
Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

ON THE CHALLENGES OF BUILDING A MULTI-ANTENNA

SOFTWARE DEFINED PACKET RADIO

Ketan Mandke, Robert C. Daniels, Robert W. Heath, Jr., and Scott M. Nettles
Wireless Networking & Communications Group (WNCG)

Dept. of Electrical & Computer Engineering, The University of Texas at Austin
1 University Station C0803, Austin, TX 78712-0240

Email: {mandke, rdaniels, rheath, nettles}@ece.utexas.edu

ABSTRACT

The development of software-defined radios presents a set
of challenges that is uniquely different from those faced in
the development of traditional hardware radios. This paper
examines problems and design challenges encountered in the
development of Hydra, a multi-antenna multihop wireless
testbed. In particular, we address the impact of design
choices in the software architecture of this prototype,
software performance issues, and practical issues dealing
with the radio frequency (RF) front-end.

1. INTRODUCTION

The design space for research and commercial wireless
devices ranges from radios implemented entirely in
hardware to completely software-defined radios (SDR). In
the former, the physical (PHY), medium access control
(MAC), and sometimes even Network layer are all
implemented in hardware, namely in silicon or on field
programmable gate-arrays (FPGAs). Hydra, an experimental
wireless testbed that features a completely software-defined
protocol architecture [1], is at the opposite end of this
spectrum. The continuum of design choices in between
presents various tradeoffs between performance, flexibility,
reconfigurability, development time, and cost.
 We present a set of challenges faced in designing and
experimenting with Hydra. The goal of this prototyping
effort is to develop a testbed that provides a flexible (i.e.
easy to modify) platform for researchers to implement a
wide variety of cross-layer wireless algorithms. In particular
studying these algorithms in real propagation channels, with
non-idealized radios, and realistic traffic will help to bridge
the gap between theoretical results generated by researchers

This material is based in part upon work supported by the National
Science Foundation under grants EIA-0322957, CNS-0435307,
and CNS-0626797, the Air Force Research Lab under grant
numbers FA8750-06-1-0091, and FA8750-05-1-0246, the Office
of Naval Research under grant number N00014-05-1-0169, and the
DARPA IT-MANET program, Grant W911NF-07-1-0028.

Fig. 1: Each Hydra node consists of a general purpose PC
connected to the USRP over a USB 2.0 interface.

and practical systems designed by engineers. This, in part,
motivated the pursuit of a software-defined design for
Hydra. The goal of this paper is to provide a detailed
discussion of the design choices made in the development of
this prototype. In particular we examine tradeoffs and
limitations in the system which may provide insight to
researchers developing similar software-defined testbeds.

2. SYSTEM OVERVIEW

Hydra was designed to provide a flexible framework for
rapidly prototyping cross layer protocols in multihop
wireless networks. As shown in Figure 1, each Hydra node
is composed of a general purpose PC and a multi-antenna
RF front-end. The Network (routing), MAC, and PHY layers
are implemented entirely in software running on the general
purpose processor. This approach allows us to rapidly
implement a wide range of wireless protocols in high level
languages, which are suitable to most networking and
communications researchers who may not have experience
with hardware languages (e.g. Verilog, VHDL).

2.1. Open-source Software

Three open-source software packages are utilized to
implement the MAC and PHY layers of Hydra, namely the

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

TABLE I: Hydra Implementation of the IEEE 802.11n PHY

Click modular router [2], GNU Radio [3], and IT++ [4]. In
Click and GNU Radio, packet and signal processing
elements are built in C++ and then assembled using a glue
language to compose a protocol. IT++, a C++ library of
various digital communications and signal processing
functions, provides many algorithms used in building the
physical layer. The PHY and MAC of Hydra extend current
wireless standards, namely: IEEE 802.11n [5] and the
distributed coordination function (DCF) of IEEE 802.11.
Table I provides an overview of IEEE 802.11n as
implemented in Hydra.

2.2. RF Front-End

The physical layer of Hydra sends and receives baseband
waveforms to and from an open-source RF front-end, the
Universal Software Radio Peripheral (USRP version 1) [6].
The primary functions of this frequency-agile radio platform
are filtering, digital-to-analog/analog-to-digital conversion,
and upconversion/downconversion of baseband signals. A
one million gate FPGA on the USRP implements most of
this functionality. GNU Radio provides a convenient
application programming interface (API) to control and
communicate with the USRP, which connects to the host
machine over a USB 2.0 connection.
 Each USRP also features up to two RF daughterboards,
which modulate signal from baseband to a carrier frequency
and vice versa. Various daughterboards are available to
allow operation in a variety of frequency bands, such as the
Industrial, Scientific, and Medical (ISM) bands. The multi-
antenna support of the USRP allows it to be used to
implement multiple-input multiple-output (MIMO) systems.

