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ABSTRACT 
 
High-speed parallelization of common tasks holds great 
promise as a low-risk approach to achieving the significant 
increases in signal processing and computational 
performance required for next generation innovations in 
reconfigurable radio systems.  Researchers at the Oak Ridge 
National Laboratory have been working on exploiting the 
parallelization offered by this emerging technology and 
applying it to a variety of problems. This paper will 
highlight recent experience with four different parallel 
processors applied to signal processing tasks that are 
directly relevant to signal processing required for SDR/CR 
waveforms.  The first is the EnLight Optical Core Processor 
applied to matched filter (MF) correlation processing via 
fast Fourier transform (FFT) of broadband Doppler-
sensitive waveforms (DSW) using active sonar arrays for 
target tracking.   The second is the IBM CELL™ 
Broadband Engine applied to 2-D discrete Fourier transform 
(DFT) kernel for image processing and frequency domain 
processing. And the third is the NVIDIA graphical 
processor applied to document feature clustering.   
 EnLight Optical Core Processor. Optical processing is 
inherently capable of high-parallelism that can be translated 
to very high performance, low power dissipation 
computing. The EnLight™256 is a small form factor signal 
processing chip (5×5 cm2) with a digital optical core that is 
being developed by an Israeli startup company. As part of 
its evaluation of foreign technology, ORNL’s Center for 
Engineering Science Advanced Research (CESAR) had 
access to a precursor EnLight™64 Alpha hardware for a 
preliminary assessment of capabilities in terms of large 
Fourier transforms for matched filter banks and on 
applications related to Doppler-sensitive waveforms. This 
processor is optimized for array operations, which it 
performs in fixed-point arithmetic at the rate of 16 TeraOPS 
at 8−bit precision. This is approximately 1000 times faster 
than the fastest DSP available today. The optical core 
performs the matrix-vector multiplications, where the 
nominal matrix size is 256×256. The system clock is 
125MHz. At each clock cycle, 128K multiply-and-add 
operations per second (OPS) are carried out, which yields a 
peak performance of 16 TeraOPS. 
 IBM Cell™ Broadband Engine. The Cell processor is 
the extraordinary resulting product of 5 years of sustained, 
intensive R&D collaboration (involving over $400M 

investment) between IBM, Sony, and Toshiba. Its 
architecture comprises one multithreaded 64-bit PowerPC 
processor element (PPE) with VMX capabilities and two 
levels of globally coherent cache, and 8 synergistic 
processor elements (SPEs). Each SPE consists of a 
processor (SPU) designed for streaming workloads, local 
memory, and a globally coherent direct memory access 
(DMA) engine. Computations are performed in 128-bit 
wide single instruction multiple data streams (SIMD). An 
integrated high-bandwidth element interconnect bus (EIB) 
connects the nine processors and their ports to external 
memory and to system I/O.  
 The Applied Software Engineering Research (ASER) 
Group at the ORNL is applying the Cell to a variety of text 
and image analysis applications. Research on Cell-equipped 
PlayStation3 (PS3) consoles has led to the development of a 
correlation-based image recognition engine that enables a 
single PS3 to process images at more than 10X the speed of 
state-of-the-art single-core processors.   
 NVIDIA Graphics Processing Units.  The ASER group 
is also employing the latest NVIDIA graphical processing 
units (GPUs) to accelerate clustering of thousands of text 
documents using recently developed clustering algorithms 
such as document flocking and affinity propagation. 
 

1. MATCHED FILTER PROCESSING WITH THE 
ENLIGHT OPTICAL CORE PROCESSOR 

 
1.1 Background 
 
Over the past few decades, a great deal of effort has been 
devoted to the extraction of spatio-temporal information 
from an array of spatially distributed sensors [1],[2]. In the 
area of anti-submarine warfare (ASW), much attention has 
focused on adaptive beamforming, primarily in the context 
of towed arrays [3][4]. The basic emphasis of such research 
was to achieve robust detection and direction-of-arrival 
(DOA) estimation under requirements for auto-calibration 
of the arrays [5],[6]. Notwithstanding the considerable 
progress reported over the years, today’s leading paradigms 
still face substantial degradation in the presence of realistic 
ambient noise and clutter [7]. 
 Demanding calculations need to be performed to 
achieve source localization, and their complexity is known 
to increase dramatically with the size of the sensor array. 
The same observation applies to tracking using active 
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sensors and specially designed waveforms. Both 
applications require substantial processing power that 
cannot readily be met with standard, off-the-shelf 
computing hardware.  
 First, we overview a matched filter framework for 
target tracking using active sonars and then describe its 
implementation on a terascale optical core processor, 
EnLight™, recently introduced by Lenslet Laboratories. 
This revolutionary digital optical core processor is 
optimized for array operations and provides tera-scale 
computing capabilities with native 8-bit fixed-point 
precision.  
 
