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ABSTRACT 

 

 

The Space Telecommunications Radio System (STRS) 

Architecture Standard describes a standard for NASA space 

software defined radios (SDRs).  It provides a common 

framework that can be used to develop and operate a space 

SDR in a reconfigurable and reprogrammable manner.  One 

goal of the STRS Architecture is to promote waveform reuse 

among multiple software defined radios.  Many space 

domain waveforms are designed to run in the special signal 

processing (SSP) hardware.  However, the STRS 

Architecture is currently incomplete in defining a standard 

for designing waveforms in the SSP hardware.  Therefore, 

the STRS Architecture needs to be extended to encompass 

waveform development in the SSP hardware.  The extension 

of STRS to the SSP hardware will promote easier waveform 

reconfiguration and reuse.  A transmit waveform for space 

applications was developed to determine ways to extend the 

STRS Architecture to a field programmable gate array 

(FPGA).  These extensions include a standard hardware 

abstraction layer for FPGAs and a standard interface 

between waveform functions running inside a FPGA.  A 

FPGA-based transmit waveform implementation of the 

proposed standard interfaces on a laboratory breadboard 

SDR will be discussed. 

 

 

1. INTRODUCTION 

 

The Space Telecommunications Radio System (STRS) 

Architecture Standard [1] specifies an open architecture for 

NASA space software defined radios (SDRs). The STRS 

Architecture Standard divides the SDR into three functional 

hardware modules – the general processing module (GPM), 

the radio frequency module (RFM), and the signal 

processing module (SPM).  There is a hardware interface 

description (HID) between each module that describes all of 

the physical hardware interfaces.  The GPM contains a 

general purpose processor (GPP), memory, and the 

Spacecraft Telemetry Interface.  The GPM runs the STRS 

Infrastructure and configures and controls the entire radio.   

The RFM contains filters, up/down converters, power 

amplifiers, digital to analog converters (DACs), and analog 

to digital converters (ADCs).  It handles the conversion 

between the radio frequency (RF) and the intermediate 

frequency (IF) signals.  The SPM contains a field 

programmable gate array (FPGA), digital signal processor 

(DSP), application specific integrated circuit (ASIC), or 

other specialized signal processing (SSP) device.  The SPM 

performs the transformations between the IF digitally 

sampled signals and the data packets.  These transformations 

are currently the reconfigurable part of the SDR waveforms.  

A drawing of the functional hardware modules of the STRS 

Architecture is shown in Figure 1. 

 It is desirable to place a space waveform in the FPGA 

due to the reconfigurable nature of the device and the ability 

to support high digital data rates.  However, the STRS 

Architecture only specifies high-level standards for 

waveforms developed in the FPGA.  In order to explore 

extending the STRS Architecture to lower level standards 

for the FPGA, a transmit waveform for space applications 

was developed.  This development has lead to initial 

concepts for developing a firmware-based STRS compliant 

waveform that is reconfigurable and reusable.  These 

concepts are the first steps towards extending the STRS 

Architecture standard to the firmware inside the FPGA. 

 A brief outline of the rest of the paper follows.  The 

development goals for the waveform will be discussed in 

Section 2.  The current STRS Architecture’s support of 

these goals is discussed in Section 3.  Section 4 describes 

proposed extensions to the STRS Architecture that more 

fully support STRS goals, and Section 5 discusses lab-based 

implementations of the extensions.  Finally, Section 6 

describes future work. 

 
2. WAVEFORM DEVELOPMENT GOALS 

 

2.1. Design a waveform that is reconfigurable 

 

Reconfigurability is the ability to modify functionality of a 

radio by changing the operational parameters without 

requiring a software update.  One reason to reconfigure a 

space SDR may be in response to changes in environmental  
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Figure 1: STRS Hardware Architecture Diagram. 

 
or physical conditions experienced by the spacecraft.  

Another need for SDR reconfiguration is that the same 

communication network might use several variations of one 

waveform to perform different operations (e.g. different 

phases of a mission or modes of spacecraft operations). 

There could be little or no operational down time during 

reconfiguration. 

 

2.2. Design a waveform that is reusable and portable 

across different SDRs 

 

Reusability is the degree to which a software module or 

other work product can be used in more than one computing 

program or software system.  The number of waveforms 

being used by NASA is limited and unlikely to increase or 

dramatically change.  Reusing all or part of the code for this 

limited number of waveforms will decrease development 

time and cost and increase reliability.   It is desired that both 

the individual waveform functions and the entire waveform 

as a whole be reusable.  A waveform developer should be 

able to port individual waveform functions between SDR 

platforms.  This might include replacing individual functions 

in a waveform, or reusing individual functions across several 

waveforms.  A waveform developer should also be able to 

easily port entire waveforms to many different SDR 

platforms. 

