
MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS
RESEARCH AT OAK RIDGE NATIONAL LABORATORY

Jacob Barhen (Oak Ridge National Laboratory, Oak Ridge, Tn 37831 USA); Ryan

Kerekes (ORISE, Oak Ridge, TN); Jesse St. Charles(ORISE); Mark A. Buckner (ORNL)

ABSTRACT

High-speed parallelization of common tasks holds great
promise as a low-risk approach to achieving the significant
increases in signal processing and computational
performance required for next generation innovations in
reconfigurable radio systems. Researchers at the Oak Ridge
National Laboratory have been working on exploiting the
parallelization offered by this emerging technology and
applying it to a variety of problems. This paper will
highlight recent experience with four different parallel
processors applied to signal processing tasks that are
directly relevant to signal processing required for SDR/CR
waveforms. The first is the EnLight Optical Core Processor
applied to matched filter (MF) correlation processing via
fast Fourier transform (FFT) of broadband Doppler-
sensitive waveforms (DSW) using active sonar arrays for
target tracking. The second is the IBM CELL™
Broadband Engine applied to 2-D discrete Fourier transform
(DFT) kernel for image processing and frequency domain
processing. And the third is the NVIDIA graphical
processor applied to document feature clustering.
 EnLight Optical Core Processor. Optical processing is
inherently capable of high-parallelism that can be translated
to very high performance, low power dissipation
computing. The EnLight™256 is a small form factor signal
processing chip (5×5 cm2) with a digital optical core that is
being developed by an Israeli startup company. As part of
its evaluation of foreign technology, ORNL’s Center for
Engineering Science Advanced Research (CESAR) had
access to a precursor EnLight™64 Alpha hardware for a
preliminary assessment of capabilities in terms of large
Fourier transforms for matched filter banks and on
applications related to Doppler-sensitive waveforms. This
processor is optimized for array operations, which it
performs in fixed-point arithmetic at the rate of 16 TeraOPS
at 8−bit precision. This is approximately 1000 times faster
than the fastest DSP available today. The optical core
performs the matrix-vector multiplications, where the
nominal matrix size is 256×256. The system clock is
125MHz. At each clock cycle, 128K multiply-and-add
operations per second (OPS) are carried out, which yields a
peak performance of 16 TeraOPS.
 IBM Cell™ Broadband Engine. The Cell processor is
the extraordinary resulting product of 5 years of sustained,
intensive R&D collaboration (involving over $400M

investment) between IBM, Sony, and Toshiba. Its
architecture comprises one multithreaded 64-bit PowerPC
processor element (PPE) with VMX capabilities and two
levels of globally coherent cache, and 8 synergistic
processor elements (SPEs). Each SPE consists of a
processor (SPU) designed for streaming workloads, local
memory, and a globally coherent direct memory access
(DMA) engine. Computations are performed in 128-bit
wide single instruction multiple data streams (SIMD). An
integrated high-bandwidth element interconnect bus (EIB)
connects the nine processors and their ports to external
memory and to system I/O.
 The Applied Software Engineering Research (ASER)
Group at the ORNL is applying the Cell to a variety of text
and image analysis applications. Research on Cell-equipped
PlayStation3 (PS3) consoles has led to the development of a
correlation-based image recognition engine that enables a
single PS3 to process images at more than 10X the speed of
state-of-the-art single-core processors.
 NVIDIA Graphics Processing Units. The ASER group
is also employing the latest NVIDIA graphical processing
units (GPUs) to accelerate clustering of thousands of text
documents using recently developed clustering algorithms
such as document flocking and affinity propagation.