1.2 Tracking Underwater Threats 
 
 The algorithm we are implementing involves matched filter 
(MF) correlation processing via fast Fourier transform 
(FFT) of broadband Doppler-sensitive waveforms (DSW). 
The keys to reliable target tracking are proper waveform 
selection, accurate signal and system modeling, and 
efficient real-time signal processing using an MF bank 
implementation. The common waveforms used in 
underwater threat detection via sonar signal analysis have 
diverse and complimentary characteristics. For example, 
constant frequency (CF) pulses provide superior range-rate 
estimation but poor range resolution capabilities. The 
reverberation clutter power vs Doppler shift of a CF pulse is 
also more concentrated than that of linear frequency 
modulated (LFM) signals, another common candidate 
waveform in sonar tracking systems. To resolve the inherent 
conflict between reliable detection and good range 
resolution, signals other than the simple CF pulses have to 
be used.  
 The MF is central to ASW applications. 
Fundamentally, the MF is a correlator, which compares the 
received signal with a hypothesized signal. The output of 
the matched filter gives a measure of how well the 
hypothesized signal matches the received signal as function 
of a set of parameters, usually the range and velocity of 
targets. The estimated velocity is that for which the 
correlation peak magnitude of the filter output has the 
maximum value. The output of the correlator is calculated 
via FFT, followed by an inverse FFT. The vectors 
representing the discrete replica and echo signals can have 
considerable size in the case of broadband signals and the 
size of the FFT can easily exceed 100K complex samples. 
Hence, it was anticipated that the very computationally 
expensive implementation of broadband matched filtering 
would be expedited on the EnLight optical processor.  
 
1.3 The EnLight Optical Core Processor 
 
Recently, Lenslet Inc. introduced the novel EnLight™ 
processing platform. The EnLight™256 is a small form 

factor digital signal processing chip (5×5 cm2) with an 
optical core. The processor is optimized for array 
operations.  It can perform 8−bit fixed point arithmetic at 16 
TeraOPS. This is substantially faster than the fastest FPGA 
or DSP processors available today. The optical core 
performs matrix-vector multiplications (MVM), with a 
nominal matrix size of  256×256. The system clock is 
125MHz. At each clock cycle, 128K multiply-and-add 
operations per second (OPS) are carried out, which yields 
the peak performance of 16 TeraOPS. Before starting 
production of the EnLight™256 processor, Lenslet built the 
EnLight™64α board, shown in Figure 1, a reduced size 
64×64 optical core, as a prototype demonstrator of their 
optical processing technology. Our proof-of-concept effort 
used the 64α for all hardware tests. Our scale-up projections 
were based on the EnLight™256 bit-exact simulator. 
 The EnLight™64α clock operates at 60 MHz. The 
optical core has 64 input channels (configured as 256 
vertical cavity surface emitting lasers, bundled in groups of 
4 per channel). The optical core performs the MVM 
function at the rate of 60 106×642×2 = 492 GOPS. Each of 
the 64 data components in the input and output channels has 
an 8-bit accuracy, which results in a data stream of 60 106 × 
64 × 8 bits/s = 30.7 Gbps. 
 

 

 
Figure 1 The EnLight™ 64α

1.4 Results 
 
We are interested in demonstrating the ability of the 
EnLight computing platform to robustly track an underwater 
threat source. For the purpose of the numerical simulations 
and hardware implementation, the following operational 
simplifications are made: 1) only a single target is present 
during the detection process; 2) the speed of sound is 
constant along the propagation path; and 3) the active sonar 
location is known. In active sonar systems, the proper 
selection of the transmitted waveform is crucial for target 
detection and parameter estimation, especially with the 
existence of reverberation. Several new classes of DSW 
pulses have been proposed, which theoretically provide 
superior reverberation processing to CF pulses by virtue of 
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their comb-like spectra. The simplest case of a signal with 
comb-like spectrum is the SFM signal where the modulating 
waveform itself is also a sinusoid. Thus, 
                 

