

A MODEL DRIVEN TESTING FRAMEWORK FOR SCA APPLICATIONS

Francis Bordeleau (Zeligsoft, Gatineau, QC, Canada; francis@zeligsoft.com).

Toby McClean (Zeligsoft, Gatineau, QC, Canada; toby@zeligsoft.com);

ABSTRACT

One of the key objectives of the Software Communication
Architecture (SCA) is the decoupling of applications
(waveforms) and platforms, which aims to enable the
porting of waveforms from one radio platform to another.
The work done in the last decade has resulted in the
development of technologies and commercial products that
have significantly reduced the complexity and risk
associated with the development of SCA-compliant.
However, in spite of the fact that testing accounts for a large
percentage of the development effort in embedded systems
and that the SCA introduces new testing challenges, the key
aspects of SCA application testing have not been seriously
addressed yet by the industry.
 In this paper, we present a model-based testing
framework that focuses on the testing of SCA applications.
The proposed framework adopts a scenario-based approach
to testing. A key aspect of the SCA testing framework is
the grouping of components and applications with their
associated test cases. These test cases can be used to test
components and applications in different platform
configurations and on different platforms. In this context,
test cases constitute reusable assets that ensure consistent
testing in all deployment contexts in which an application
(or a component) is used. This type of packaging offers
many key advantages that allow for reducing the risk and
cost associated with component and application portability.

1. INTRODUCTION

The Software Communication Architecture (SCA) has been
developed by a consortium of US companies under the
sponsorship of the US DoD to serve as a standard for the
development of interoperable Software Defined Radios
(SDRs). One of the key objectives of the SCA is the
decoupling of applications (waveforms) and platforms,
which aims to enable the porting of waveforms from one
radio platform to another. This decoupling is achieved by
the introduction of a middleware layer composed of a

POSIX Real-Time Operating System (RTOS), a CORBA
ORB and an SCA Core Framework (CF), which is
responsible for the deployment and configuration of
applications on the platform and for the management of the
applications running on the radio and of the radio platform
itself.
 The work done by defense contractors and system
integrators in the US and around the world, and by
commercial vendors involved in the SCA market, has
resulted in the development of technologies and commercial
products that have significantly reduced the complexity and
risk associated with the development of SCA-compliant
products (waveform applications and radio platforms). In
particular, commercial SCA development tools and Core
Frameworks are now available and have proven their value.
 However, in spite of the fact that testing accounts for a
large percentage of the development effort in embedded
systems and that the SCA introduces new testing challenges,
the key aspects of SDR testing have not been seriously
addressed yet by the SDR industry. While SCA compliance
testing of Core Frameworks and SDR platform is covered
by the JTRS Testing Application (JTAP) the testing of SCA
applications has only been superficially addressed, primarily
through the introduction of basic capability to test the SCA
interfaces of application components in commercial SCA
development tools such as Zeligsoft CE™. No real efforts
have been invested in the development of solutions to
support the testing of waveform applications with respect to
their behavior and quality of service (QoS).
 From an application testing perspective, the
component-based software nature of the SCA specification
and the platform portability objective of SCA introduce
interesting challenges:
• Testing an application in the context of different

deployments on a given platform
• Testing an application on different platforms
• Testing an application deployed using different

component implementations
• Testing different radio application configurations

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

mailto:francis@zeligsoft.com
mailto:toby@zeligsoft.com

 To ensure waveform application portability and product
interoperability, a standard compliance test suite can be
developed and test suites can be associated with
applications and packaged/delivered together. This way,
application test suites can be reused in a standard way to
ensure proper application testing from host to target, in
different platform configurations and on different platforms.
The development and reuse of such application test suites
can lead to significant savings in cost and effort associated
with the application porting effort. The development of a
standard compliance test suite is particularly important in
large programs such as JTRS, ESSOR and WINTSEC, in
order to ensure product quality and interoperability.
 Model-based techniques are now broadly used in the
SDR industry to develop applications and systems. The use
of models allows for significantly improved productivity by
enabling developers to work at a higher-level of abstraction,
and by leveraging generation techniques to produce
optimized code and complete sets of descriptors files. The
use of models enables the use of model validation
techniques to discover errors early in development cycles,
and supports model transformation techniques to integrate
complementary tools in an overall development process
where different models are used for developing different
aspects of the system.
 Model-based techniques can also be used to support the
testing aspect of the development process. Different models,
like UML Sequence Diagram (SD), State Machine (SM)
and Activity Diagram (AD), can be used to specify different
testing aspects. These diagrams can be augmented with
annotations, textual descriptions, tabular notations and code
for completeness. Modeling techniques can also be used to
capture execution sequences to facilitate execution
monitoring and diagnosis (i.e. comparison of execution
traces with test specification).
 In this paper, we present a model-based testing
framework for the SCA. The proposed framework adopts a
scenario-based approach to testing. In particular, we show
how by including scenario descriptions using UML
Sequence Diagrams in the SCA SDR model we are able to
derive scenario based test suites. The scenarios can describe
unit tests for a particular component in the waveform, or
they can be used to capture scenarios at the system level.
Furthermore, we are able to build the system testing
incrementally by growing subsets of the components (and
stubs), starting with sub-assemblies of a few components
and stubs, and finishing with the complete set of
components belonging to the waveform. Since these models
are independent of the platform, we are able to start testing
on a host platform and systematically migrate to the target
platform.

