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ABSTRACT 
 
The development of software-defined radios presents a set 
of challenges that is uniquely different from those faced in 
the development of traditional hardware radios. This paper 
examines problems and design challenges encountered in the 
development of Hydra, a multi-antenna multihop wireless 
testbed. In particular, we address the impact of design 
choices in the software architecture of this prototype, 
software performance issues, and practical issues dealing 
with the radio frequency (RF) front-end. 
 

1. INTRODUCTION 
 
The design space for research and commercial wireless 
devices ranges from radios implemented entirely in 
hardware to completely software-defined radios (SDR). In 
the former, the physical (PHY), medium access control 
(MAC), and sometimes even Network layer are all 
implemented in hardware, namely in silicon or on field 
programmable gate-arrays (FPGAs). Hydra, an experimental 
wireless testbed that features a completely software-defined 
protocol architecture [1], is at the opposite end of this 
spectrum. The continuum of design choices in between 
presents various tradeoffs between performance, flexibility, 
reconfigurability, development time, and cost. 
 We present a set of challenges faced in designing and 
experimenting with Hydra. The goal of this prototyping 
effort is to develop a testbed that provides a flexible (i.e. 
easy to modify) platform for researchers to implement a 
wide variety of cross-layer wireless algorithms. In particular 
studying these algorithms in real propagation channels, with 
non-idealized radios, and realistic traffic will help to bridge 
the gap between theoretical results generated by researchers 
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Fig. 1: Each Hydra node consists of a general purpose PC 
connected to the USRP over a USB 2.0 interface. 

 
and practical systems designed by engineers. This, in part, 
motivated the pursuit of a software-defined design for 
Hydra. The goal of this paper is to provide a detailed 
discussion of the design choices made in the development of 
this prototype. In particular we examine tradeoffs and 
limitations in the system which may provide insight to 
researchers developing similar software-defined testbeds. 
 

2. SYSTEM OVERVIEW 
 
Hydra was designed to provide a flexible framework for 
rapidly prototyping cross layer protocols in multihop 
wireless networks. As shown in Figure 1, each Hydra node 
is composed of a general purpose PC and a multi-antenna 
RF front-end. The Network (routing), MAC, and PHY layers 
are implemented entirely in software running on the general 
purpose processor. This approach allows us to rapidly 
implement a wide range of wireless protocols in high level 
languages, which are suitable to most networking and 
communications researchers who may not have experience 
with hardware languages (e.g. Verilog, VHDL). 
 
2.1. Open-source Software 
 

Three open-source software packages are utilized to 
implement the MAC and PHY layers of Hydra, namely the  
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TABLE I: Hydra Implementation of the IEEE 802.11n PHY 
 
 
 
 
 
 
 
 
 
 
Click modular router [2], GNU Radio [3], and IT++ [4]. In 
Click and GNU Radio, packet and signal processing 
elements are built in C++ and then assembled using a glue 
language to compose a protocol. IT++, a C++ library of 
various digital communications and signal processing 
functions, provides many algorithms used in building the 
physical layer. The PHY and MAC of Hydra extend current 
wireless standards, namely: IEEE 802.11n [5] and the 
distributed coordination function (DCF) of IEEE 802.11. 
Table I provides an overview of IEEE 802.11n as 
implemented in Hydra. 
 
2.2. RF Front-End 
 
The physical layer of Hydra sends and receives baseband 
waveforms to and from an open-source RF front-end, the 
Universal Software Radio Peripheral (USRP version 1) [6]. 
The primary functions of this frequency-agile radio platform 
are filtering, digital-to-analog/analog-to-digital conversion, 
and upconversion/downconversion of baseband signals. A 
one million gate FPGA on the USRP implements most of 
this functionality. GNU Radio provides a convenient 
application programming interface (API) to control and 
communicate with the USRP, which connects to the host 
machine over a USB 2.0 connection. 
 Each USRP also features up to two RF daughterboards, 
which modulate signal from baseband to a carrier frequency 
and vice versa. Various daughterboards are available to 
allow operation in a variety of frequency bands, such as the 
Industrial, Scientific, and Medical (ISM) bands. The multi- 
antenna support of the USRP allows it to be used to 
implement multiple-input multiple-output (MIMO) systems. 
 