 

2 sin(2 )( ) ( ) exp .                   o mj f t j f ts t w t π β π+=

 The function w(t) is the amplitude window of the pulse, 
f0 is the center frequency, fm is the modulation frequency, 
and β is the modulation index, which defines the bandwidth 
of the SFM signal as  B = 2 fm (1+ β). The power spectrum 
of the SFM waveform is a symmetrical comb centered on f0 
with a frequency spacing of fm. By comparison with a CF 
pulse, where the energy is concentrated in a single 
mainlobe, the signal energy of the SFM pulse is distributed 
between several peaks. The result is a corresponding 
reduction in reverberation interference. For this benchmark 
study, the source was assumed to transmit a SFM waveform 
at a center frequency f0=1200 Hz, with a 400 Hz bandwidth 
B. The pulse duration used was T = 1, the frequency was 
modulated at  5 Hz, and the Doppler scale ranged from -5 to 
+5 m/s.   The sampling frequency fs assumed was 5000 Hz, 
resulting in a sampling interval length of  Ts = 0.0002 s. 
 To benchmark the EnLight performance, two computer 
codes were written, one using the Intel Visual FORTRAN-
95 compiler, the other in MATLAB. The former enables the 
fastest possible execution on an Intel IA-32 dual Xeon 
processor system. The latter interfaces with the  
EnLightTM256 simulator, which is used to design the actual 
algorithm that was run both on the EnLightTM64α hardware 
platform or is used to project the scaled performance for the 
EnLightTM256.  

For the MF simulation, a synthetic echo is generated for 
a particular target range and velocity. The echo signal is 
correlated with a bank of replicas. Spectral techniques are 
used. The correlation with the highest magnitude provides 
an estimate of the Doppler velocity bin. The location of the 
maximum within that correlation yields the time delay of the 
echo, and thus provides an estimate of the range. For this 
benchmark study, the assumed target range and (incoming) 
velocity were 3 km and -5 m/s respectively.  The speed of 
sound was taken to be 1500 m/s. A MF bank with 32 
Doppler bins was implemented, with each filter performing 
an 80K-sample complex FFT to calculate the cross-power 
spectrum and an 80K-sample inverse FFT to obtain the 
cross-correlation output of the filter. As can be seen in 
Figure 2, the output of the first filter has the closest velocity 
match to the received signal. The estimated target delay is 4 
s and hence the estimated target range is 3 Km, with correct 
incoming direction and target velocity. 

In this proof-of-concept study, an EnLightTMα  
hardware prototype was compared to a dual-processor Intel 
Xeon (2GHz) system. A speed-up factor of over 13,000 per 
processor (for a series of 80K-sample complex FFTs 
corresponding to 32 Doppler cell banks and 1 target echo) 

was achieved. Figure 3 compares the MATLAB simulation 
of the first filter output with the EnLightTMα hardware runs. 

pp

 
 
Figure 2 Matched filter back output for a filter bank of 32 
Doppler bins. Not all filters are shown. 

 The numerical accuracy of the hardware compares very 
favorably with the high precision MATLAB simulation and 
with the theoretical results (see Figure 3). 
 
1.5 Conclusions and Future Research 
 
To achieve the real-time performance required for 
underwater threat source localization and tracking, many 
existing algorithms need to be revised and ported to 
emerging revolutionary computing technologies. These 
include FPGAs, multicore processors, and optical 
processors. The EnLight terascale optical core processor 
represents one such revolutionary advance. In that context, 
our future efforts will focus on demonstrating 
computational speed and parallel implementation efficiency 
on multicore architectures for relevant maritime sensing 
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Figure 3 High resolution plot of matched filter bank output 
(for filter 1) obtained via hardware run on the EnLightTMα 
demonstration board. 
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applications; quantifying speed-up achieved per processor 
as compared to a leading-edge conventional processor or 
DSP; determining scaling properties per processor as 
function of the number of sensors in the detection, tracking, 
and discrimination network; and characterizing SNR gain 
and detection improvement as function of array size and 
geometry. 
 

