
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

DEVELOPING A RAPID PROTOTYPING METHOD USING A

MATLAB/SIMULINK/FPGA DEVELOPMENT ENVIRONMENT TO ENABLE
IMPORTING LEGACY CODE

Okhtay Azarmanesh (The Pennsylvania State University, Pennsylvania, USA;

okhtay@psu.edu); and Sven G. Bilén (The Pennsylvania State University, Pennsylvania,
USA, sbilen@psu.edu)

ABSTRACT

A rapid prototyping procedure is being developed in this
project. As an example, a GMSK demodulator is simulated
in a SIMULINK environment and the result is then being
programmed in FPGA using Xilinx toolbox’s block sets in
SIMULINK. This method will enable us to easily develop
and test different systems before implementing them
completely. It will enable us to study the feasibility of a
new SDR system on the hardware and, thus, it will
considerably reduce the process time of testing new systems
and waveforms on FPGA. This is particularly important
when we wish to use legacy codes in a new system and be
able to test the system as quickly and efficiently as possible.

1. INTRODUCTION

A conventional design process typically includes four
phases, each of which contains certain limitations. These
phases and their limitations are:

1. Requirements and specifications capture phase:
prevents rapid iteration. These specifications are
usually voluminous, making it hard to change a
requirement without affecting the whole design.

2. Design phase: it is usually incomplete and cannot
predict all the problems in a system and is an
expensive process.

3. Implementation phase: human error can affect it
significantly.

4. Test and verification phase: by this step, if an error
is found it will be too late, meaning that it requires
going back and doing the some or all of the previous
steps again, raising the expenses for the whole
process.

 A model-based design process brings a number of
improvements to the process of designing a system. Here
are the improvements in each step [1]:

1. Specifications become unambiguous, supplemented
by text. There is one set of models for all the teams
involved. The whole system including its
environment can be modeled and an early validation
and test can be developed in this stage.

2. Design exploration and optimization become
systematic. For this reason, flaws can be found

before implementation. Bit- and cycle-accurate
simulations of hardware-specific components are
possible in this stage. There is an incremental
design process from system level to implementation.

3. For implementation, the code is automatically
generated, eliminating manual coding errors. This
simplifies code portability from one hardware
platform to another. This also bridges knowledge
between the software and hardware domains.

4. There is continuous test and verification throughout
the entire process, which allows for the detection of
errors early in the development process and reduces
dependency on physical prototypes. Test and
verification ensures that the implementation will
work the first time. Test suites also can be reused
across the development stages.

 Most SDR development organizations require
incorporation of legacy code (i.e., existing code) into
portions of their new applications. Legacy code often
represents significant prior investment in design and test, so
the ability to reuse is important. Examples of legacy code
include math utilities, filters, table lookups, and low-level
device drivers. Legacy code integration, however, is a
complex problem where no single solution works all cases.
Here, we deal with one aspect of the process: importing data
into the Simulink models.
 One can import legacy code into Simulink for model
simulation and code generation. The generated code calls
the imported legacy code based on its function call signature
and data attributes. If most of the application comprises
legacy code, however, it may be easier to export the
generated code into the legacy application. (For example,
you can apply a delta change to a large code base, based on
the new algorithm that you modeled in Simulink).

1.1. Simulink and Model-based Design

Simulink is a very convenient environment for modeling,
simulating, and implementing dynamic and embedded
systems. Its advantages include the ability to simulate
linear, nonlinear, discrete-time, continuous-time, and multi-
rate systems. It also has an open architecture for integrating
models from other tools. Simulink facilitates applications in

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

controls, signal processing, communications, and other
systems engineering areas [1].
 In model-based design using Simulink, a number of
potential advantages are evident. The overall process can be
summarized as shown in Figure1Error! Reference source
not found.. To begin, the design specifications are
transformed into Simulink blocks and any C-code may be
integrated into Simulink either directly or through
MATLAB. There are several methods provided for within
Simulink/MATLAB for enabling this integration:

