In this section, we shall explain the development process in 
detail. First we explain which tools were used and how they 
are related. We talk about modeling, generation and how to 
iteratively model-a-little, code-a-little and test-a-little. 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

Finally, we touch on CORBA and SCA as well as porting 
and re-usability.  
 
2.1. Integration and Flow of Artifacts 
 
The waveform development process followed by TTCS is a 
3-step process as shown in figure 1. Zeligsoft CE is used to 
model the SCA waveform architecture consisting of a 
number of SCA components. Each of the components is 
then generated into a Worker class (the skeleton for the 
functional code) and infrastructure code (the 
implementation of the SCA-required behavior). 
 
The Worker class is then reverse-engineered into Rhapsody 
using Rhapsody’s reverse engineering functionality.  Each 
component will have its own Rhapsody model.  After 
functional code has been inserted, C++ code can be 
generated in Rhapsody.  Finally these codes are compiled 
against a specific OE (RTOS and CORBA ORB) by 
Zeligsoft Code Generator to create the executable for the 
component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Tool Chain Integration Process 
 
2.1.1. Step 1: Waveform Architecture 
Waveform modeling is done in Zeligsoft CE. In this stage, 
the waveform components are defined and assembled into 
an application. Components have ports to communicate with 
other components. The WNW contains ten components 
performing functions such as ad-hoc routing, IP, MAC, 
PHY adapter, and so forth. 
 
Figure 2 shows the representation of a set of collaborating 
components in Zeligsoft CE. Each black filled square box 
represents an SCA uses port and each white square box 
represent an SCA provides port. Both ports are based on an 
interface that indicates the messages that flow through it. 
The lollipop symbol at the top of the component indicates 
the SCA CF::Resource interface that represents the 
infrastructure interfaces. Ports are connected by connectors, 
shown as the black edges between ports in the diagram. The 

connections are owned by the encompassing application, not 
by the individual components. 
 
 
 
 
 
 
 
 
Figure 2: Waveform Model in Zeligsoft CE (Simplified Model) 
 
The component definition is translated into source code by 
Zeligsoft Code Generator. The source codes include both 
the worker and infra-structure code to handle the 
components’ properties configuration, ports functions, and 
SCA life-cycle functions. These codes are independent of 
the OE. An SCA component can have numerous 
implementations, one each for a different OE. The generator 
also generates makefiles for each of these implementations 
to compile and link these codes into executables. 
 
2.1.2. Step 2: Functional Behavior In Rhapsody 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Rhapsody Model of a Component (Simplified Model) 
 
Telelogic Rhapsody was used to develop the functional 
behavior through UML diagrams.. The Worker class of a 
component is reverse-engineered to create a class in 
Rhapsody. In this project, we developed the functional code 
initially for MS-Windows XP running on an x86 PC. This 
code was then ported to INTEGRITY (running on the SDR-
4000) with slight modifications (implement macros, 
abstraction functions/class) to handle the differences 
between Windows XP and INTEGRITY. 
 
As shown in figure 4, the uses port is represented in 
Rhapsody as a private association with the name of the port 
suffixed with an underscore (toLIPPort_). The association is 
to a standard C++ class that implements the uses port. This 
class abstracts the worker from the CORBA implementation 
of the uses port. The initiation of connections between ports 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

is also not handled in the worker. Rather it is handled in the 
infrastructure code that implements CF::Port, which is not 
represented in the model. 
 
The functions for the provides port are represented in figure 
4 as a function with the port IDL module and interface name 
prefixing the function name (such as 
LIP2FSRPP_OnewayPush function). The worker inherits 
from an abstract interface that represents the functions in the 
interfaces on the provides ports. 
 
As mentioned, this pattern provides for complete separation 
of the functional code from the CORBA and the SCA 
infrastructure code, thereby lessening the cognitive load on 
the engineer. Further detail about the code pattern is beyond 
the scope of this paper and can be obtained directly from 
Zeligsoft.  
 
Some of the infrastructure behavior is terminated in the 
worker. For example, the CF::Resource interface has start, 
stop, configure and query functions. These functions are as 
much as possible implemented in the infrastructure code and 
then forwarded to the worker so that the user can add 
behavior (to start signal processing for example).  After 
which the user can now add detailed level code and 
additional contents to the UML model in Rhapsody and 
generate it into source code. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Worker Class in Rhapsody 
 
2.1.3. Step 3: Compilation 
As mentioned, makefiles are generated from the component 
and the implementations in the SCA model. These makefiles 
are then used to compile the codes for MS Windows XP 
using ACE/TAO and executed in the HARRIS dmTK CF 
and for INTEGRITY using OIS ORBexpress with the 
SCARI++ CF (SDR-4000). Note that the code for a 
component is the same for all targets. Only the makefiles are 
different for each target — they are used to select the 
appropriate compiler, linker and so forth. 
 