2.3. Physical Layer Software-Architecture

Many of the design decisions discussed in this paper deal
with the architecture of the Hydra physical layer. As
mentioned, the physical layer is implemented using the GNU
Radio framework. The software-architecture of this
implementation consists of three main parts: the MAC/PHY
interface, the PHY itself, and the radio interface. Each
section is composed of an upstream and downstream part.
As shown in Figure 2, there are multiple threads throughout

Fig. 2: Multi-threaded architecture of PHY layer in Hydra.

the architecture. These threads communicate with each other
primarily through control or data queues.
 Since the MAC layer is implemented in Click and runs
as a separate process in its own address space, some type of
interprocess communication (IPC) must be used to connect
the MAC and PHY. Hydra utilizes a local socket connection
to facilitate this interaction. The MAC/PHY interface in
Figure 2 manages the PHY side of this interface and
implements a flexible frame structure for tightly coupled
cross-layer interaction between these layers.

2.3.1. Standard Operation
In the typical transmission of a packet, the MAC layer will
deliver a packet along with cross-layer side information to
the MAC/PHY interface over a local socket connection.
This cross-layer side information usually consists of
parameters needed to configure the physical layer (e.g. rate,
transmission power) or physical layer information needed in
PHY processing (e.g. channel information, MIMO
precoding matrices). After configuring the physical layer
according to this side information, the interface sends the
MAC packet downstream to the physical layer for transmit
processing. The PHY layer then generates a baseband
waveform and places it into a data queue for the radio
interface. The waveform generated by the PHY is a
sequence of floating point values. The transmit side of the
radio interface must reformat this data into the fixed point
format (i.e. 16-bit integers) required by the USRP. After
reformatting, the waveform is sent on to the RF front-end.
 Much of the processing in receiving a packet is the dual
of the transmit operation. The reception of a packet is
divided between a capture thread, residing in the radio
interface, and a receiver thread, which resides in the PHY.
The capture thread continually captures blocks of 2048
baseband samples, converts the fixed point values into
floating point samples, places them into a capture buffer,
and then notifies the receiver thread that new samples are
available. The receiver thread listens to the baseband
samples in this buffer until it detects a packet, i.e.
performing a packet detection algorithm such as energy

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

detection or the Schmidl & Cox method [7]. Once the entire
detected waveform has been captured, the receiver thread
attempts to decode the incoming packet. After successfully
decoding a packet, the receiver thread sends it along with
physical layer side information upstream to the MAC/PHY
interface. The receiver thread also notifies the capture thread
whenever it is finished processing a set of samples so that
the capture thread can remove these samples from the buffer.
Finally, the MAC packet and side information are delivered
to the MAC layer.
 Note, the capture and receiver threads in Hydra have a
pseudo-producer-consumer relationship with regard to their
shared buffer. That is, although the receiver thread reads
samples out of the buffer, the capture thread manages all
writing to and consuming from this buffer. This eliminates
the need for any mechanisms to ensure mutually exclusive
buffer access, as in a traditional producer-consumer. The
concurrent operation of these threads requires a shared
signaling semaphore (to indicate when new samples arrive)
and an internal queue for control messages from the receiver
thread to the capture thread (to indicate when samples are no
longer needed and can be consumed). This internal
semaphore and queue were omitted from the block diagram
in Figure 2.

2.3.2. Multi-threaded Performance
In order to leverage a multi-threaded architecture such as
this, it important to understand where there are opportunities
to exploit concurrency or parallelism. This parallelism can
be utilized by multi-core processors to significantly improve
the performance of software-defined radios. For example, in
the upstream or receive side of the physical layer, the
capture operation can occur in parallel with physical layer
detection and decoding. A general purpose processor with
four cores could allow the MAC/routing layer, the
receive/transmit processing, and the capture operation to be
performed on separate cores while still having one core
remaining for general usage.
 Additional improvement in performance can be
achieved by analyzing the processing burden of various
parts of the physical layer. For example, the capture thread
is memory intensive, but does not require much processing.