 The rest of the paper is structured as follows. Section 2
introduces the key objectives and characteristics of the SCA
Testing Framework. Section 3 focuses on the test creation
phase. It discusses the main issues that must be addressed
and the solution to these issues. Section 4 describes test
execution and result analysis. Section 5 discusses the
integration of QoS in the testing framework. Finally, section
6 provides a summary of the paper and highlights key
benefits of the testing framework.

2. SCA APPLICATION TESTING FRAMEWORK

The main objectives of the proposed SCA testing
framework are:
• Support the development of SCA application test suites

that are independent of specific radio platforms and that
can be used (and reused) to test components and
applications on different platforms and in different
platform configurations

• Be applicable at different levels of component-based
application testing, from component (unit), to application
(component assembly), to deployed application

• Support the creation and execution of SCA application
test cases and the analysis of test results

• Provide support for the introduction of the QoS aspect
throughout the testing process

 The SCA testing framework we propose leverages
model-based techniques to define reusable test cases
independently of specific programming languages, and it
uses a scenario-based testing approach to focus on
collaboration/interaction between application components.
The framework builds on the important body of technical
material developed over the last decades around modeling
notations and scenario-based techniques, like UML
Sequence Diagrams and Message Sequence Charts (MSC).
 A key aspect of the SCA testing framework is the
grouping of components and applications with their
associated test cases. As illustrated in Figure 1, these test
cases, which are packaged and delivered with the
components and applications, can be used to test
components and applications in different platform
configurations and on different platforms. In this context,
test cases constitute reusable assets that ensure consistent
testing in all deployment contexts in which an application
(or a component) is used. This type of packaging offers
many key advantages that allow for reducing the risk and
cost associated with component and application portability.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 1 Packaging of waveform applications and test
cases

 The proposed testing framework can be used to develop
standard compliance test suites for waveform applications
that need to be ported on a set of different platforms. This
approach has the potential to provide major benefits to large
programs like JTRS, ESSOR and WINTSEC —ensuring
waveform portability and product quality and
interoperability.
 As an example, ETSI has developed a conformance test
suite for the TETRA waveform application. Similar test
suites could be developed for SCA waveforms.

3. TEST CREATION

The objective of the test creation phase is to develop the test
suite required to test a component or an application in an
incremental and iterative fashion. The test suite is composed
of a set of scenario test cases. Each scenario describes a
specific sequence of actions that need to be tested. The test
suite must contain both positive and negative scenarios,
which respectively represent scenarios that the system must
be able to properly execute and scenarios that the system
must reject.
 SCA applications and platforms can be modeled as a set
of interacting components using UML diagrams. Model
analysis techniques can then be used to validate the
correctness of models and model transformation techniques
can then be used to automatically generate code. Zeligsoft
CE is an example of a commercial tool that supports the
development of SCA applications and platforms. In a
similar way, modeling techniques can be used to specify
and validate test scenarios, and automatically generate
necessary test artifacts.
 Figure 2 illustrates the SCA test creation process. First,
the test scenarios are specified by the test designer.
Scenarios are specified in terms of pre and post conditions,

triggering and resulting events (or messages), sequence of
messages, and constraints. The proposed framework uses
UML Sequence Diagrams (SD) as a basis for scenario
description. SDs are used to describe the collaboration
between the components of an application in the context of
specific scenarios
 Once specified, test scenarios can be validated for
consistency. Then, model transformation techniques are
used to automatically generate the set of test cases
associated with the scenarios, as well as the test drivers
(responsible for executing the different test cases) and the
set of SCA descriptor files (required to load and execute the
test cases).