2. IMAGE PROCESSING ON THE CELL 
BROADBAND ENGINE 

 
2.1 Background 
 
The 2-D discrete Fourier transform (DFT) is an important 
component of image filtering and frequency domain 
analysis and is typically carried out by the fast Fourier 
transform (FFT) algorithm. Recent research has focused on 
improving the speed of FFT both algorithmically and on 
different processor architectures [8],[9]. The Cell 
Broadband Engine (BE) processor stands to provide 
significant performance gains for the 2-D DFT kernel. The 
PS3 version of the chip offers a PowerPC-type processor 
along with six single-instruction, multiple-data (SIMD) 
vector processors which, together, provide over 20 times the 
single-precision floating-point computational power of 
conventional processors. 
 A major challenge arises, when the images are too large 
to fit into the local memory of the SIMD processor, which is 
only 256 KB; specifically, a matrix transpose must be 
carried out in main memory rather than in the local store, 
necessitating a scheduling algorithm to coordinate memory 
transfers and manage the workflow. In this section, we 
expose the overall performance of the PS3 as a 2-D DFT 
engine. In order to place the problem into context, we focus 
on the application of correlation-based automatic target 
recognition (ATR), in which each incoming image in an 
image stream needs to be searched for one or more known 
targets (e.g., a T-72 tank) [10]. In this application, a set of 
“correlation filters”, each one designed to locate a specific 
target, is applied to every image; each filter requires that 
two 2-D DFTs be carried out on each image. The output 
image is then searched for peaks, indicating likely target 
locations. 
  
2.2 Technical approach 
 
 The 2-D discrete Fourier transform (DFT) takes a 2-D 
signal (e.g., an image) as input and produces a 2-D 
frequency domain signal. Let the 2-D discrete signal 

 be defined for  and . The 2-D 
DFT  of  is given by the following equation: 
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 An image can be filtered by multiplying its DFT by the 
DFT of the filter and then inverse transforming the result 
back to the space domain. The 2-D DFT can be decomposed 
into 1-D DFTs on the rows and columns.  It is important to 
note, however, that in a software implementation of the 
above algorithm, a full matrix transpose must be carried out 
between the processing of the rows and columns. This 
requirement can cause problems when implementing a 2-D 
DFT on the Cell architecture. If the image is larger than the 
amount of memory available to the SPE, the transpose 
needs to be carried out on the PPE. As we show in our 
experimental results, this can cause bottlenecking and 
decrease performance. 
 Image filtering (and, in general, data/signal processing) 
on the Cell processor may be abstracted into three types of 
tasks: 1) file I/O (moving data from the remote storage into 
main memory), 2) PPE computation (for operations that 
require concurrent access to large amounts of data), and 3) 
SPE computation. It is desirable to offload as much 
computation as possible onto the SPEs, provided that they 
will be given enough work to cover the time needed to 
transfer the data to and from the SPE local store (which can 
be done simultaneously with computation). In our 
application, the Fourier transforms and frequency-domain 
filtering are all carried out on the SPE. Additionally, 
transposes are carried out on the SPE for images of size 
128x128 or smaller, i.e., “small images”. 
 We designed three software schedulers to carry out the 
above three tasks to maximize processor utilization. These 
schedulers run simultaneously as threads. The operation of 
each scheduler is queue-based, so that when a particular 
task completes, it can notify another scheduler by placing 
the next task in its queue. We implemented notification 
using unnamed pipes shared between threads. While we use 
these schedulers in a specific manner for image filtering, 
this general scheduling framework could be used for a 
variety of signal processing applications on the Cell 
processor.  
 
2.3 Results 
 
 To simulate the performance of our proposed image 
processing scheme in a real-world scenario, we connected 
the PS3 to an NFS file server containing numerous images 
and filters of various sizes. On the NFS server, we used two 
different storage schemes: 1) the images and filters were 
stored on the hard disk of the NFS server, and 2) the images 
and filters were stored in NFS RAM. We also stored the 
images and filters on the local disk of the PS3. We compare 
the performance of the architecture across these three 
storage schemes. As a performance baseline, we 
implemented a similar image filtering engine on a Dell 
Optiplex 745 with a 2.8-GHz Intel Pentium D dual-core 
processor. Our implementation uses two separate threads to 
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Figure 4  Filtering performance vs. number of filters for 
various storage configurations using 128x128 images.