1. MATCHED FILTER PROCESSING WITH THE
ENLIGHT OPTICAL CORE PROCESSOR

1.1 Background

Over the past few decades, a great deal of effort has been
devoted to the extraction of spatio-temporal information
from an array of spatially distributed sensors [1],[2]. In the
area of anti-submarine warfare (ASW), much attention has
focused on adaptive beamforming, primarily in the context
of towed arrays [3][4]. The basic emphasis of such research
was to achieve robust detection and direction-of-arrival
(DOA) estimation under requirements for auto-calibration
of the arrays [5],[6]. Notwithstanding the considerable
progress reported over the years, today’s leading paradigms
still face substantial degradation in the presence of realistic
ambient noise and clutter [7].
 Demanding calculations need to be performed to
achieve source localization, and their complexity is known
to increase dramatically with the size of the sensor array.
The same observation applies to tracking using active

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

sensors and specially designed waveforms. Both
applications require substantial processing power that
cannot readily be met with standard, off-the-shelf
computing hardware.
 First, we overview a matched filter framework for
target tracking using active sonars and then describe its
implementation on a terascale optical core processor,
EnLight™, recently introduced by Lenslet Laboratories.
This revolutionary digital optical core processor is
optimized for array operations and provides tera-scale
computing capabilities with native 8-bit fixed-point
precision.

1.2 Tracking Underwater Threats

 The algorithm we are implementing involves matched filter
(MF) correlation processing via fast Fourier transform
(FFT) of broadband Doppler-sensitive waveforms (DSW).
The keys to reliable target tracking are proper waveform
selection, accurate signal and system modeling, and
efficient real-time signal processing using an MF bank
implementation. The common waveforms used in
underwater threat detection via sonar signal analysis have
diverse and complimentary characteristics. For example,
constant frequency (CF) pulses provide superior range-rate
estimation but poor range resolution capabilities. The
reverberation clutter power vs Doppler shift of a CF pulse is
also more concentrated than that of linear frequency
modulated (LFM) signals, another common candidate
waveform in sonar tracking systems. To resolve the inherent
conflict between reliable detection and good range
resolution, signals other than the simple CF pulses have to
be used.
 The MF is central to ASW applications.
Fundamentally, the MF is a correlator, which compares the
received signal with a hypothesized signal. The output of
the matched filter gives a measure of how well the
hypothesized signal matches the received signal as function
of a set of parameters, usually the range and velocity of
targets. The estimated velocity is that for which the
correlation peak magnitude of the filter output has the
maximum value. The output of the correlator is calculated
via FFT, followed by an inverse FFT. The vectors
representing the discrete replica and echo signals can have
considerable size in the case of broadband signals and the
size of the FFT can easily exceed 100K complex samples.
Hence, it was anticipated that the very computationally
expensive implementation of broadband matched filtering
would be expedited on the EnLight optical processor.

1.3 The EnLight Optical Core Processor

Recently, Lenslet Inc. introduced the novel EnLight™
processing platform. The EnLight™256 is a small form

factor digital signal processing chip (5×5 cm2) with an
optical core. The processor is optimized for array
operations. It can perform 8−bit fixed point arithmetic at 16
TeraOPS. This is substantially faster than the fastest FPGA
or DSP processors available today. The optical core
performs matrix-vector multiplications (MVM), with a
nominal matrix size of 256×256. The system clock is
125MHz. At each clock cycle, 128K multiply-and-add
operations per second (OPS) are carried out, which yields
the peak performance of 16 TeraOPS. Before starting
production of the EnLight™256 processor, Lenslet built the
EnLight™64α board, shown in Figure 1, a reduced size
64×64 optical core, as a prototype demonstrator of their
optical processing technology. Our proof-of-concept effort
used the 64α for all hardware tests. Our scale-up projections
were based on the EnLight™256 bit-exact simulator.
 The EnLight™64α clock operates at 60 MHz. The
optical core has 64 input channels (configured as 256
vertical cavity surface emitting lasers, bundled in groups of
4 per channel). The optical core performs the MVM
function at the rate of 60 106×642×2 = 492 GOPS. Each of
the 64 data components in the input and output channels has
an 8-bit accuracy, which results in a data stream of 60 106 ×
64 × 8 bits/s = 30.7 Gbps.