The other benefit of the generated makefiles is build 
avoidance. During the first compilation, all the code of a 
component is compiled. In next iteration, only the source 

files that have changed will be compiled. This saves time 
and makes build-a-little, test-a-little workflows faster. 
 
2.2. Iterative Development 
 
The waveform models are built incrementally. That is, an 
initial architecture model is developed and then, in multiple 
steps, parts of the behavior are incrementally implemented. 
As the engineers learn more about the waveform, the radio 
and the SCA, they elaborate on this model and re-factor 
where necessary. This means that modifications will be 
made to the waveform model that needs to be propagated to 
the Rhapsody model. Modification must be done in both the 
Zeligsoft CE waveform model and in Rhapsody model. The 
engineer can choose to modify both models manually, or to 
modify in CE, re-generate code, and reverse-engineer into 
Rhapsody in order to update the Rhapsody model. 
Modifications can require changes to: 

1. interfaces 
2. properties  
3. ports on a component 
4. implementations of a component 
5. components instantiated in the waveform 
6. connections in the waveform 

Modifications 1 – 3 require changes in the Rhapsody model, 
whereas modifications 4 – 6 can simply be handled in the 
SCA model in Zeligsoft CE.  
 
The fact that changes need to be manually propagated is 
clearly something that can be improved upon, See the 
section titled “Future Improvements” later on in this paper. 
 
2.3. Platform Independence and Reusability 
 
One major achievement of the SCA is platform 
independence, both in the sense of radio hardware, as well 
as CORBA ORB, RTOS and CF. In this section, we shall 
elaborate on how this has been realized. 
 
As reported before, two types of test platforms were used in 
the project. The first setup is a host environment consisting 
of x86 compatible PCs operating in MS- Windows XP. 
Installed on the platform is the HARRIS dmTK CF and 
ACE ORB (TAO) CORBA. The second setup is the SDR-
4000 embedded system. The SDR-4000 processing engine 
supports a Xilinx Virtex-4 FPGA, a TI TMS320C6416T 
DSP and a Freescale MPC8451E GPP. The OE consists of 
INTEGRITY RTOS, SCARI++ CF and ORBexpress RT 
CORBA. 
 
2.3.1. CORBA 
Two separate CORBA ORBs were used. ACE ORB (TAO) 
on the development host and ORBexpress RT on the SDR-
4000. The ORB functions are encapsulated in the 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

infrastructure code. The switch between the different ORBs 
is done by the setting the compilation flags in the makefiles. 
The engineer is not exposed to CORBA, the worker class is 
completely encapsulated. The benefit is that the engineer 
does not have to be well versed in CORBA, and these codes 
are portable by design. 
 
One benefit of this separation between infrastructure and 
functional code is that it is a trivial task to replace the 
CORBA ORB with a different communication framework at 
a later stage, if required for performance or other reasons. A 
different communication framework could be deployed by 
direct function calls, RTOS messaging or streaming over 
Serial RapidIO (SRIO), or by the FlexFabric contained in 
the Spectrum Signal Processing boards.  
 
Additionally, this separation allows for re-use of the 
functional code outside of the context of the SCA. This is 
something that is both possible and desirable, but has not yet 
been attempted by the project team. 
 
2.3.2. Operating Environment 
Two separate RTOSs and SCA CFs were used: Harris on 
Windows XP and SCARI++ on INTEGRITY. The 
waveform was easy to move and the engineers always 
maintained two execution environments during the 
timeframe of the project. 
 
2.3.3. Platform 
The host-based platform clearly did not have sufficient 
processing capability to run the PHY layer of the network. 
To still be able to execute useful scenarios, a test-bed was 
set up using the QualNet IP Network Emulation (IPNE) 
module attached the Windows XP host. This test bed 
allowed the project team to create a multi-hop radio 
scenario. Once the software was tested, it was then moved 
to the SDR-4000 with a fully implemented PHY layer 
running on the DSP processor. 
 
Porting of the waveform only required a re-compilation of 
the functional and infrastructure code for the different OE, 
and then loading it onto the SDR-4000. The Rhapsody 
model remained exactly the same for this. 
 

3. RESULT 
 

3.1. Time Saving 
 
With the use of this development process, protocols can be 
developed in a generic format that can be easily targeted for 
a specific system in a later stage. Porting effort for future 
systems could be reduced by 70%. Moreover, key codes 
could be re-used, saving 50% of design effort for future 
projects. In the WNW development, the porting of protocols 

codes from host OE to the SDR-4000 system took less than 
3 weeks. This freed up substantial time for the engineers to 
perform value-added activities such as optimization, testing 
and verification.  
 
3.2. Improved Engineering Resource Utilization 
 
Deploying this process eliminates the requirements to build 
a large waveform development team. There is no 
requirement to have in-house experts in the CORBA and 
SCA domains.  Moreover, using a common resource UML 
model tool like Rhapsody, project management can allocate 
or assigned engineers to other software development 
projects when necessary. 
 