handle processing and file I/O in parallel. We used the well-
known FFTW C library [9] for the FFT code, which 
automatically tunes itself for optimal performance on a 
given processor. We compare the performance of the PS3 to 
the FFTW engine to illustrate the potential performance 
gain of Cell over conventional processor architectures as 
well as to validate the quality of our Cell implementation. 
 For both small and large images, we varied the number 
of filters applied to each image in order to control the 
amount of computation per data. We measured performance 
in terms of the number of filtering operations carried out per 
second. Performance is expected to increase with the 
number of filters; this is because the ratio of computation to 
overhead (i.e., file I/O) increases with the number of filters 
since more filtering needs to be done on any given image. A 
performance comparison for images of size 128x128 is 
shown in Figure 4. Reported values are the average of 10 
separate runs. We observe that, when all 6 SPUs are 
employed and many filters are used, Cell outperforms the 
desktop by a factor of more than 12. This speedup results 
from a combination of both SPE parallelism and vectorized 
floating point arithmetic.  
 The performance improvement observed on small 
images could not be achieved on large images; rather, we 
observed that performance was approximately the same as 
that of the desktop machine. This is due to the somewhat 
surprising fact that the transpose operation on the PPE takes 
roughly the same amount of time as one 2-D FFT operation 
on the SPE, making the transpose a significant bottleneck. 
Since all transposes must be carried out on the PPE 
sequentially, the SPEs are forced to spend most of their time 
waiting on the PPE. The performance curves show that this 
scheduling inefficiency effectively negates any speedup 
gained by vector arithmetic. 
 A direct comparison between small and large images is 
shown in Figure 5. We normalize by image size, measuring 
performance in pixels processed per second, in order to put 
all image sizes on an equal basis. These results emphasize 
not only the performance improvement achievable with 
small images on Cell, but also the stark difference in 
performance when a major part of the computation is moved 
from the SPE to the PPE. 
 

3. DOCUMENT CLUSTERING ON THE GPU 
 
3.1 Background 
 
The Graphics Processing Unit (GPU) is a specialized 
processor that is tailored to make extremely fast, data-
parallel graphics calculations.  Modern GPU hardware has a 
theoretical performance of over 100 times more       
floating point operations per second than the current top-of-
the-line desktop CPU 

      

 The clustering method we focused on in our research 
was flocking-based clustering 

[12]. This difference comes from the 
fact that GPU development has centered on highly parallel, 

computationally intensive calculations rather than data 
caching or flow control. 

 
Figure 5  Filtering performance vs. image size for PS3 and 
desktop machines in terms of pixels processed per second 
(for an equal basis of comparison). 

 To take advantage of this hardware, the graphics 
hardware company NVIDIA created a C-like language that 
allows programmers to easily write programs to be run 
directly on certain NVIDIA® GPUs; this language is called 
CUDA.  In this new platform, execution is thread-based, 
with threads organized into blocks, which are in turn 
organized into grids. Inter-thread communication is only 
allowed between threads of the same block.  CUDA follows 
the Single Program Multiple Data (SPMD) programming 
paradigm, using a kernel as a blueprint for all threads to be 
run on the GPU at the same time [5]. 
 In our research we work to exploit the GPU using 
CUDA and apply its strengths to document clustering. 
Document clustering is a descriptive data mining task, 
which involves dividing a set of documents into numerous 
clusters to find inherent structure.  This task is a 
fundamental operation used in unsupervised document 
organization, automatic topic extraction, and information 
retrieval; however, current techniques are slow or require 
cluster computers to analyze large sets of documents 
(thousands to millions).   

[11]. The flocking model is a 
biologically inspired computational model for simulating 
the animation of a flock of entities [13].  In this model, 
individuals make movement decisions without 
communicating with other individuals in the system.  Each 
‘boid’ acts using a few simple rules: don’t get too close to 
neighboring boids; don’t get too far away from neighboring 
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boids; and fly in the same general direction as neighboring 
boids. By including a similarity rule, each boid only flocks 
with similar boids.  When we extend these rules to compare 
documents rather than birds, we observe documents 
clustering into groups of similar content (Figure 6). 

 
Figure 6  Documents flocking at time step 5, 200, and 400 
respectively. 

 Our document flocking tests were run on sets of 
documents ranging in size from 200 to 3400 documents in 
increments of 200 [13]. These experiments show a near 
sixty-fold increase in performance for the GPU over the 
CPU (Figure 7) for document flocking.  To put this 
difference in more relevant terms, a month’s worth of work 
becomes a day’s worth. Our results highlight the GPU’s 
impressive general use performance. We believe that with 
continued development, document flocking on the GPU 
would be an extremely versatile data clustering solution that 
allows for a practical, small-scale implementation of 
document clustering, leaving behind traditional limitations 
of cluster computers.  
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