2.3. Physical Layer Software-Architecture 
 
Many of the design decisions discussed in this paper deal 
with the architecture of the Hydra physical layer. As 
mentioned, the physical layer is implemented using the GNU 
Radio framework. The software-architecture of this 
implementation consists of three main parts: the MAC/PHY 
interface, the PHY itself, and the radio interface. Each 
section is composed of an upstream and downstream part. 
As shown in Figure 2, there are multiple threads throughout 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 2: Multi-threaded architecture of PHY layer in Hydra. 

 
the architecture. These threads communicate with each other 
primarily through control or data queues.  
 Since the MAC layer is implemented in Click and runs 
as a separate process in its own address space, some type of 
interprocess communication (IPC) must be used to connect 
the MAC and PHY. Hydra utilizes a local socket connection 
to facilitate this interaction. The MAC/PHY interface in 
Figure 2 manages the PHY side of this interface and 
implements a flexible frame structure for tightly coupled 
cross-layer interaction between these layers. 
 
2.3.1. Standard Operation 
In the typical transmission of a packet, the MAC layer will 
deliver a packet along with cross-layer side information to 
the MAC/PHY interface over a local socket connection. 
This cross-layer side information usually consists of 
parameters needed to configure the physical layer (e.g. rate, 
transmission power) or physical layer information needed in 
PHY processing (e.g. channel information, MIMO 
precoding matrices). After configuring the physical layer 
according to this side information, the interface sends the 
MAC packet downstream to the physical layer for transmit 
processing. The PHY layer then generates a baseband 
waveform and places it into a data queue for the radio 
interface. The waveform generated by the PHY is a 
sequence of floating point values. The transmit side of the 
radio interface must reformat this data into the fixed point 
format (i.e. 16-bit integers) required by the USRP. After 
reformatting, the waveform is sent on to the RF front-end. 
 Much of the processing in receiving a packet is the dual 
of the transmit operation. The reception of a packet is 
divided between a capture thread, residing in the radio 
interface, and a receiver thread, which resides in the PHY. 
The  capture  thread  continually  captures  blocks  of  2048 
baseband samples, converts the fixed point values into 
floating point samples, places them into a capture buffer, 
and then notifies the receiver thread that new samples are 
available. The receiver thread listens to the baseband 
samples in this buffer until it detects a packet, i.e. 
performing a packet detection algorithm such as energy 
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detection or the Schmidl & Cox method [7]. Once the entire 
detected waveform has been captured, the receiver thread 
attempts to decode the incoming packet. After successfully 
decoding a packet, the receiver thread sends it along with 
physical layer side information upstream to the MAC/PHY 
interface. The receiver thread also notifies the capture thread 
whenever it is finished processing a set of samples so that 
the capture thread can remove these samples from the buffer. 
Finally, the MAC packet and side information are delivered 
to the MAC layer. 
 Note, the capture and receiver threads in Hydra have a 
pseudo-producer-consumer relationship with regard to their 
shared buffer. That is, although the receiver thread reads 
samples out of the buffer, the capture thread manages all 
writing to and consuming from this buffer. This eliminates 
the need for any mechanisms to ensure mutually exclusive 
buffer access, as in a traditional producer-consumer. The 
concurrent operation of these threads requires a shared 
signaling semaphore (to indicate when new samples arrive) 
and an internal queue for control messages from the receiver 
thread to the capture thread (to indicate when samples are no 
longer needed and can be consumed). This internal 
semaphore and queue were omitted from the block diagram 
in Figure 2. 
 
