
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

DESIGN AND IMPLEMENTATION OF HIGH-SPEED DATA TRANSFER

PROTOCOL IN CORBA ENVIROMENT

June Kim *(nzneer@dsplab.hanyang.ac.kr)
Seungheon Hyeon*(heon@dsplab.hanyang.ac.kr)

Seungwon Choi*(choi@dsplab.hanyang.ac.kr)
*HY-SDR Research Center, Hanyang University, Seoul, Korea

ABSTRACT

The heavy burden of CORBA(Common Object Request
Broker Architecture) is one of the most serious hindrances
in implementing the SDR(Software Defined Radio) System.
As most GIOP(General Inter Object Request Broker
Protocol) implementations are based on TCP/IP
(Transmission Control Protocol/Internet Protocol) based
IIOP (Internet Inter Object Request Broker Protocol), data
exchange between CORBA components operating
independently should pass through the TCP/IP layer. With
such an inefficient operation, the waveform application
required in SDR systems can hardly be provided in real-
time. This paper presents a novel protocol that enables
ORB(Object Request Broker) to exchange CORBA
message through PCI bus.

1. INTRODUCTION

One of the major problems in implementing an
SCA(Software Communication Architecture)-based SDR
system is to have the CORBA ported to the signal
processing components such as DSP(Digital Signal
Processing) or FPGA(Field Programmable Gate Array).
Since the DSP or FPGA is not equipped with an
OS(Operating System), CORBA ORB which needs the OS-
related services such as scheduling service, file system
service, or memory management service cannot operate
properly. In this situation, it is necessary for the ORB-
ported GPP to employ an adapter for converting the
CORBA message into a proper user-defined message in
order to exchange data. However, the adapter causes a
bottle neck and overload in GPP when the CORBA message
is to be exchanged with any of non-CORBA elements
because the message should pass through the GPP at every
transfer as shown in Figure 1. Two procedures should be
provided to solve this problem. Firstly, the ORB should be
able to exchanges the CORBA message through the PCI bus.
Secondly, the ORB should be ported to DSP or FPGA. In
this paper, we mainly focus on the first procedure.
This paper consists of four sections as follows. In first
section, we provide an overview of GIOP structure. In

second section, the PCI bus protocol is explained. In third
section, PCIIOP (PCI Inter Object Request Broker Protocol),
a novel High-speed data transfer protocol, is proposed. The
proposed protocol accelerates the data exchanging between
CORBA components and guarantees an autonomy in SDR
system design. In forth section, the protocol is implemented
with TAO. TAO is the most famous open source CORBA
implementation.

2. OVERVIEW OF GIOP

GIOP is a protocol for exchanging CORBA messages
between ORB(Object Request Broker)’s as shown in Figure
2. After the client acquires a reference to CORBA object
and accesses a method of the object, GIOP sends a CORBA
message to ORB at which the object is located. The ORB,
which receives the message via GIOP, forwards it to the
object adapter, then, the target object executes the method.
Result of the method returns in the other way around.

Figure 1- Data Exchange between DSP1 and DSP2

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

When the CORBA message is transferred via GIOP, we
need an I/O subsystem for physically transferring the data.
Ethernet is the most well known I/O subsystem.
IIOP(Internet Inter Orb Protocol) is a protocol for
transferring the CORBA messages using TCP/IP over

Ethernet, which means that IIOP is implemented in most
CORBA implementations.
All CORBA message transfer protocols should inherit the
interfaces of GIOP. For example, IIOP (Internet Inter ORB
Protocol) and UIOP (Unix Inter ORB Protocol), PCIIOP
(PCI Inter ORB Protocol) inherits all interfaces of GIOP
and implements the interfaces according to their I/O
subsystem. Figure 3 describes this relationship with
UML(Unified Modeling Language). GIOP sends a header
and body message for one request. The definition of the
message header is described using IDL(Interface Definition
Language) in Figure 4. The message header has a message
body and message type. Reference to target object is
acquired through IOR (Interoperable Object Reference) in

CORBA. GIOP should be equipped with IOR parser for
acquiring a unique address of the target object in I/O
subsystem.