Figure 2 Test Creation Process

 The key issues that must be addressed by the overall
testing framework include the following:
• Scalability of Sequence Diagram to specify large and

complex scenario sets
• Handling of data associated with scenarios
• Specification of scenario setup and cleanup

Scalability of Sequence Diagram (SD) to specify large
and complex scenario sets

Because embedded systems like SCA systems are associated
with large sets of complex scenarios, scenario description
notation must explicitly deal with scalability issues. Those
issues relate to two different scenario specification aspects:
description of individual scenarios and description of
scenario sets.
 The description of individual scenario involves dealing
with long end-to-end communication sequences, scenario
alternatives and exception cases. To facilitate the design and
maintenance of such scenarios, one solution consists in
decomposing large end-to-end scenarios into sub-scenarios.
Sub-scenarios can then be composed together in larger
scenario and reused in different contexts. Thus, to support
the description of complex scenarios, a scenario description

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

notation must provide a mechanism for hierarchical
composition of scenarios (or sub-scenarios) and a set of
basic control operators such as sequencing, looping, parallel
composition, and conditional branching. Also, additional
concepts such as timers and interrupts are required in the

os can be

ng,
t

o relationships are represented by
ereotyped associations.

andling of data associated with scenarios

the

o address this aspect, SDs are annotated with

 data specification required: data
an

r more files that are loaded by the data source
m

ter in the covering
rray (whose domain is the set of files).

igure 3 Testing of TETRA waveform

el with the execution of the
enarios for the control plane.

pecification of scenario setup and cleanup

ble for releasing any
resources acquired by the scenario.

4. TEST EXECUTION AND RESULT ANALYSIS

context ofreal-time systems.
 The UML 2.0 specification [3] allows addressing the
scalability issues by combining providing the required
concepts and composition operators in Sequence Diagrams.
Also, large scenarios composed of sub-scenari
described using Interaction Overview Diagrams.
 The description of scenario sets involves dealing with
large number of scenarios. To facilitate the design and
maintenance of such scenario sets, scenarios can be grouped
into subsets of related scenarios and scenario relationships
can be explicitly captured using graphical representations.
Important scenario relationships include sequential
composition, trigger/triggered-by, conditional branchi
mu ual exclusion, parallel composition, and preemption.
 To deal with the description of scenario sets,
conventional UML notation can be used. Related scenarios
can be grouped together in packages and scenario
relationships can be captured in class diagrams where
individual scenarios are represented by a stereotyped
classifier and inter-scenari
st

H

The data issues relate to two different aspects: the
specification of data in scenario descriptions and
creation of data sets to drive the execution of scenarios.
 The first aspect relates to the need to augment basic
message-based scenario description with constraints at
different levels, including constraints on the values of
parameters in messages, on looping and alternative
conditions. T
constraints.
 The second aspect relates to the need to control the
configuration of components involved in a scenario, as well
as scenario parameters and initial message parameter values.
There are two aspects of
pl e and control plane.
 Specification of the test data for the data plane is
typically done with a data source component that reads a
file with the stream of data to be processed by the
application. Thus, the specification of the data for the data
plane is one o
co ponent.
 The specification of data for the control plane will be
specific values for the scenario parameters. A test case
would then comprise specific values for each of the scenario
parameters. The challenge with the specification of data for
the control plane is the number of possible combinations

that arise. One approach for dealing with this combinatorial
explosion is to use a technique called covering arrays.
Covering arrays is a t-wise testing technique of systems
whereby each scenario parameter is associated with a
domain of values, and the covering array provides a
mechanism for automatically deriving a minimal set of test
cases for the t-wise interaction of parameters. For
parameters whose domain is not easily enumerable, such as
integer parameters for example, equivalence partitioning
can be used to define the set of values for the parameter. If
there are multiple data source files that are to be tested then
the data source becomes another parame
a

F

 As illustrated in Figure 3, the verification of the data
plane can be done by using a golden waveform. The golden
waveform may be defined in a Simulink model or as a C
implementation of the data processing algorithm. When the
stream of data is fed to the application under test in a
scenario it is also fed to the golden waveform. The resulting
streams of data coming from the application under test and
the golden waveform are then compared to ensure that the
application is correctly processing the data. This testing of
the data plane is done in parall
sc