Figure 1 The EnLight™ 64α

1.4 Results

We are interested in demonstrating the ability of the
EnLight computing platform to robustly track an underwater
threat source. For the purpose of the numerical simulations
and hardware implementation, the following operational
simplifications are made: 1) only a single target is present
during the detection process; 2) the speed of sound is
constant along the propagation path; and 3) the active sonar
location is known. In active sonar systems, the proper
selection of the transmitted waveform is crucial for target
detection and parameter estimation, especially with the
existence of reverberation. Several new classes of DSW
pulses have been proposed, which theoretically provide
superior reverberation processing to CF pulses by virtue of

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved
Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

their comb-like spectra. The simplest case of a signal with
comb-like spectrum is the SFM signal where the modulating
waveform itself is also a sinusoid. Thus,

2 sin(2)() () exp . o mj f t j f ts t w t π β π+=

 The function w(t) is the amplitude window of the pulse,
f0 is the center frequency, fm is the modulation frequency,
and β is the modulation index, which defines the bandwidth
of the SFM signal as B = 2 fm (1+ β). The power spectrum
of the SFM waveform is a symmetrical comb centered on f0
with a frequency spacing of fm. By comparison with a CF
pulse, where the energy is concentrated in a single
mainlobe, the signal energy of the SFM pulse is distributed
between several peaks. The result is a corresponding
reduction in reverberation interference. For this benchmark
study, the source was assumed to transmit a SFM waveform
at a center frequency f0=1200 Hz, with a 400 Hz bandwidth
B. The pulse duration used was T = 1, the frequency was
modulated at 5 Hz, and the Doppler scale ranged from -5 to
+5 m/s. The sampling frequency fs assumed was 5000 Hz,
resulting in a sampling interval length of Ts = 0.0002 s.
 To benchmark the EnLight performance, two computer
codes were written, one using the Intel Visual FORTRAN-
95 compiler, the other in MATLAB. The former enables the
fastest possible execution on an Intel IA-32 dual Xeon
processor system. The latter interfaces with the
EnLightTM256 simulator, which is used to design the actual
algorithm that was run both on the EnLightTM64α hardware
platform or is used to project the scaled performance for the
EnLightTM256.

For the MF simulation, a synthetic echo is generated for
a particular target range and velocity. The echo signal is
correlated with a bank of replicas. Spectral techniques are
used. The correlation with the highest magnitude provides
an estimate of the Doppler velocity bin. The location of the
maximum within that correlation yields the time delay of the
echo, and thus provides an estimate of the range. For this
benchmark study, the assumed target range and (incoming)
velocity were 3 km and -5 m/s respectively. The speed of
sound was taken to be 1500 m/s. A MF bank with 32
Doppler bins was implemented, with each filter performing
an 80K-sample complex FFT to calculate the cross-power
spectrum and an 80K-sample inverse FFT to obtain the
cross-correlation output of the filter. As can be seen in
Figure 2, the output of the first filter has the closest velocity
match to the received signal. The estimated target delay is 4
s and hence the estimated target range is 3 Km, with correct
incoming direction and target velocity.

In this proof-of-concept study, an EnLightTMα
hardware prototype was compared to a dual-processor Intel
Xeon (2GHz) system. A speed-up factor of over 13,000 per
processor (for a series of 80K-sample complex FFTs
corresponding to 32 Doppler cell banks and 1 target echo)

was achieved. Figure 3 compares the MATLAB simulation
of the first filter output with the EnLightTMα hardware runs.

pp

Figure 2 Matched filter back output for a filter bank of 32
Doppler bins. Not all filters are shown.

 The numerical accuracy of the hardware compares very
favorably with the high precision MATLAB simulation and
with the theoretical results (see Figure 3).

1.5 Conclusions and Future Research

To achieve the real-time performance required for
underwater threat source localization and tracking, many
existing algorithms need to be revised and ported to
emerging revolutionary computing technologies. These
include FPGAs, multicore processors, and optical
processors. The EnLight terascale optical core processor
represents one such revolutionary advance. In that context,
our future efforts will focus on demonstrating
computational speed and parallel implementation efficiency
on multicore architectures for relevant maritime sensing

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
-55

-50

-45

-40

-35

-30

range (meters)

MATLAB

Alpha

ou
tp

ut
 o

f f
ilt

er
 #

1,
 d

B

Figure 3 High resolution plot of matched filter bank output
(for filter 1) obtained via hardware run on the EnLightTMα
demonstration board.

