

STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT

Jennifer Nappier (Jennifer.M.Nappier@nasa.gov);

Joseph Downey (Joseph.A.Downey@nasa.gov);

NASA Glenn Research Center, Cleveland, Ohio, United States

Dale Mortensen (Dale.J.Mortensen@nasa.gov); ASRC, Cleveland, Ohio, United States

ABSTRACT

The Space Telecommunications Radio System (STRS)

Architecture Standard describes a standard for NASA space

software defined radios (SDRs). It provides a common

framework that can be used to develop and operate a space

SDR in a reconfigurable and reprogrammable manner. One

goal of the STRS Architecture is to promote waveform reuse

among multiple software defined radios. Many space

domain waveforms are designed to run in the special signal

processing (SSP) hardware. However, the STRS

Architecture is currently incomplete in defining a standard

for designing waveforms in the SSP hardware. Therefore,

the STRS Architecture needs to be extended to encompass

waveform development in the SSP hardware. The extension

of STRS to the SSP hardware will promote easier waveform

reconfiguration and reuse. A transmit waveform for space

applications was developed to determine ways to extend the

STRS Architecture to a field programmable gate array

(FPGA). These extensions include a standard hardware

abstraction layer for FPGAs and a standard interface

between waveform functions running inside a FPGA. A

FPGA-based transmit waveform implementation of the

proposed standard interfaces on a laboratory breadboard

SDR will be discussed.

1. INTRODUCTION

The Space Telecommunications Radio System (STRS)

Architecture Standard [1] specifies an open architecture for

NASA space software defined radios (SDRs). The STRS

Architecture Standard divides the SDR into three functional

hardware modules – the general processing module (GPM),

the radio frequency module (RFM), and the signal

processing module (SPM). There is a hardware interface

description (HID) between each module that describes all of

the physical hardware interfaces. The GPM contains a

general purpose processor (GPP), memory, and the

Spacecraft Telemetry Interface. The GPM runs the STRS

Infrastructure and configures and controls the entire radio.

The RFM contains filters, up/down converters, power

amplifiers, digital to analog converters (DACs), and analog

to digital converters (ADCs). It handles the conversion

between the radio frequency (RF) and the intermediate

frequency (IF) signals. The SPM contains a field

programmable gate array (FPGA), digital signal processor

(DSP), application specific integrated circuit (ASIC), or

other specialized signal processing (SSP) device. The SPM

performs the transformations between the IF digitally

sampled signals and the data packets. These transformations

are currently the reconfigurable part of the SDR waveforms.

A drawing of the functional hardware modules of the STRS

Architecture is shown in Figure 1.

 It is desirable to place a space waveform in the FPGA

due to the reconfigurable nature of the device and the ability

to support high digital data rates. However, the STRS

Architecture only specifies high-level standards for

waveforms developed in the FPGA. In order to explore

extending the STRS Architecture to lower level standards

for the FPGA, a transmit waveform for space applications

was developed. This development has lead to initial

concepts for developing a firmware-based STRS compliant

waveform that is reconfigurable and reusable. These

concepts are the first steps towards extending the STRS

Architecture standard to the firmware inside the FPGA.

 A brief outline of the rest of the paper follows. The

development goals for the waveform will be discussed in

Section 2. The current STRS Architecture’s support of

these goals is discussed in Section 3. Section 4 describes

proposed extensions to the STRS Architecture that more

fully support STRS goals, and Section 5 discusses lab-based

implementations of the extensions. Finally, Section 6

describes future work.

2. WAVEFORM DEVELOPMENT GOALS

2.1. Design a waveform that is reconfigurable

Reconfigurability is the ability to modify functionality of a

radio by changing the operational parameters without

requiring a software update. One reason to reconfigure a

space SDR may be in response to changes in environmental

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 1: STRS Hardware Architecture Diagram.

or physical conditions experienced by the spacecraft.

Another need for SDR reconfiguration is that the same

communication network might use several variations of one

waveform to perform different operations (e.g. different

phases of a mission or modes of spacecraft operations).

There could be little or no operational down time during

reconfiguration.