1. S-function API: Real-time workshop in MATLAB.
According to MATLAB’s definition, an S-function
is the computer language description of a Simulink
block. They can be written in MATLAB, C, C++,
FORTRAN, or Ada. They allow you to create your
own blocks in Simulink;

2. S-function builder: Simulink; and
3. Legacy code tool (script-based): Real-time

workshop in MATLAB. In Simulink 6, Model
Explorer provides a Custom (legacy) code dialog
that lets you import functions within generated code.
Choosing Real-Time Workshop in Model Explorer
will direct you to Custom Code dialog. This dialog
enables placing legacy code in

a. Source file
b. Header file
c. Initialize function
d. Terminate function

 After this process comes the implementation of the
code in the hardware. The hardware used in this effort is a
Lyrtech containing a Xilinx Virtex-2 FPGA and a TI DSP.
The issue here is how to divide the tasks implemented in the
code between FPGA and DSP. In other words, how do we
best take advantage of the strength of each of them in our
system?

1.2. DSP vs. FPGA

Although today FPGAs can handle many of the tasks
traditionally done by DSPs, there are still a few factors to be
considered. One consideration, for example, is the amount
of memory an FPGA has access to. The FPGAs available
today have some amount of RAM on-board, but still this
memory is not comparable to the large external SDRAM
that is normally available to a DSP. In spite of all the tools

existing today for simulation, a DSP code will always need
more memory sooner or later. The new FPGA models have
used embedded SDRAM to try solving this problem.
 Another consideration is the difficulty in making code
changes. While FPGA code can be reconfigured for new
modes of operation and feature enhancements, having the
system implemented in both the DSP and FPGA generally
makes it easier to reconfigure the design. This is due to the
fact that the DSP is easily reprogrammable, but making
changes on the FPGA can have a profound impact on gate
and logic cell topology [4].
 By way of example for this paper, model-based design
has been put into test by designing a GMSK-based system.
In Section 2 we explain how the design works. Section 3
discusses the issues encountered in implementing the
design. The results from the simulations so far are
presented in Section 4. Section 5 presents concluding
remarks.

2. DESIGNING GMSK
MODULATOR/DEMODULATOR

The model developed in Simulink includes a GMSK
(Gaussian minimum shift keying) modulator and
demodulator [2]. The modulator and demodulator are based
on the models used in GSM (global system for mobile
communications) systems. Figure 2 shows a block diagram
of a complex equivalent baseband model of a GMSK
modulator/demodulator [2]. Figure 3 shows the details of
the completed model.
 In a GSM system, there are 124 radio channels. Each
channel contains 8 user channels, meaning that using
TDMA (time-division multiple access) frames, the radio
channel is divided into 8 time slots. In each time slot a burst
of data as well as a training sequence can be sent. This
training sequence can be used to estimate the channel
impulse response. The burst is sent over a 900-MHz carrier
using binary GMSK. The bandwidth is normalized so that
BT = 0.3, where B is the bandwidth parameter, which
represents the −3-dB bandwidth of the Gaussian pulse, and
T is the symbol duration [2]. In this case where BT = 0.3,
the GMSK pulse may be truncated at |ݐ| ൌ 1.5ܶ with
relatively small error incurred for t > 1.5T [3]. The pulse
shape, g(t), for GMSK is

Figure 1. Diagram depicting a model-based design

C- Code

Design Specs SIMULINK Xilinx blocks
in Simulink

Hardware
(FPGA, DSP…)