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved
Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

applications; quantifying speed-up achieved per processor
as compared to a leading-edge conventional processor or
DSP; determining scaling properties per processor as
function of the number of sensors in the detection, tracking,
and discrimination network; and characterizing SNR gain
and detection improvement as function of array size and
geometry.

2. IMAGE PROCESSING ON THE CELL
BROADBAND ENGINE

2.1 Background

The 2-D discrete Fourier transform (DFT) is an important
component of image filtering and frequency domain
analysis and is typically carried out by the fast Fourier
transform (FFT) algorithm. Recent research has focused on
improving the speed of FFT both algorithmically and on
different processor architectures [8],[9]. The Cell
Broadband Engine (BE) processor stands to provide
significant performance gains for the 2-D DFT kernel. The
PS3 version of the chip offers a PowerPC-type processor
along with six single-instruction, multiple-data (SIMD)
vector processors which, together, provide over 20 times the
single-precision floating-point computational power of
conventional processors.
 A major challenge arises, when the images are too large
to fit into the local memory of the SIMD processor, which is
only 256 KB; specifically, a matrix transpose must be
carried out in main memory rather than in the local store,
necessitating a scheduling algorithm to coordinate memory
transfers and manage the workflow. In this section, we
expose the overall performance of the PS3 as a 2-D DFT
engine. In order to place the problem into context, we focus
on the application of correlation-based automatic target
recognition (ATR), in which each incoming image in an
image stream needs to be searched for one or more known
targets (e.g., a T-72 tank) [10]. In this application, a set of
“correlation filters”, each one designed to locate a specific
target, is applied to every image; each filter requires that
two 2-D DFTs be carried out on each image. The output
image is then searched for peaks, indicating likely target
locations.

2.2 Technical approach

 The 2-D discrete Fourier transform (DFT) takes a 2-D
signal (e.g., an image) as input and produces a 2-D
frequency domain signal. Let the 2-D discrete signal

 be defined for and . The 2-D
DFT of is given by the following equation:

],[nmx Mm K1= Nn K1=
],[lkX],[nmx

∑ ∑
= =

−−=
M

m

N

n

inleimkenmxlkX
1 1

],[],[

 An image can be filtered by multiplying its DFT by the
DFT of the filter and then inverse transforming the result
back to the space domain. The 2-D DFT can be decomposed
into 1-D DFTs on the rows and columns. It is important to
note, however, that in a software implementation of the
above algorithm, a full matrix transpose must be carried out
between the processing of the rows and columns. This
requirement can cause problems when implementing a 2-D
DFT on the Cell architecture. If the image is larger than the
amount of memory available to the SPE, the transpose
needs to be carried out on the PPE. As we show in our
experimental results, this can cause bottlenecking and
decrease performance.
 Image filtering (and, in general, data/signal processing)
on the Cell processor may be abstracted into three types of
tasks: 1) file I/O (moving data from the remote storage into
main memory), 2) PPE computation (for operations that
require concurrent access to large amounts of data), and 3)
SPE computation. It is desirable to offload as much
computation as possible onto the SPEs, provided that they
will be given enough work to cover the time needed to
transfer the data to and from the SPE local store (which can
be done simultaneously with computation). In our
application, the Fourier transforms and frequency-domain
filtering are all carried out on the SPE. Additionally,
transposes are carried out on the SPE for images of size
128x128 or smaller, i.e., “small images”.
 We designed three software schedulers to carry out the
above three tasks to maximize processor utilization. These
schedulers run simultaneously as threads. The operation of
each scheduler is queue-based, so that when a particular
task completes, it can notify another scheduler by placing
the next task in its queue. We implemented notification
using unnamed pipes shared between threads. While we use
these schedulers in a specific manner for image filtering,
this general scheduling framework could be used for a
variety of signal processing applications on the Cell
processor.