2.3.2. Multi-threaded Performance 
In order to leverage a multi-threaded architecture such as 
this, it important to understand where there are opportunities 
to exploit concurrency or parallelism. This parallelism can 
be utilized by multi-core processors to significantly improve 
the performance of software-defined radios. For example, in 
the upstream or receive side of the physical layer, the 
capture operation can occur in parallel with physical layer 
detection and decoding. A general purpose processor with 
four cores could allow the MAC/routing layer, the 
receive/transmit processing, and the capture operation to be 
performed on separate cores while still having one core 
remaining for general usage. 
 Additional improvement in performance can be 
achieved by analyzing the processing burden of various 
parts of the physical layer. For example, the capture thread 
is memory intensive, but does not require much processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The decoding algorithm however, is very processing 
intensive. To reduce the processing burden of a core running 
the physical layer receive processing, the detection 
algorithm could be offloaded to the core that is running the 
capture thread. Further extension of this idea could involve 
dissecting the physical layer decoding process shown in 
Figure 3 into pieces running on parallel cores (e.g. running 
channel estimation/equalization and Viterbi decoding on 
separate cores). 
 The operation of the downstream or transmit side of the 
physical layer is sequential and does not present much 
opportunity for parallelism. The reason for introducing 
threads in situations where there is no parallelism of which 
to take advantage is that it decouples the operation of 
logically separate parts of the architecture. This improves 
the overall modularity of the system at the cost of some 
additional context switching overhead. 
 

3. CHALLENGES 
 
The previous section described the capabilities and 
software-architecture of Hydra. In this section, we examine 
some of the engineering tradeoffs faced in the design of that 
system and some practical issues associated with the 
limitations of the RF front-end.  
 
3.1. Capture Delay vs. Packet Detection Overhead 
 
As discussed previously, in the capture operation the radio 
interface captures blocks of samples delivered by the USRP 
over the USB interface. The receiver then processes these 
incoming samples to detect if a packet has been received. 
Consider the capture of N samples, where B  represents the 
number of samples in a block. The delay in capturing a 
single block of B  samples can be characterized as 
 

  ,  (1) 
 
where        is the duration of a sample,    is a random 
delay associated with the USB latency, and ( )Bκ  is the 
overhead of memory access (i.e. buffer copy operations). 
Since we assume that ( )Bκ  is ( )BO , the capture delay for a 

( ) USBscapture TBBD θκ +⋅+=

sT USBθ

Fig. 3: (a) Packet detection and (b) decoding in MIMO-OFDM receiver of Hydra. 
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block of B  sample is also ( )BO . The processing overhead 
incurred for packet detection can be characterized as 
 
 
 
                ,   (2) 
 
where         is the number of blocks, µ  is the 
processing overhead per sample for the packet detection 
algorithm,  and     is a random delay due to context 
switching overhead.  Equation 2 shows that         is inversely 
proportional to  block  size, i.e.            . This implies that as 
we reduce block size B  to reduce capture delay, packet 
detection overhead will increase. If packet detection time B  
exceeds         , the  system  will  no  longer  be  able to 
maintain real time operation. This imposes a bandwidth 
constraint on the system.  
 
3.2. Block vs. Stream Processing 
 
Figure 3 shows a block diagram of the MIMO-OFDM 
receiver in Hydra. As with most physical layer decoding, the 
operation of this receiver can be thought of as a processing 
pipeline of M  stages acting on an endless stream of 
baseband samples. The processing requirements of these 
stages are not uniform. For example, a linear channel 
equalizer consumes fewer resources than a Viterbi decoder. 
We refer to this pipeline approach as stream processing. 
Hardware implementation (i.e. in silicon or FPGAs) of this 
processing model would naturally have a high degree of 
concurrency. At each time slice in the operation of such an 
implementation, M  processing stages would be working on 
M  different slices of the input stream. Similar parallelism 
could also be achieved in a software-defined radio, but 
would come at the cost of increased context switching 
overhead. 
 Another approach to this processing problem would be 
to serially perform each of the M  stages of the pipeline on 
a large block of input slices (i.e. only one stage is active at 
any given time). We refer to this approach as block 
processing. A software implementation on a general purpose 
processor of the receiver structure of Figure 3 would 
naturally operate in such a fashion. Hydra uses the block (or 
sequential) processing model. To compare the performance 
of parallel and sequential processing architectures in a 
software-defined radio, we consider a PHY decoding 
algorithm with M  processing stages. The time to process 
N  input slices in a pipeline or stream processing SDR 
implementation can be approximated as 
 