 

2.3. Design a waveform that is platform independent 

 

One way to promote waveform reusability is to start with a 

platform independent design methodology.  The highest 

level of abstraction of the waveform design should be 

platform independent.  This might be a platform independent 

simulation tool model, or HDL code that is written in a 

platform independent manner.   

 

3. CURRENT STRS ARCHITECTURE STANDARD 

 

The current STRS Architecture Standard enables many of 

the waveform design goals listed in Section 2 to be 

achieved.  The STRS Architecture is more defined for the 

GPM than the SPM.  This section describes how the current 

software and firmware sections of the architecture enable the 

waveform design goals to be met, but also points out some 

shortcomings. 

 The software section of the STRS Architecture Standard 

specifies a common way to reconfigure waveform 

parameters on a space SDR without waveform reloading.  

The STRS Infrastructure running on the GPP specifies the 

use of STRS Application Program Interface (API) calls.  

These STRS API calls utilize device drivers on the GPP 

which interface to corresponding devices on the SPM or 

RFM.  These APIs include the STRS_DeviceRead, 

STRS_DeviceWrite, STRS_DeviceGetAttribute, and 

STRS_DeviceSetAttribute APIs.  They can be used to 

control and reconfigure the waveform components resident 

in the FPGA. 

 The software section of the STRS Architecture Standard 

supports the ability to remotely reprogram a compliant SDR 

with a different compliant waveform.  The 

STRS_LoadDevice API can load a bit file that has been sent 

to a radio onto a FPGA or other device.  In this way, a new 

waveform can be remotely loaded onto a FPGA. 

 The software section of the STRS Architecture Standard 

specifies standard APIs that interface to waveform functions 

running on the GPP.  Therefore, code that is written on the 

GPP is portable and reusable across different SDRs.  

Software is platform independent because it is written in a 

high-level language like C. 

 The firmware section of the STRS Architecture 

Standard supports the use of modeling based firmware 

design techniques.  Models can be developed using platform 

independent design techniques, but they could also be 

platform specific.  The Firmware Architecture also supports 

the use of modularity and clear interfaces in waveform 

design and modeling.  However, the Firmware Architecture 

does not define these interfaces in detail. 

  The firmware section of the STRS Architecture 

Standard supports reusable firmware-based waveforms 

through the use of a common waveform library.  It also 

specifies an internal HID and an external HID.  Device 

drivers are used to interface to the internal and external HID.  

The internal HID is an interface between devices on the 

SPM.  The external HID is a set of interfaces from each 

device on the SPM to the GPM and RFM.  However, these 
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interfaces are not specifically defined.  Waveforms could be 

more reusable and portable if a common interface would be 

defined. 

 

 

Figure 2: Conceptual drawing of the Firmware Developer 

Interface and the Waveform Function Interface in the FPGA. 

 

 
4. PROPOSED EXTENSIONS TO STRS 

 

There are two proposed extensions to the STRS Architecture 

Standard to further promote waveform portability and reuse.  

The proposed extensions were developed from the 

experience of designing a transmit waveform for space 

applications.  The extensions are a Waveform Function 

Interface (WFI) and a Firmware Developer Interface (FDI).  

The WFI defines interfaces between waveform functions.  

The FDI abstracts the device drivers between the waveform 

application and devices external to FPGA, presenting a 

standard interface to the firmware-based waveform 

functions.  A conceptual drawing of the FDI and WFI on the 

FPGA is shown in Figure 2.  The FDI and WFI could be 

extended to other non-FPGA SPM devices, but the focus of 

this paper is on standardization in FPGAs. 

 

4.1. Waveform Function Interface 

 

The reuse of individual waveform functions was 

accomplished in this waveform development by two design 

practices.  The waveform was divided into functions that 

were visible at the top level of the design.  Next, these 

functions were separated from each other by common 

interfaces.  The example of a modulator function, shown in 

Figure 3, demonstrates these interfaces. These interface 

definitions will allow a future user to easily reuse the 

function. 

 To aide in waveform reconfiguration, each individual 

waveform function was designed to accommodate all desired 

permutations of operation.  Control over these permutations 

is achieved through a control signal, as shown in Figure 3.   

 

 

Figure 3:  Example waveform function. 

 
The waveform controller, which manages the state and 

behavior of the waveform, has access to all such control 

signals and can change them in real time.  The enable signal 

shown in Figure 3 is a specific instance of a control signal.  

Thus the functionality of the SDR can be quickly 

reconfigured by properly controlling these signals without 

reprogramming the SDR with a new waveform. 