2.3 Results

 To simulate the performance of our proposed image
processing scheme in a real-world scenario, we connected
the PS3 to an NFS file server containing numerous images
and filters of various sizes. On the NFS server, we used two
different storage schemes: 1) the images and filters were
stored on the hard disk of the NFS server, and 2) the images
and filters were stored in NFS RAM. We also stored the
images and filters on the local disk of the PS3. We compare
the performance of the architecture across these three
storage schemes. As a performance baseline, we
implemented a similar image filtering engine on a Dell
Optiplex 745 with a 2.8-GHz Intel Pentium D dual-core
processor. Our implementation uses two separate threads to

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved
Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 4 Filtering performance vs. number of filters for
various storage configurations using 128x128 images.

handle processing and file I/O in parallel. We used the well-
known FFTW C library [9] for the FFT code, which
automatically tunes itself for optimal performance on a
given processor. We compare the performance of the PS3 to
the FFTW engine to illustrate the potential performance
gain of Cell over conventional processor architectures as
well as to validate the quality of our Cell implementation.
 For both small and large images, we varied the number
of filters applied to each image in order to control the
amount of computation per data. We measured performance
in terms of the number of filtering operations carried out per
second. Performance is expected to increase with the
number of filters; this is because the ratio of computation to
overhead (i.e., file I/O) increases with the number of filters
since more filtering needs to be done on any given image. A
performance comparison for images of size 128x128 is
shown in Figure 4. Reported values are the average of 10
separate runs. We observe that, when all 6 SPUs are
employed and many filters are used, Cell outperforms the
desktop by a factor of more than 12. This speedup results
from a combination of both SPE parallelism and vectorized
floating point arithmetic.
 The performance improvement observed on small
images could not be achieved on large images; rather, we
observed that performance was approximately the same as
that of the desktop machine. This is due to the somewhat
surprising fact that the transpose operation on the PPE takes
roughly the same amount of time as one 2-D FFT operation
on the SPE, making the transpose a significant bottleneck.
Since all transposes must be carried out on the PPE
sequentially, the SPEs are forced to spend most of their time
waiting on the PPE. The performance curves show that this
scheduling inefficiency effectively negates any speedup
gained by vector arithmetic.
 A direct comparison between small and large images is
shown in Figure 5. We normalize by image size, measuring
performance in pixels processed per second, in order to put
all image sizes on an equal basis. These results emphasize
not only the performance improvement achievable with
small images on Cell, but also the stark difference in
performance when a major part of the computation is moved
from the SPE to the PPE.

3. DOCUMENT CLUSTERING ON THE GPU

3.1 Background

The Graphics Processing Unit (GPU) is a specialized
processor that is tailored to make extremely fast, data-
parallel graphics calculations. Modern GPU hardware has a
theoretical performance of over 100 times more
floating point operations per second than the current top-of-
the-line desktop CPU

 The clustering method we focused on in our research
was flocking-based clustering

[12]. This difference comes from the
fact that GPU development has centered on highly parallel,

computationally intensive calculations rather than data
caching or flow control.

Figure 5 Filtering performance vs. image size for PS3 and
desktop machines in terms of pixels processed per second
(for an equal basis of comparison).

 To take advantage of this hardware, the graphics
hardware company NVIDIA created a C-like language that
allows programmers to easily write programs to be run
directly on certain NVIDIA® GPUs; this language is called
CUDA. In this new platform, execution is thread-based,
with threads organized into blocks, which are in turn
organized into grids. Inter-thread communication is only
allowed between threads of the same block. CUDA follows
the Single Program Multiple Data (SPMD) programming
paradigm, using a kernel as a blueprint for all threads to be
run on the GPU at the same time [5].
 In our research we work to exploit the GPU using
CUDA and apply its strengths to document clustering.
Document clustering is a descriptive data mining task,
which involves dividing a set of documents into numerous
clusters to find inherent structure. This task is a
fundamental operation used in unsupervised document
organization, automatic topic extraction, and information
retrieval; however, current techniques are slow or require
cluster computers to analyze large sets of documents
(thousands to millions).

[11]. The flocking model is a
biologically inspired computational model for simulating
the animation of a flock of entities [13]. In this model,
individuals make movement decisions without
communicating with other individuals in the system. Each
‘boid’ acts using a few simple rules: don’t get too close to
neighboring boids; don’t get too far away from neighboring

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved
Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

boids; and fly in the same general direction as neighboring
boids. By including a similarity rule, each boid only flocks
with similar boids. When we extend these rules to compare
documents rather than birds, we observe documents
clustering into groups of similar content (Figure 6).