              ,  (3) 
 
where we assume N >> M ,          is the processing time for 
the slowest  stage  of  the  processing  pipeline,    is the 

average cost of a context switch, and p  is the number 
processor cores in the general purpose processor. 
 In a sequential or block processing model, where only 
one stage is active at any given time, the time to process N  
samples is approximately 
 
            ,  (4) 
 
where        is the average time of a processing  stage and 
is an efficiency factor that accounts for any speed up in 
processing that occurs when p processor cores work together 
(i.e.                      ). 
 Assuming    that                  , then block 
processing will be more efficient than stream processing 
when                          , or equivalently when 
 
       (5) 
  
 
          .   (6) 
 
 
When N is sufficiently large, the upper bounds of Equations 
(5) and (6) are approximately equal. This implies that, as a 
general rule of thumb, whenever there exists a processing 
stage that is significantly slower than the average stage, i.e. 
the ratio   is large, then block processing will be 
more efficient than stream processing. 
 Note, stream processing also benefits from the ability to 
potentially overlap capture and receive processing, although 
this was not considered in this analysis. It should also be 
noted that we are primarily concerned with the design of 
software-defined packet radios, which will only be decoding 
waveforms of finite sizes. This fact might further motivate 
the use of the simpler block processing model.  
 
3.3. Practical Limitations of the Radio 
 
In the development of Hydra many of the following 
limitations of the RF front-end impacted system 
performance. These features put practical constraints on the 
achievable performance of Hydra and how the testbed can 
be utilized in wireless experiments.  
 
3.3.1. Digital Transmit Interpolation Filter 
As mentioned previously, one of the tasks of the RF front-
end is to interpolate (or upsample) the baseband waveform 
created by the physical layer. Part of this interpolation 
process is the application of an anti-imaging filter [8]. 
Digital interpolation of a signal produces frequency 
modulated copies or images of the original signal. An ideal 
digital interpolation filter would reject all of these images 
while allowing the original signal to pass without any 
distortion. In general, the design of an ideal filter requires a 
large amount of memory. Because of space limitations on its  
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Fig. 4: Frequency response of transmit interpolation filter on 

USRP measured at 2.4 GHz. Interpolation factor is 64. 
 
FPGA, the USRP’s digital transmit filter has a non-ideal 
frequency response. As shown in Figure 4, the frequency 
response of the transmitted signal after filtering drops as 
much as 16 dB. This significant loss in signal strength can 
adversely impact the performance of many communication 
systems. 
 In Hydra, the physical layer uses orthogonal frequency 
division multiplexing (OFDM) modulation. Please refer to 
[9] for a detailed discussion of OFDM and the challenges in 
multicarrier systems. This modulation scheme divides the 
frequency spectrum into a set of parallel channels and then 
loads complex symbols onto each subchannel. In the context 
of OFDM, the digital transmit filter of the USRP causes the 
amplitude of the attenuated outer subchannels to be up to six 
times smaller than that of the inner subchannels. These 
lower fidelity subchannels bring down the average quality of 
the signal. 
 To illustrate this, consider an OFDM system in which 
the subchannels are loaded with quadrature amplitude 
modulated (QAM) signals. Figure 5 shows the superimposed 
QAM constellations of two signals that have passed through 
an additive white Gaussian noise (AWGN) channel with 
noise power 302 −=σ dB. One of the constellations 
represents the equalized signal constellation of an OFDM 
waveform transmitted with the transmit interpolation filter in 
Figure 4, while the other represents one that was transmitted 
with an ideal filter. The inner shaded area at each 
constellation point depicts the normal region into which 
noise perturbed signals might fall, i.e. with an ideal filter. 
The outer area at each constellation point indicates the 
expanded area into which these points may now fall when 
this transmit filter is used. This example demonstrates how  
the average signal quality is degraded because of the 
frequency response of the digital transmit filter. 
 One method to overcome the frequency selectivity of 
this filter is to apply a digital filter to compensate for the 
shape of the output frequency response. This method is not 
advisable as it may lead to overflow in the representation of  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Superimposed constellations of equalized signal in AWGN 

(SNR= 30 dB) with and without transmit filter. 
 
the outgoing signal, a phenomenon sometimes referred to as 
saturation or clipping. Another method, which is used in 
Hydra, is to interpolate the signal by a factor of two with a 
high quality filter prior to sending it to the RF front-end. 
This causes the signal to be isolated to only a fraction of the 
bandwidth of the transmit filter, which reduces the power 
loss of the outer subchannels to only 4− dB.  
 