System
generator

MATLAB

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

݃ሺݐሻ ൌ ቐܳ
ܤߨ2 ቀݐ െ ܶ

2ቁ

ሺln 2ሻ
ଵ
ଶ

 െ ܳ
ܤߨ2 ቀݐ ܶ

2ቁ

ሺln 2ሻ
ଵ
ଶ

ቑ

with

ܳሺݐሻ ൌ න
1

ߨ2√
݁ି

௫మ
ଶ ݐ݀

ஶ

௧

 In this design, the complex baseband-equivalent system
has been shown and the conversion from pass-band to
complex baseband-equivalent model is discussed in
Sections 3 and Figure 7.
 In the modulator, the data bits are pre-coded
differentially, which makes the modulation process
Differential GMSK (DGMSK). Differential coding means
that a transition from one amplitude level to another occurs
only when a 1 is transmitted. The encoding operation is
described by the relation [3]

࢈ ൌ ࢇ ْ ିࢇ

where
{ak} is the binary information sequence into the

encoder,
{bk} is the output sequence of the encoder, and
۩ denotes addition modulo 2.

Some of the advantages of a differential encoder are (a)
reliability close to that of theoretical limits for AWGN, and
(b) improved resistance to pulsed noise and both continuous
and time-varying narrow-band interference.
 The next part is modulation. GMSK modulation is a
continuous phase-modulation technique. Its prominent
characteristics are its constant envelope (like all other phase
modulations) and narrow bandwidth. It also deliberately
introduces controlled ISI (inter-symbol interference) to
improve spectral efficiency. The information is carried by
the phase of the transmitted signal and the total phase signal
is a linear function of the data sequence. We can
approximate the baseband GMSK signal with a linear
modulation approximation. Making use of the linear
approximation, the received signal sampled at the symbol
rate may be represented as

ݎ ൌ ሺ݆ሻ୬݄݀ି ݊

ୀ

where
{dn} is the original binary (±1) data sequence,
{hn} represents the complex overall impulse response

of the channel,
{nk} is AWGN (additive white Gaussian noise) with

variance N0,
L + 1 is the span of the channel response, and
j √െ1 .

 After the channel comes the demodulator part of the
system. Due to the differential pre-coding performed at the
transmitter, direct restoration of the original data sequence

{dn} from the in-phase component of the received signal is
possible. This can be done by a constant phase rotation of
π/2 on Equation (2), which corresponds to multiplication by
ሺെ݆ሻ. This multiplication operation effectively performs
differential decoding, so that after matched filtering the in-
phase components will contain the information needed to
restore the transmitted sequence. Thus, we may ignore the
quadrature component and subsequently process only the
real part of the received signal, treating it as a BPSK-type
(binary phase-shift keying) signal. Therefore, the detector
itself can be a real and computationally much simpler than
its complex counter-part. This is known as a serial receiver
as opposed to a parallel (in-phase and quadrature) receiver.
 Since the coherence times of the mobile radio channels
in a GSM system typically are much greater than the
duration of a TDMA time slot, these channels can be
characterized as slowly time-varying (flat fading), so the
channel can be considered fixed during the burst period and,
consequently, we only need to compute the channel estimate
only once per burst. The estimation of the channel basically
is cross correlating the middle part of the received burst
after phase rotation. The position of the correlation peak is
utilized for burst synchronization. This channel estimate is
then used by the matched filter. The optimal receiver for
this system consists of a continuous-time filter matched to
the overall channel and then a symbol-space sampler and an
MLSE (maximum likelihood sequence estimation) detector.
The combination of the phase rotation and matched filtering
performed on the received signal produces an output whose
real component is used for estimating the data sequence
{dn}. For designing the optimal receiver, we need a
continuous-time filter that is matched to the overall channel,
followed by a symbol-space sampler and an MLSE detector.
In our design, a discrete-time matched filter is used, being
adaptively set up once per burst. The impulse response of
such a filter is the time-reversed complex conjugate of the
impulse response of the channel, which is expected.
 We assume that the channel response spans in L + 1
symbol intervals, making L + 1 the largest number of
symbols affected by the ISI. The simplified recursive
metric that is maximized by the maximum likelihood
estimate of data symbols {dn} is

ሺ݀ሻܮ ൌ ିଵሺ݀ିଵሻܮ Re ൝ ݀ ൭ݕ െ ݀ିݔ

ୀଵ

൱ൡ

 This suggests the use of Viterbi algorithm. Since the
discrete-time impulse response estimate made available by
channel estimator has length L + 1, the number of states in
the Viterbi algorithm is 2L. In this case, the complexity of
MLSE grows exponentially with L.