Figure 6 Documents flocking at time step 5, 200, and 400
respectively.

 Our document flocking tests were run on sets of
documents ranging in size from 200 to 3400 documents in
increments of 200 [13]. These experiments show a near
sixty-fold increase in performance for the GPU over the
CPU (Figure 7) for document flocking. To put this
difference in more relevant terms, a month’s worth of work
becomes a day’s worth. Our results highlight the GPU’s
impressive general use performance. We believe that with
continued development, document flocking on the GPU
would be an extremely versatile data clustering solution that
allows for a practical, small-scale implementation of
document clustering, leaving behind traditional limitations
of cluster computers.

3. REFERENCES
[1] R. Klemm, Space – Time Adaptive Processing, The

Institution of Electrical Engineers (UK) Press (1998).
[2] R. Klemm, ed., Applications of Space – Time Adaptive

Processing, The Institution of Electrical Engineers (UK)
Press (2004).

[3] W. Burdick, Underwater Acoustic System Analysis, Prentice
Hall (1984).

[4] P. Tichavsky and K.T. Wong, “Quasi-fluid-mechanics-based
quasi-Bayesian Cramer-Rao bounds for deformed towed-
array direction finding”, IEEE Transactions on Signal
Processing, 52(1), 36-47 (2004).

[5] A. Van Buren, “Near-field transmitting and receiving
properties of planar near-field calibration arrays”, Journal of
the Acoustical Society of America, 89(3), 1423-1427 (1991).

[6] M. Viberg and A.L. Swindlehurst, “A Bayesian approach to
auto-calibration for parametric array signal processing”,
IEEE Transactions on Signal Processing, 42(12), 3495-3507
(1994).

[7] A. Nuttall and J. Wilson, “Adaptive beamforming at very low
frequencies in spatially coherent, cluttered noise
environments with low signal-to-noise ratio and finite-
averaging times”, Journal of the Acoustical Society of
America, 108(5), 2256-2265 (2000).

[8] A.C. Chow, G.C. Fossum, and D.A. Brokenshire, “A
programming example: Large Fast Fourier Transform on the
Cell Broadband Engine,” IBM, http://www-
01.ibm.com/chips/techlib/techlib.nsf/pages/main, Oct. 2005.

[9] M. Frigo and S.G. Johnson, “The design and implementation
of FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[10] R.A. Kerekes and B.V. Kumar, “Multiple target detection in
video using quadratic multi-frame correlation filtering,”
(invited paper) Proc. of SPIE: Optical Pattern Recognition
XIX, vol. 6977, pp. 697705-1-697705-15, 2008.

[11] X. Cui, T. Potok, “A Distributed Flocking Approach for
Information Stream Clustering Analysis,” snpd-sawn, pp. 97-
102, Seventh ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD'06), (2006)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 400 800 1200 1600 2000 2400 2800 3200

Document Population

Ru
nt

im
e

(m
s)

Avg GPU Runtime
Avg CPU Runtime

Figure 7 GPU vs. CPU Document Flocking Runtime.

[12] NVIDIA, “NVIDIA CUDA: Compute Unified Device
Architecture” NVIDIA, http://developer.NVIDIA.com/cuda,
Version 1.1, (2007)

[13] C.W. Reynolds. “Flocks, Herds, and Schools: A Distributed
Behavioral Model,” Computer Graphics (ACM) 21, pp. 25-34
(1987).

[14] J.St. Charles, T.E. Potok, R.M. Patton, X. Cui, “Flocking-
based Document Clustering on the Graphics Processing
Unit,” Proceedings of 2nd Workshop on Nature Inspired
Cooperative Strategies for Optimization, book chapter in
Springer’s Studies in Computational Intelligence (SCI),
November, 2007, Acireale, Sicily (Italy).

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved
Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

http://www-01.ibm.com/chips/techlib/techlib.nsf/pages/main
http://www-01.ibm.com/chips/techlib/techlib.nsf/pages/main
http://developer.nivida.com/cuda

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