The decoding algorithm however, is very processing
intensive. To reduce the processing burden of a core running
the physical layer receive processing, the detection
algorithm could be offloaded to the core that is running the
capture thread. Further extension of this idea could involve
dissecting the physical layer decoding process shown in
Figure 3 into pieces running on parallel cores (e.g. running
channel estimation/equalization and Viterbi decoding on
separate cores).
 The operation of the downstream or transmit side of the
physical layer is sequential and does not present much
opportunity for parallelism. The reason for introducing
threads in situations where there is no parallelism of which
to take advantage is that it decouples the operation of
logically separate parts of the architecture. This improves
the overall modularity of the system at the cost of some
additional context switching overhead.

3. CHALLENGES

The previous section described the capabilities and
software-architecture of Hydra. In this section, we examine
some of the engineering tradeoffs faced in the design of that
system and some practical issues associated with the
limitations of the RF front-end.

3.1. Capture Delay vs. Packet Detection Overhead

As discussed previously, in the capture operation the radio
interface captures blocks of samples delivered by the USRP
over the USB interface. The receiver then processes these
incoming samples to detect if a packet has been received.
Consider the capture of N samples, where B represents the
number of samples in a block. The delay in capturing a
single block of B samples can be characterized as

 , (1)

where is the duration of a sample, is a random
delay associated with the USB latency, and ()Bκ is the
overhead of memory access (i.e. buffer copy operations).
Since we assume that ()Bκ is ()BO , the capture delay for a

() USBscapture TBBD θκ +⋅+=

sT USBθ

Fig. 3: (a) Packet detection and (b) decoding in MIMO-OFDM receiver of Hydra.

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

block of B sample is also ()BO . The processing overhead
incurred for packet detection can be characterized as

 , (2)

where is the number of blocks, µ is the
processing overhead per sample for the packet detection
algorithm, and is a random delay due to context
switching overhead. Equation 2 shows that is inversely
proportional to block size, i.e. . This implies that as
we reduce block size B to reduce capture delay, packet
detection overhead will increase. If packet detection time B
exceeds , the system will no longer be able to
maintain real time operation. This imposes a bandwidth
constraint on the system.

3.2. Block vs. Stream Processing

Figure 3 shows a block diagram of the MIMO-OFDM
receiver in Hydra. As with most physical layer decoding, the
operation of this receiver can be thought of as a processing
pipeline of M stages acting on an endless stream of
baseband samples. The processing requirements of these
stages are not uniform. For example, a linear channel
equalizer consumes fewer resources than a Viterbi decoder.
We refer to this pipeline approach as stream processing.
Hardware implementation (i.e. in silicon or FPGAs) of this
processing model would naturally have a high degree of
concurrency. At each time slice in the operation of such an
implementation, M processing stages would be working on
M different slices of the input stream. Similar parallelism
could also be achieved in a software-defined radio, but
would come at the cost of increased context switching
overhead.
 Another approach to this processing problem would be
to serially perform each of the M stages of the pipeline on
a large block of input slices (i.e. only one stage is active at
any given time). We refer to this approach as block
processing. A software implementation on a general purpose
processor of the receiver structure of Figure 3 would
naturally operate in such a fashion. Hydra uses the block (or
sequential) processing model. To compare the performance
of parallel and sequential processing architectures in a
software-defined radio, we consider a PHY decoding
algorithm with M processing stages. The time to process
N input slices in a pipeline or stream processing SDR
implementation can be approximated as

 , (3)

where we assume N >> M , is the processing time for
the slowest stage of the processing pipeline, is the

average cost of a context switch, and p is the number
processor cores in the general purpose processor.
 In a sequential or block processing model, where only
one stage is active at any given time, the time to process N
samples is approximately

 , (4)

where is the average time of a processing stage and
is an efficiency factor that accounts for any speed up in
processing that occurs when p processor cores work together
(i.e.).
 Assuming that , then block
processing will be more efficient than stream processing
when , or equivalently when

 (5)

 . (6)

When N is sufficiently large, the upper bounds of Equations
(5) and (6) are approximately equal. This implies that, as a
general rule of thumb, whenever there exists a processing
stage that is significantly slower than the average stage, i.e.
the ratio is large, then block processing will be
more efficient than stream processing.
 Note, stream processing also benefits from the ability to
potentially overlap capture and receive processing, although
this was not considered in this analysis. It should also be
noted that we are primarily concerned with the design of
software-defined packet radios, which will only be decoding
waveforms of finite sizes. This fact might further motivate
the use of the simpler block processing model.