S

A key issue in the development of a scenario-based testing
framework (approach) relates to the specification of the
setup and cleanup scenarios that are associated with every
test scenario. The setup scenario is required to bring the
system to its precondition state for the execution of the
scenario to be tested. The setup scenario is responsible for
initializing all of the components in the application so that
they satisfy the pre-conditions of the scenario. Conversely,
the cleanup scenario is responsi

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

One of the main benefits of the proposed testing framework
is the reusability of the test cases in the context of different
system configurations, i.e. systems configured with

p

e

cases can be executed in different
p

pared with the test case
ecification (identified as Test Input in Figure 4), and an

igu

t ports must be instrumented to allow the send
nd receive messages exchanged between components to be
aptured.

ap lications deployed on different platform devices or
systems configured with different sets of applications.
 The proposed testing framework provides for the
specification of application deployment. Because test
scenarios specified independently of any deployment, they
do not need to be modified for specific deployments. Cod
generation from test scenario models takes care of
generating code that is specific to a specific deployment.
 The same test
de loyment on a platform, and test results may be compared
with respect to QoS.
 The test execution and evaluation process is illustrated
in Figure 4. First, the waveform application to be tested is
deployed on the target platform. Then, application test cases
are executed. The result of test case execution (identified as
Test Output in Figure 4) is com
sp
execution evaluation is produced.

F re 4 Test Execution and Evaluation

 To capture and monitor test execution, component code
must be properly instrumented. The current SCA
specification doesn’t provide all the necessary interfaces to
support application testing and monitoring. Using model-
based techniques and proper code generation technique,
code instrumentation can be automated and optimized to
minimize its impact on code execution. In particular,
componen
a
c

5. INCLUDING QOS IN TEST MODELS

In order to properly test applications, it is insufficient to test
only the functional aspect of the applications. QoS must
also be tested. For this reason, it is necessary to introduce
the QoS aspect in the SCA testing framework.
 To address QoS, key concepts of the MARTE Profile
for UML [2] can be used. By adding QoS property
annotations and scenarios to the traditional model of an
SCA SDR, one is able to generate a more complex testing
infrastructure. Combining these additions with the
separation between waveform and platform inherent in the
SCA, it is possible to test early and test often. Automating
the generation, execution and analysis of these tests — also
known as Model Driven Testing (MDT) — enables agility
for SCA SDR developer.
 Using the QoS property annotations in the scenarios
and SCA waveform and platform, we are able to integrate
system aspects into the generated tests and test suites. For
example, the latency of a connection between two devices
or nodes in the platform is annotated in the model. This
latency annotation can be used to generate “delays” in the
behavior of a generated stub. In the paper we explore how
other traditional non-functional property annotations can be
used to generate more complex stubs in the tests and test
suites.

6. SUMMARY

In this paper, we presented a model-based testing
framework for SCA applications. The main objectives of the
proposed SCA testing framework are:
• Support the development of SCA application test suites

that are independent of specific radio platforms and that
can be used (and reused) to test components and
applications on different platforms and in different
platform configurations

• Be applicable at different levels of component-based
application testing, from component (unit), to application
(component assembly), to deployed application

• Support the creation and execution of SCA application
test cases and the analysis of test results

• Provide support for the introduction of the QoS aspect
throughout the testing process

 The resulting testing framework adopts a scenario-
based testing approach and uses UML notation at its core.
One of its key aspects is the grouping of components and
applications with their associated test cases, which can be
used to test components and applications in different
platform configurations and on different platforms. This
approach results in the creation of reusable assets that
ensure consistent testing in all deployment contexts in
which an application (or a component) is used.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

 The proposed testing framework can be used as to
develop standard compliance test suites for waveform
applications that need to be ported on a set of different
platforms. This approach has the potential to provide major
benefits to large programs like JTRS, ESSOR and
WINTSEC —ensuring waveform portability and product
quality and interoperability.

10. REFERENCES

 [1] Object Management Group (OMG). UML Testing Profile ,

Version 1.0 (formal/2005-07-07). 2005.
[2] Object Management Group (OMG). A UML Profile for

MARTE: Modeling and Analysis of Real-Time Embedded
systems, Version1.0 (ptc/2008-05-23). 2008.

[3] Object Management Group (OMG). Unified
ModelingSuperstructure, Version 2.1.2 (formal/2007-11-02).
2007.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