3.3. Performance 
 
 
 
 
Figure 5: Port Abstractions for CORBA-Worker 
 
Zeligsoft Code Generator is capable of generating code that 
has small overhead. The project team’s experience shows 
that CORBA port communications are the most frequently 
run operations compared to other CF operations. Packets 
generated externally or by the Routing component need to 
be sent downstream to the PHY layer, and similarly the 
packets received by the PHY layer need to be sent upstream.  
These are CORBA operations that are sent through ports on 
the components. Figure 5 shows the relationship between 
the two components’ ports with the port abstraction codes in 
between the workers on each side and CORBA in between 
the two. This is the code path that is executed during 
message passing. 
 
On the sending side the worker calls an operation on the 
uses port abstraction code as a normal C++ operation, data 
is passed in by reference. This operation checks an attribute 
to see if the port is connected and then calls a CORBA 
operation to pass the data. 
 
On the receiving side provides port code is the 
implementation of the CORBA servant. This 
implementation again checks an attribute to see if the 
worker is registered, if so, it calls a C++ operation on the 
worker and passes the data as a reference. 
In both the sending and receiving cases the overhead is 
limited to a single if-statement, a function call and the 
passing of data by references. This is negligible compared to 
the overhead of inter-process or even inter-processor 
communication. 
 
3.4. Quality 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

 
Quality of the code is improved by using a UML model. 
The UML model is easier to interpret and maintain by 
engineers, especially if multiple engineers are collaborating 
on the same project. Code generation introduces fewer 
errors, resulting in better overall code quality. 
 

4. CONCLUSION 
 
We have presented an integrated tool chain that reduces 
time, effort, and risk in developing and porting waveforms 
and improves code reusability. It clearly lowers the 
technology hurdle in developing an SCA waveform.  The 
development process leverages modeling, code generation 
and automation of the two tools to achieve all the above 
mentioned benefits. 
  
Code generation is often considered to be less optimal then 
hand-written code.  In our experience, cost is incurred as 
soon as the engineer steps away from writing assembly-
code. Abstraction always has a cost, but we argue that for 
our R&D project, such cost is overwhelmingly compensated 
by the time savings that can be achieved by using modeling 
and automatic generation. 
 
The project was delivered on-time, on-quality and within the 
budget, which TTCS partially attributes to the acceleration 
provided by the modeling tools selected. TTCS is inclined 
to follow a similar development approach in upcoming 
projects. 
 

5. FUTURE IMPROVEMENT 
 
The above development process is targeted towards GPP 
components. It can be applied to DSPs, however, DSPs are 
optimized for signal processing and control code has a 
tendency to flush the pipelines with frequent jumps, thereby 
impacting the performance of the processors. Hence care 

should be taken to achieve proper optimization when using 
general purpose UML tools. A development process for 
DSP would also benefit from an integration with a signal 
processing tool (e.g those that are supplied from vendors 
like The MathWorks).  
 
As for FPGAs, it may be possible to apply the UML tool 
chain integration for FPGA development. A technological 
project sponsored by THALES demonstrated the use of 
UML to develop an FPGA component using Rhapsody and 
generate code for SystemC [3][4][5]. This potential 
capability may be investigated further to enable more 
automation on the development process for waveform 
development.  
 
Lastly, the integration between the SCA modeling and the 
general UML modeling tool is done manually. There is 
clearly opportunity for improvement here. Zeligsoft has 
already done work on this together with Telelogic, more 
information on this collaboration is available through 
Zeligsoft. 
 

6. REFERENCES 
 
[1]  Zeligsoft Component Enabler in Action: Integrating Zeligsoft 

CE and Telelogic Rhapsody for rapid implementation of SCA 
compliant components available through www.zeligsoft.com 

[2]  http://en.wikipedia.org/wiki/Eight_queens_puzzle 
[3]  http://www.martes-itea.org 
[4]  T. Arpinen, M. Setälä, P. Kukkala, E. Salminen, M. 

Hännikäinen, and T. D. Hämäläinen, “Modeling Embedded 
Software Platforms with a UML Profile,” Forum on 
specification and Design Languages (FDL'07), Barcelona, 
Spain, September 18-20, 2007. 

[5]  P. Andersson, and M. Host, “UML and SystemC - a 
Comparison and Mapping Rules for Automatic Code 
Generation,” Proceedings of the Forum on specification and 
Design Languages conference (FDL), Barcelona, Spain, 
September 18 - 20, 2007.

 
Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover 
sheet for the paper (either email or fax)—not on the paper itself.   
 
“The authors represent that the work is original and they are the author or authors of the work, except for material 
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the 
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference 
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related 
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their 
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may 
not grant third party requests for reprints or republishing.” 
 
Government employees whose work is not subject to copyright should so certify. For work performed under a 
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for 
official U.S. Government purposes.  




	Home
	Papers By Alpha
	Papers By Session