3.3. Practical Limitations of the Radio

In the development of Hydra many of the following
limitations of the RF front-end impacted system
performance. These features put practical constraints on the
achievable performance of Hydra and how the testbed can
be utilized in wireless experiments.

3.3.1. Digital Transmit Interpolation Filter
As mentioned previously, one of the tasks of the RF front-
end is to interpolate (or upsample) the baseband waveform
created by the physical layer. Part of this interpolation
process is the application of an anti-imaging filter [8].
Digital interpolation of a signal produces frequency
modulated copies or images of the original signal. An ideal
digital interpolation filter would reject all of these images
while allowing the original signal to pass without any
distortion. In general, the design of an ideal filter requires a
large amount of memory. Because of space limitations on its

�
�

�
�
�

� +=
B

N csθµ

()csbpd BNT θµ +⋅=

BNN b /=

csθ
pdT

()1−BO

sTN ⋅

�
�
�

�
�
�
�

� ⋅+≈
p

M
NT parallel

θτ max

maxτ
θ

()θτβ +⋅≈ avgpserial NMT

avgτ
pβ

11 ≤<−
pp β

()pavg pβθττ ≥≥max

parallelserial TT <

θθτβ

τ

+�
�
��

�
� −⋅

<

pN

N
M

avgp

max

pavgp
θτβ

τ

−
< max

avgττ /max

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Fig. 4: Frequency response of transmit interpolation filter on

USRP measured at 2.4 GHz. Interpolation factor is 64.

FPGA, the USRP’s digital transmit filter has a non-ideal
frequency response. As shown in Figure 4, the frequency
response of the transmitted signal after filtering drops as
much as 16 dB. This significant loss in signal strength can
adversely impact the performance of many communication
systems.
 In Hydra, the physical layer uses orthogonal frequency
division multiplexing (OFDM) modulation. Please refer to
[9] for a detailed discussion of OFDM and the challenges in
multicarrier systems. This modulation scheme divides the
frequency spectrum into a set of parallel channels and then
loads complex symbols onto each subchannel. In the context
of OFDM, the digital transmit filter of the USRP causes the
amplitude of the attenuated outer subchannels to be up to six
times smaller than that of the inner subchannels. These
lower fidelity subchannels bring down the average quality of
the signal.
 To illustrate this, consider an OFDM system in which
the subchannels are loaded with quadrature amplitude
modulated (QAM) signals. Figure 5 shows the superimposed
QAM constellations of two signals that have passed through
an additive white Gaussian noise (AWGN) channel with
noise power 302 −=σ dB. One of the constellations
represents the equalized signal constellation of an OFDM
waveform transmitted with the transmit interpolation filter in
Figure 4, while the other represents one that was transmitted
with an ideal filter. The inner shaded area at each
constellation point depicts the normal region into which
noise perturbed signals might fall, i.e. with an ideal filter.
The outer area at each constellation point indicates the
expanded area into which these points may now fall when
this transmit filter is used. This example demonstrates how
the average signal quality is degraded because of the
frequency response of the digital transmit filter.
 One method to overcome the frequency selectivity of
this filter is to apply a digital filter to compensate for the
shape of the output frequency response. This method is not
advisable as it may lead to overflow in the representation of

Fig. 5: Superimposed constellations of equalized signal in AWGN

(SNR= 30 dB) with and without transmit filter.

the outgoing signal, a phenomenon sometimes referred to as
saturation or clipping. Another method, which is used in
Hydra, is to interpolate the signal by a factor of two with a
high quality filter prior to sending it to the RF front-end.
This causes the signal to be isolated to only a fraction of the
bandwidth of the transmit filter, which reduces the power
loss of the outer subchannels to only 4− dB.

3.3.2. Non-ideal Hardware
As discussed previously, the USRP provides the ability to
modify the carrier frequency of the radio over a large
frequency band (generally over a few hundred megahertz).
This frequency agility does not, however, imply that all
carrier frequencies behave the same. In fact, the frequency
response of the analog RF front-end of the USRP is
nonuniform, as shown in Figure 6. Similarly, antennas
designed to operate in a particular frequency band may not
provide uniform performance over all frequencies in the
band. The characteristics of an antenna provide a
measure of the reflective properties of an antenna as a
function of frequency. Consider the measurements
for an off the shelf antenna sold for operation in the 2.4 GHz
ISM band, shown in Figure 7. This plot shows that a good
operating range for this antenna is 2.41–2.43 GHz, i.e.
where the power lost through the antenna is less than 1%.
These nonuniformities cause certain frequencies to be better
suited for operation. It is therefore important to profile the
frequency response of both the RF front-end and antennas
used in any wireless device. Based on the measurements in
Figures 6 and 7, an ideal operating range for Hydra is
between 2.41–2.43 GHz.