2.2. Design a waveform that is reusable and portable

across different SDRs

Reusability is the degree to which a software module or

other work product can be used in more than one computing

program or software system. The number of waveforms

being used by NASA is limited and unlikely to increase or

dramatically change. Reusing all or part of the code for this

limited number of waveforms will decrease development

time and cost and increase reliability. It is desired that both

the individual waveform functions and the entire waveform

as a whole be reusable. A waveform developer should be

able to port individual waveform functions between SDR

platforms. This might include replacing individual functions

in a waveform, or reusing individual functions across several

waveforms. A waveform developer should also be able to

easily port entire waveforms to many different SDR

platforms.

2.3. Design a waveform that is platform independent

One way to promote waveform reusability is to start with a

platform independent design methodology. The highest

level of abstraction of the waveform design should be

platform independent. This might be a platform independent

simulation tool model, or HDL code that is written in a

platform independent manner.

3. CURRENT STRS ARCHITECTURE STANDARD

The current STRS Architecture Standard enables many of

the waveform design goals listed in Section 2 to be

achieved. The STRS Architecture is more defined for the

GPM than the SPM. This section describes how the current

software and firmware sections of the architecture enable the

waveform design goals to be met, but also points out some

shortcomings.

 The software section of the STRS Architecture Standard

specifies a common way to reconfigure waveform

parameters on a space SDR without waveform reloading.

The STRS Infrastructure running on the GPP specifies the

use of STRS Application Program Interface (API) calls.

These STRS API calls utilize device drivers on the GPP

which interface to corresponding devices on the SPM or

RFM. These APIs include the STRS_DeviceRead,

STRS_DeviceWrite, STRS_DeviceGetAttribute, and

STRS_DeviceSetAttribute APIs. They can be used to

control and reconfigure the waveform components resident

in the FPGA.

 The software section of the STRS Architecture Standard

supports the ability to remotely reprogram a compliant SDR

with a different compliant waveform. The

STRS_LoadDevice API can load a bit file that has been sent

to a radio onto a FPGA or other device. In this way, a new

waveform can be remotely loaded onto a FPGA.

 The software section of the STRS Architecture Standard

specifies standard APIs that interface to waveform functions

running on the GPP. Therefore, code that is written on the

GPP is portable and reusable across different SDRs.

Software is platform independent because it is written in a

high-level language like C.

 The firmware section of the STRS Architecture

Standard supports the use of modeling based firmware

design techniques. Models can be developed using platform

independent design techniques, but they could also be

platform specific. The Firmware Architecture also supports

the use of modularity and clear interfaces in waveform

design and modeling. However, the Firmware Architecture

does not define these interfaces in detail.

 The firmware section of the STRS Architecture

Standard supports reusable firmware-based waveforms

through the use of a common waveform library. It also

specifies an internal HID and an external HID. Device

drivers are used to interface to the internal and external HID.

The internal HID is an interface between devices on the

SPM. The external HID is a set of interfaces from each

device on the SPM to the GPM and RFM. However, these

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

interfaces are not specifically defined. Waveforms could be

more reusable and portable if a common interface would be

defined.

Figure 2: Conceptual drawing of the Firmware Developer

Interface and the Waveform Function Interface in the FPGA.

4. PROPOSED EXTENSIONS TO STRS

There are two proposed extensions to the STRS Architecture

Standard to further promote waveform portability and reuse.

The proposed extensions were developed from the

experience of designing a transmit waveform for space

applications. The extensions are a Waveform Function

Interface (WFI) and a Firmware Developer Interface (FDI).

The WFI defines interfaces between waveform functions.

The FDI abstracts the device drivers between the waveform

application and devices external to FPGA, presenting a

standard interface to the firmware-based waveform

functions. A conceptual drawing of the FDI and WFI on the

FPGA is shown in Figure 2. The FDI and WFI could be

extended to other non-FPGA SPM devices, but the focus of

this paper is on standardization in FPGAs.

4.1. Waveform Function Interface

The reuse of individual waveform functions was

accomplished in this waveform development by two design

practices. The waveform was divided into functions that

were visible at the top level of the design. Next, these

functions were separated from each other by common

interfaces. The example of a modulator function, shown in

Figure 3, demonstrates these interfaces. These interface

definitions will allow a future user to easily reuse the

function.

 To aide in waveform reconfiguration, each individual

waveform function was designed to accommodate all desired

permutations of operation. Control over these permutations

is achieved through a control signal, as shown in Figure 3.

Figure 3: Example waveform function.

The waveform controller, which manages the state and

behavior of the waveform, has access to all such control

signals and can change them in real time. The enable signal

shown in Figure 3 is a specific instance of a control signal.