3.3.2. Non-ideal Hardware 
As discussed previously, the USRP provides the ability to 
modify the carrier frequency of the radio over a large 
frequency band (generally over a few hundred megahertz). 
This frequency agility does not, however, imply that all 
carrier frequencies behave the same. In fact, the frequency 
response of the analog RF front-end of the USRP is 
nonuniform, as shown in Figure 6. Similarly, antennas 
designed to operate in a particular frequency band may not 
provide uniform performance over all frequencies in the 
band. The      characteristics of an antenna provide a 
measure of the reflective properties of an antenna as a 
function  of  frequency.  Consider  the         measurements 
for an off the shelf antenna sold for operation in the 2.4 GHz 
ISM band, shown in Figure 7. This plot shows that a good 
operating range for this antenna is 2.41–2.43 GHz, i.e. 
where the power lost through the antenna is less than 1%. 
These nonuniformities cause certain frequencies to be better 
suited for operation. It is therefore important to profile the 
frequency response of both the RF front-end and antennas 
used in any wireless device. Based on the measurements in 
Figures 6 and 7, an ideal operating range for Hydra is 
between 2.41–2.43 GHz.  
 
3.3.3. USB Interface 
As previously mentioned, the USRP connects to the host 
machine over a USB 2.0 connection. This USB interface has 
a theoretical bandwidth of 480 Mbps. Since each complex 
sample is composed of 4 bytes, this means that the USB 
interface can support approximately 8 Msamples per second.  

11S

11S
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Fig. 6: Maximum transmit power of Flex 2400 daughterboard 
within linear range of USRP. Least attenuation occurs at 2.4 GHz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: S11 measurements for a 2.4 GHz antenna. 
 
Since this is divided among two antennas, in theory the 
USRP could support a 2 antenna MIMO stream operating 
with up to 4 MHz of bandwidth. Although, in practice the 
USB operates at approximately half of its theoretical limit, 
thus the USRP can reliably provide MIMO samples at a rate 
of 2 Msamples/sec. Higher bandwidth connections are being 
explored for future versions of the hardware. 
 Because of the bandwidth limitations introduced by the 
USB interface and from packet processing overhead, the 
throughput of the MAC level in Hydra is at least an order of 
magnitude slower than that of normal IEEE 802.11. 
Although this software-defined approach in Hydra incurs the 
cost of reduced performance, it has the benefits of a greater 
degree of flexibility, reconfigurability, and 
monitoring/probing functionality which other higher 
performance platforms might lack. These are some of the 
major benefits to researchers employing software-defined 
radios for wireless experimentation.  
 

4. CONCLUSION 
 
This paper was motivated by the challenges and problems 
faced in the development of Hydra. It described the physical 
layer architecture of Hydra, which motivated a discussion of 

many general issues pertaining to the architecture and design 
of software-defined radios. Finally, there was a discussion of 
some of the limitations of the RF front-end and their impact 
on system performance. We conclude with a design feature 
of Hydra which motivates some concerns to be addressed in 
future work. 
 The capture and process approach that Hydra employs 
in processing received signals provides some architectural 
benefits, but it also introduces some unique timing issues in 
the MAC layer. One of these issues pertains to the definition 
of carrier sense. Because of the delay introduced in 
buffering and analyzing captured data, anytime a carrier 
sense decision is made it may quickly become out of date. 
For example, a typical transmitted packet in Hydra can be 
around 2500 samples. When using a block size of 2048 
samples, this means that by the time the entire packet has 
been captured, any carrier sense decision made on the 
captured data may already be out of date. This is an example 
which illustrates some of the timing problems that are 
introduced in the MAC layer when using a completely 
software-defined protocol architecture. Such problems 
motivate the need to rethink definitions of carrier sense and 
other notions of channel state at the MAC level. We mention 
this as a final thought that might motivate future work on the 
architecture of softwaredefined radios.  
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