3.3.3. USB Interface
As previously mentioned, the USRP connects to the host
machine over a USB 2.0 connection. This USB interface has
a theoretical bandwidth of 480 Mbps. Since each complex
sample is composed of 4 bytes, this means that the USB
interface can support approximately 8 Msamples per second.

11S

11S

Proceedings of the SDR ’08 Technical Conference and Product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Fig. 6: Maximum transmit power of Flex 2400 daughterboard
within linear range of USRP. Least attenuation occurs at 2.4 GHz.

Fig. 7: S11 measurements for a 2.4 GHz antenna.

Since this is divided among two antennas, in theory the
USRP could support a 2 antenna MIMO stream operating
with up to 4 MHz of bandwidth. Although, in practice the
USB operates at approximately half of its theoretical limit,
thus the USRP can reliably provide MIMO samples at a rate
of 2 Msamples/sec. Higher bandwidth connections are being
explored for future versions of the hardware.
 Because of the bandwidth limitations introduced by the
USB interface and from packet processing overhead, the
throughput of the MAC level in Hydra is at least an order of
magnitude slower than that of normal IEEE 802.11.
Although this software-defined approach in Hydra incurs the
cost of reduced performance, it has the benefits of a greater
degree of flexibility, reconfigurability, and
monitoring/probing functionality which other higher
performance platforms might lack. These are some of the
major benefits to researchers employing software-defined
radios for wireless experimentation.

4. CONCLUSION

This paper was motivated by the challenges and problems
faced in the development of Hydra. It described the physical
layer architecture of Hydra, which motivated a discussion of

many general issues pertaining to the architecture and design
of software-defined radios. Finally, there was a discussion of
some of the limitations of the RF front-end and their impact
on system performance. We conclude with a design feature
of Hydra which motivates some concerns to be addressed in
future work.
 The capture and process approach that Hydra employs
in processing received signals provides some architectural
benefits, but it also introduces some unique timing issues in
the MAC layer. One of these issues pertains to the definition
of carrier sense. Because of the delay introduced in
buffering and analyzing captured data, anytime a carrier
sense decision is made it may quickly become out of date.
For example, a typical transmitted packet in Hydra can be
around 2500 samples. When using a block size of 2048
samples, this means that by the time the entire packet has
been captured, any carrier sense decision made on the
captured data may already be out of date. This is an example
which illustrates some of the timing problems that are
introduced in the MAC layer when using a completely
software-defined protocol architecture. Such problems
motivate the need to rethink definitions of carrier sense and
other notions of channel state at the MAC level. We mention
this as a final thought that might motivate future work on the
architecture of softwaredefined radios.

REFERENCES

[1] K. Mandke, S.-H. Choi, G. Kim, R. Grant, R. C. Daniels, W.

Kim, S. M. Nettles, and R. W. H. Jr., “Early Results on Hydra: A
Flexible MAC/PHY Multihop Testbed,” in Proceedings of the
65th IEEE Vehicular Technology Conference, Apr. 2007, pp.
1896–1900.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Trans. Comput. Syst., vol. 18,
no. 3, pp. 263–297, 2000.

[3] “GNU software radio.” [Online]. Available:
http://gnuradio.org/trac

[4] “IT++.” [Online]. Available: http://itpp.sourceforge.net/
[5] Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications - Draft 2.0: Enhancements for
Higher Throughput, Part 11 standard ed., IEEE 802.11n Working
Group, February 2007.

[6] “GNU radio: universal software radio peripheral radio.” [Online].
Available: http://gnuradio.org/trac/wiki/USRP

[7] F. Wu and M. A. Abu-Rgheff, “Time and frequency
synchronization techniques for ofdm systems operating in
gaussian and fading channels: A tutorial,” in The 8th Annual
Postgraduate Symposium on The Convergence of
Telecommunications, Networking and Broadcasting (PGNET),
June 2007.

[8] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time
Signal Processing (2nd Edition). Prentice Hall, February 1999.

[9] A. Goldsmith, Wireless Communications. New York, NY, USA:
Cambridge University Press, 2005.

	Home
	Papers By Alpha
	Papers By Session