Thus the functionality of the SDR can be quickly

reconfigured by properly controlling these signals without

reprogramming the SDR with a new waveform.

 These common interface definitions are proposed to be

called the Waveform Function Interface (WFI). A standard

WFI will promote modularity and enable waveform function

reuse. It will allow individual waveform functions to be

both ported to different platforms and reused among

different waveforms. A critical component of the WFI is

extensive documentation of all signals. Expected

information on each signal includes data types, bit widths,

and active low or active high for a control signal. There

are other proposed signals in addition to the signals shown

in Figure 3. The proposed WFI is described in Table 1.

Table 1: Waveform Function Interfaces.

Waveform Function Interfaces

Direction Signal Description

IN Data Input data

IN Clock Directed to the function from

the clock manager

IN Enable Specific type of control signal

IN Reset Specific type of control signal

IN Control(s) Signal from controller or

another function

OUT Data Output data

OUT Control(s) Status signals about function

state or control signals going to

another function

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

4.2. Firmware Developer Interface

There are several design practices that were used to promote

reuse of the entire waveform. First, the waveform was

designed in a development environment that is FPGA

platform independent. Platform specific VHDL that could

target any FPGA was auto-generated from this platform-

independent design using commercial software design tools.

Therefore, this waveform development focused on algorithm

development and the design tool automatically optimized

area and speed constraints for the target FPGA. Next, the

waveform was developed to contain minimal external

interfaces to resources outside the FPGA. Limiting the

waveform dependency on SDR platform hardware devices

external to the FPGA enables reuse across many different

STRS compliant SDR platforms.

 Another way to minimize waveform dependency on

devices external to the FPGA is to define a set of common

external interfaces. The proposed set of common external

interfaces is called the Firmware Developer Interface (FDI).

The FDI is a common set of interfaces, but the

implementation of those interfaces is not specified. The

implementation and documentation of the FDI is the

platform designer’s responsibility. The waveform designer

will use the FDI to access radio platform devices outside the

FPGA.

 There are two types of FDIs proposed: the control FDI

and the data FDI. The control and data FDIs have the

capability to both read from and write to devices external to

the FPGA.

 The control FDI provides a control interface into the

FPGA. A waveform controller running on another device,

such as the GPP, would use this interface to control the

waveform functions running in the FPGA. This control

interface is currently defined for the situation in which the

GPP is the master and the FPGA is the slave. The control

interface consists of data, address, clock, and enable signals.

The data address (DATA, ADDRESS) pairs in the FDI

should correspond to the name value (NAME, VALUE)

pairs in the STRS_DeviceRead, STRS_DeviceWrite,

STRS_DeviceGetAttribute, and STRS_DeviceSetAttribute

APIs on the GPP. The proposed control FDI signals are

shown in Table 2. The proposed common FDI DATA and

corresponding API NAME pairs are shown in Table 3.

 The data FDI is an interface to a hardware device where

a continuous data stream is needed. The data FDI signals

can be used with or without handshaking signals. The

minimum data FDI signals without handshaking are

proposed to be data, clock, and enable, as shown in Table 4.

Handshaking signals for the data FDI will be defined in the

future. It is up to the waveform developer to choose the type

of signals to use, but both the minimum signals and

handshaking signals must be implemented by the platform

provider.

 There should also be a standard set of interfaces to the

clock manager on the FPGA. The clock manager generates

the clocks that are used in the FPGA. These interfaces are

not defined in this paper, but their documentation by the

platform provider is part of the proposed extension.

Table 2: Control FDI signals.

Control FDI

Read

Direction Name

IN ControlRDY

IN Address

IN Data

OUT Clock

Write

Direction Name

IN ControlRDY

IN Address

OUT Data

OUT Clock

Table 3: Corresponding FDI DATA and API NAME pairs.

FDI DATA API NAME

FDI_START/STOP API_ START/STOP

FDI_DATA_RATE API_ DATA_RATE

FDI_DATA_FORMAT API_ DATA_FORMAT

FDI_MODULATION API_ MODULATION

FDI_IF API_ IF

FDI_CODING API_ CODING

FDI_AGC_GAIN API_ AGC_GAIN

FDI_FUNCTION_ENABLE API_ FUNCTION_ENABLE

FDI_FUNCTION_RESET API_ FUNCTION_RESET

Table 4: Data FDI signals.