 These common interface definitions are proposed to be 

called the Waveform Function Interface (WFI).  A standard 

WFI will promote modularity and enable waveform function 

reuse.  It will allow individual waveform functions to be 

both ported to different platforms and reused among 

different waveforms.  A critical component of the WFI is 

extensive documentation of all signals.  Expected 

information on each signal includes data types, bit widths, 

and active low or active high for a control signal.    There 

are other proposed signals in addition to the signals shown 

in Figure 3.  The proposed WFI is described in Table 1. 

 

Table 1: Waveform Function Interfaces. 

 

Waveform Function Interfaces 

Direction Signal Description 

IN Data Input data 

IN Clock Directed to the function from 

the clock manager 

IN Enable Specific type of control signal 

IN Reset Specific type of control signal 

IN Control(s) Signal from controller or 

another function 

OUT Data Output data 

OUT Control(s) Status signals about function 

state or control signals going to 

another function 
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4.2. Firmware Developer Interface 

 

There are several design practices that were used to promote 

reuse of the entire waveform.  First, the waveform was 

designed in a development environment that is FPGA 

platform independent.  Platform specific VHDL that could 

target any FPGA was auto-generated from this platform- 

independent design using commercial software design tools.  

Therefore, this waveform development focused on algorithm 

development and the design tool automatically optimized 

area and speed constraints for the target FPGA.  Next, the 

waveform was developed to contain minimal external 

interfaces to resources outside the FPGA.  Limiting the 

waveform dependency on SDR platform hardware devices 

external to the FPGA enables reuse across many different 

STRS compliant SDR platforms.   

 Another way to minimize waveform dependency on 

devices external to the FPGA is to define a set of common 

external interfaces.  The proposed set of common external 

interfaces is called the Firmware Developer Interface (FDI).  

The FDI is a common set of interfaces, but the 

implementation of those interfaces is not specified.  The 

implementation and documentation of the FDI is the 

platform designer’s responsibility.  The waveform designer 

will use the FDI to access radio platform devices outside the 

FPGA. 

 There are two types of FDIs proposed: the control FDI 

and the data FDI.  The control and data FDIs have the 

capability to both read from and write to devices external to 

the FPGA. 

 The control FDI provides a control interface into the 

FPGA.  A waveform controller running on another device, 

such as the GPP, would use this interface to control the 

waveform functions running in the FPGA.  This control 

interface is currently defined for the situation in which the 

GPP is the master and the FPGA is the slave.  The control 

interface consists of data, address, clock, and enable signals.  

The data address (DATA, ADDRESS) pairs in the FDI 

should correspond to the name value (NAME, VALUE) 

pairs in the STRS_DeviceRead, STRS_DeviceWrite, 

STRS_DeviceGetAttribute, and STRS_DeviceSetAttribute 

APIs on the GPP.   The proposed control FDI signals are 

shown in Table 2.  The proposed common FDI DATA and 

corresponding API NAME pairs are shown in Table 3. 

 The data FDI is an interface to a hardware device where 

a continuous data stream is needed.  The data FDI signals 

can be used with or without handshaking signals.  The 

minimum data FDI signals without handshaking are 

proposed to be data, clock, and enable, as shown in Table 4.  

Handshaking signals for the data FDI will be defined in the 

future.  It is up to the waveform developer to choose the type 

of signals to use, but both the minimum signals and 

handshaking signals must be implemented by the platform 

provider. 

 There should also be a standard set of interfaces to the 

clock manager on the FPGA.  The clock manager generates 

the clocks that are used in the FPGA.  These interfaces are 

not defined in this paper, but their documentation by the 

platform provider is part of the proposed extension. 

 

Table 2: Control FDI signals. 

 
Control FDI 

Read 

Direction Name 

IN ControlRDY 

IN Address 

IN Data 

OUT Clock 

Write 

Direction Name 

IN ControlRDY 

IN Address 

OUT Data 

OUT Clock 

 

Table 3: Corresponding FDI DATA and API NAME pairs. 

 
FDI DATA API NAME 

FDI_START/STOP API_ START/STOP 

FDI_DATA_RATE API_ DATA_RATE 

FDI_DATA_FORMAT API_ DATA_FORMAT 

FDI_MODULATION API_ MODULATION 

FDI_IF API_ IF 

FDI_CODING API_ CODING 

FDI_AGC_GAIN API_ AGC_GAIN 

FDI_FUNCTION_ENABLE API_ FUNCTION_ENABLE 

FDI_FUNCTION_RESET API_ FUNCTION_RESET 

 

Table 4: Data FDI signals. 