3. PCI

PCI is a very well known system bus in communication
system. As the 32bit PCI bus that consists of 32bit data and
address bus has been widely used, we only consider the
32bit PCI bus in this paper. PCI bus should include a host
device which, as a bus arbitrator, assigns each device a PCI
address. At least, one host device exists on PCI bus. Each
PCI device is able to send an interrupt signal to the host
device. INTA, INTB, INTC, INTD signals are this purpose
pin in Figure 5 but there are no means sending interrupt
signal form PCI device to PCI device in PCI specification.

Figure 2- CORBA structure

Figure 3- UML Diagram of GIOP

Module GIOP{
 struct Version{

 octet major;
 octet minor;

};
Enum MsgType_1_1{

Request, Reply, CancelRequest, LocateRequest,
LocateReply, CloseConnection, MessageError, Fragment

 };
 struct MessageHeader_1_1{
 char magic[4];
 Version GIOP_version;
 octet flags;
 octet message_type;
 unsigned long message_size;
 //…
};

Figure 4-Definition of GIOP Message Header

Figure 5- Description of PCI Signal

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Most PCI devices have ATU(Address Translation Unit).
This unit translates automatically PCI address and internal
address in order to make an internal address space for the
external PCI device access. In order to exchange data over
PCI, internal receiving buffer should be mapped to PCI bus

using ATU like Figure 6. If the system registers, generating
the internal interrupt, are mapped to the PCI address, the
external PCI device can generate an interrupt signal.

4. DESIGN OF PCIIOP

In order to send and receive GIOP messages over PCI, a
unique address of the CORBA object existing on PCI bus
should first be encoded and decoded into IOR. For example,
IIOP encodes and decodes IP address and port number such
as 192.168.1.1:8080 into IOR. PCIIOP defines an address
format as [PCI address : length]. PCI address denotes the
PCI bus address residing the message receiving buffer.
Length is the address range of the buffer. The buffer should
reside the PCI bus using ATU(Address Translation Unit)
mapping. GIOP message sender decodes the IOR and
determines the PCI address of the receiving buffer for the
target object.
Receiver of the GIOP message should receive an interrupt
signal since the message has been transmitted. But sending
interrupt signal to the PCI device does not exist as discussed
previously. Solution to this problem is to register an

interrupt generator to host device for each PCI device. Host
device generates an interrupt signal from each interrupt
generator when the PCI device requests the host interrupt
generation of the specified PCI device. Figure 7 describes
this solution. If PCI device is equipped with MSI(Message
Signaled Interrupt), data transfer performance may be
enhanced to some extent because it sends the interrupt
signal to other PCI device directly. All these procedures are
described in Figure 8.

5. IMPLEMENTATIO OF PCIIOP

PCIIOP is implemented on Linux using TAO. TAO
supports the framework for GIOP implementation and rapid
development of a new transfer protocol.

CORBA application needs Linux driver in order to access
the PCI bus. The driver was written in C language and is
similar to /dev/kmem driver. When the application reads
and writes the address of the driver, PCI address is read and
written on the PCI bus.

PCI BUS

PCI BUS driver Interrupt Generator

Linux

PCIIOP

TAO

CORBA Server/Object

Figure 9-Functional Layers of PCIIOP based CORBA

Figure 6- Receiving Buffer

Figure 7- Interrupt sending

Figure 8- PCIIOP message exchanging sequence

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Interrupt generation driver was written in PCI host
machine. When interrupt signal is detected from each PCI
device, the driver invoke the interrupt handler, which
acquires a device number of the target device and executes
the interrupt generator.

6. CONCLUSIONS

PCIIOP was designed and implemented so that all CORBA-
based PE(Processing Element) can exchange GIOP
messages with one another. This protocol accelerates data
exchange between CORBA components. Later, PCIIOP will
be implemented on ORB in C language and All PE such as
DSP, FPGA will be able to exchange GIOP message with
one another.

7. REFERENCES

[1] Carlos O'Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama

Othman, and Jeff Parsons, “The Design and Performance of a
Pluggable Protocols Framework for Real-time Distributed
Object Computing Middleware” IFIP/ACM Middleware 2000
Conference,April 3-7,2000.

[2] Michi Henning, Steve Vinoski, Advanced CORBA
Programming with C++, Addison-wesley, USA, 1999.

[3] Tom Shanley, Don Anderson, APCI System Architecture,
Addison-wesley, USA, 1999.

[4] Remedy IT, TAO Programmer Guide
[5] TAO home, http://www.cse.wustl.edu/~schmidt/TAO.html

	Home
	Papers By Alpha
	Papers By Session