Data FDI

Read

Direction Name

IN Data

OUT Enable

OUT Clock

Write

Direction Name

OUT Data

OUT Enable

OUT Clock

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 4: Waveform Implementation with the Waveform Function Interface.

5. IMPLEMENTATION EXAMPLES

The WFI and the FDI have both been implemented in the

lab. The WFI has been implemented on a transmit

waveform and the FDI has been implemented on a FPGA in

a space software defined radio. However, they have not yet

been integrated together on one radio.

5.1. Waveform Function Interface

Figure 4 shows a top level block diagram of the transmit

waveform that was implemented. The waveform is

separated into functions at the highest level of abstraction.

The WFI is defined in between these functions. The WFI

signals that were implemented include the data, clock,

control, and enable signals.

 Table 5 lists example documentation for the WFI

signals that were implemented in the convolutional encoder

function of the transmit waveform shown in Figure 4. The

input clock rate is 2 MHz. The input data signal is 1 bit in

width, has a rate of 1 Mbps, and has symbols formatted as

NRZ-L. The control signal is 1 bit in width. It allows for ½

rate convolutional encoding or no encoding of the input

signal. The input/output enable signal is active high. The

output data signal is 1 bit in width, has a rate of 2 Mbps, and

has symbols formatted as NRZ-L.

Table 5: Waveform Function Interfaces for the Convolutional

Encoder.

Convolutional Encoder Waveform Function Interfaces

Direction Signal Description

IN Data 1 bit, 1 Mbps, NRZ-L symbols

IN Clock 2 MHz

IN Enable Active High

IN Controls 0 – No encoding

1 – ½ Rate encoding

OUT Data 1 bit, 2 Mbps, NRZ-L symbols

OUT Enable Active High

5.2. Firmware Developer Interface

The control and data FDIs have been implemented on a

space SDR breadboard. The FDI has been implemented to

replace the platform specific wrapper supplied by the

platform vendor, so that there is not an impact on

performance. Test functions have been created to use the

FDI to interface with components on both the GPM and the

RFM. A diagram of the interfaces that were implemented is

shown in Figure 5.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 5: Implementation example of the Firmware Developer Interface.

 The interface to the GPM was more difficult to

implement because the GPM HID consisted of an address

bus and a data bus, but the FDI was implemented to abstract

the HID from the firmware as a control read/write and a data

read/write. The control read interface was implemented

using an asynchronous first in first out (FIFO) memory. The

test waveform application in the FPGA could read a data

address pair when the ControlRDY signal was asserted. The

control write signal could not be implemented with a FIFO

because of the GPP master FPGA slave data flow

configuration. When the ControlRDY signal was asserted,

the waveform application would place the data that

corresponded to the requested address on the bus. The data

read/write functions were implemented with asynchronous

FIFOs. The enable signals indicated when a read or write

operation was performed. Although these interfaces were

implemented as separate interfaces to the firmware

developer, the actual HID between the FPGA and the GPP

consisted of a single common address and a data bus.

 The interface to the ADC and DAC was very simple to

implement. The enable signal indicated when the read or

write was performed. The devices were also given a clock

signal. The FDI implementation did not address ADC/DAC

bit width variations. However, in the future a variable bit

width control parameter could be added to the FDI.

 The clocks that were generated by the clock manager

were fed into the test waveform application for use by the

waveform. However, the test waveform did not control the

clock rate. It simply used the provided clocks as necessary.

6. FUTURE WORK

The proposed additions to the STRS Firmware Architecture

Standard are the WFI and the FDI. The WFI is a set of

common interfaces between waveform functions on the

FPGA. The FDI is a common set of external firmware

interfaces to devices outside the FPGA. The FDI on the

FPGA and the WFI in the waveform have been implemented

and tested separately. The integration of the two

implementations is the next step. Plans are to target the

platform on which the working FPGA FDI is implemented

with the WFI-based transmit waveform. The ability to

reconfigure the FPGA using the WFI and FDI will be

demonstrated using controls from the STRS Infrastructure in

the GPP. The FDI will then be implemented on another

SDR platform and the waveform ported to that second

platform. This will test and demonstrate how the proposed

extensions to the STRS Firmware Architecture Standard

enable waveform reusability, portability, and

reconfiguration.

7. REFERENCES

[1] National Aeronautics and Space Administration,

Headquarters, Space Telecommunications Radio

System STRS Open Architecture Standard 1.0,

Washington D.C., April 2006.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