 
Data FDI 

Read 

Direction Name 

IN Data 

OUT Enable 

OUT Clock 

Write 

Direction Name 

OUT Data 

OUT Enable 

OUT Clock 
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Figure 4: Waveform Implementation with the Waveform Function Interface. 

 

 

5. IMPLEMENTATION EXAMPLES 

 

The WFI and the FDI have both been implemented in the 

lab.  The WFI has been implemented on a transmit 

waveform and the FDI has been implemented on a FPGA in 

a space software defined radio.  However, they have not yet 

been integrated together on one radio. 

 

5.1. Waveform Function Interface 

 

Figure 4 shows a top level block diagram of the transmit 

waveform that was implemented.  The waveform is 

separated into functions at the highest level of abstraction.  

The WFI is defined in between these functions.  The WFI 

signals that were implemented include the data, clock, 

control, and enable signals. 

 Table 5 lists example documentation for the WFI 

signals that were implemented in the convolutional encoder 

function of the transmit waveform shown in Figure 4.  The 

input clock rate is 2 MHz.  The input data signal is 1 bit in 

width, has a rate of 1 Mbps, and has symbols formatted as 

NRZ-L.  The control signal is 1 bit in width.  It allows for ½ 

rate convolutional encoding or no encoding of the input 

signal.  The input/output enable signal is active high.  The 

output data signal is 1 bit in width, has a rate of 2 Mbps, and 

has symbols formatted as NRZ-L. 

 

Table 5: Waveform Function Interfaces for the Convolutional 

Encoder. 

 

Convolutional Encoder Waveform Function Interfaces 

Direction Signal Description 

IN Data 1 bit, 1 Mbps, NRZ-L symbols 

IN Clock 2 MHz 

IN Enable Active High 

IN Controls 0 – No encoding 

1 – ½ Rate encoding 

OUT Data 1 bit, 2 Mbps, NRZ-L symbols 

OUT Enable Active High 

 

5.2. Firmware Developer Interface 

 

The control and data FDIs have been implemented on a 

space SDR breadboard.  The FDI has been implemented to 

replace the platform specific wrapper supplied by the 

platform vendor, so that there is not an impact on 

performance.  Test functions have been created to use the 

FDI to interface with components on both the GPM and the 

RFM.  A diagram of the interfaces that were implemented is 

shown in Figure 5. 
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Figure 5: Implementation example of the Firmware Developer Interface. 

 

 

 The interface to the GPM was more difficult to 

implement because the GPM HID consisted of an address 

bus and a data bus, but the FDI was implemented to abstract 

the HID from the firmware as a control read/write and a data 

read/write.  The control read interface was implemented 

using an asynchronous first in first out (FIFO) memory.  The 

test waveform application in the FPGA could read a data 

address pair when the ControlRDY signal was asserted.  The 

control write signal could not be implemented with a FIFO 

because of the GPP master FPGA slave data flow 

configuration.  When the ControlRDY signal was asserted, 

the waveform application would place the data that 

corresponded to the requested address on the bus.  The data 

read/write functions were implemented with asynchronous 

FIFOs.  The enable signals indicated when a read or write 

operation was performed.  Although these interfaces were 

implemented as separate interfaces to the firmware 

developer, the actual HID between the FPGA and the GPP 

consisted of a single common address and a data bus. 

 The interface to the ADC and DAC was very simple to 

implement.  The enable signal indicated when the read or 

write was performed.  The devices were also given a clock 

signal.  The FDI implementation did not address ADC/DAC 

bit width variations.  However, in the future a variable bit 

width control parameter could be added to the FDI. 

 The clocks that were generated by the clock manager 

were fed into the test waveform application for use by the 

waveform.  However, the test waveform did not control the 

clock rate.  It simply used the provided clocks as necessary. 

6. FUTURE WORK 

 

The proposed additions to the STRS Firmware Architecture 

Standard are the WFI and the FDI.  The WFI is a set of 

common interfaces between waveform functions on the 

FPGA.  The FDI is a common set of external firmware 

interfaces to devices outside the FPGA.  The FDI on the 

FPGA and the WFI in the waveform have been implemented 

and tested separately. The integration of the two 

implementations is the next step.  Plans are to target the 

platform on which the working FPGA FDI is implemented 

with the WFI-based transmit waveform.  The ability to 

reconfigure the FPGA using the WFI and FDI will be 

demonstrated using controls from the STRS Infrastructure in 

the GPP.   The FDI will then be implemented on another 

SDR platform and the waveform ported to that second 

platform.  This will test and demonstrate how the proposed 

extensions to the STRS Firmware Architecture Standard 

enable waveform reusability, portability, and 

reconfiguration. 
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