2.1. Bit Error Rate

After the completion of the system, a number of simulations
were performed to obtain the bit-error rate (BER) of the

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

system with respect to the amount of noise present in the
AWGN channel. Simulation was performed with the signal-
to-noise ratio (SNR) ranging from 4 dB to 26 dB and the
result can be seen in Figure 6. The theoretical BER in
AWGN channels for coherently detected GMSK is given
approximately by [7]

BER ൌ ଵଶ erfcቌඨߙ ൬
ܧ
ܰ
൰ቍ

and for non-coherently detected GMSK is

BER ൌ ଵଶ exp൭െߙ ൬
ܧ
ܰ
൰൱

where
α is a constant related to BT and for BT = 0.3, it is

~0.68,
erfc corresponds to the error function, and
Eb is the energy of the signal and N0 is the energy of

the noise.

3. DESIGNING USING XILINX BLOCKS

In this part, the model developed in the previous step is built
again using the Xilinx toolbox.

3.1. Band-pass to Complex Base-band Conversion

The design of the models above is done assuming that we
are dealing with complex base-band signals. To achieve
this signal, however, we have to use a quadrature
demodulator after our antenna to extract the complex
envelope. We can write the received band pass waveform
as follows

ሻݐሺݎ ൌ ሻݐூሺݎ̃ cos ߨ2 ݂ݐ െ ሻݐொሺݎ̃ sin ߨ2 ݂ݐ

where we wish to have the following

ሻݐூሺݎ̃ ൌ ሾݎሺݐሻ · 2 cos ߨ2 ݂ݐሿ ૠ

ሻݐொሺݎ̃ ൌ ሾെݎሺݐሻ · 2 sin ߨ2 ݂ݐሿ ૡ

where “LP” indicates the low-pass filter to reject the double
frequency term after demodulation.
 For designing the filters, an already-designed filter was
imported into Simulink using Simulink’s Legacy Code tools
to test the use of legacy code in our design. The in-phase
and quadrature components of the received signals are being
fed into a Viterbi decoder. For this part, the Viterbi decoder
block that is present in the Xilinx block set has been used.
The designed model is shown in Figure 4.

4. SIMULATION RESULTS

As mentioned earlier, this project has used MATLAB and
Simulink to develop this method. The versions being used

have been: MATLAB R14 (ver. 7.0.1); Simulink ver. 6.1
(R14SP1); Xilinx ISE 6.3i; Xilinx Sys Gen 6.3. We first
designed the model in the Simulink environment and, after
achieving the desired results, built the same model using the
Xilinx block sets. Then, we used a Lyrtech SignalWAVe
board as the hardware target to test the system with real
signals.

Figure 5 shows the output of the modulator and the received
signal on the demodulator. Comparing the data being sent
in the modulator with the data that is being retrieved in the
demodulator we have calculated the BER, which can be
seen in Figure 6. In the BER curves in Figure 6, the
theoretical limit is very different from that of our system,
which is due to assumption of coherent detection in the
theoretical BER calculations.
 Figure 7 shows the method used for transforming the
pass band signal in a phase-shift block to extract the in-
phase and quadrature components. The phase rotation for
transferring the data to the in-phase component is also done
in this block.

5. CONCLUSION

It is been shown that a rapid prototyping system is an
excellent method to deal with challenging system design
problems. A model-based design flow reduces the
complexity of the design considerably and makes it easy to
perform simulations and modify the design based on
simulation results. For future work, this project is going to
further develop and test the model based design in real-time
scenarios and with more complex systems.

ACKNOWLEDGMENT

This work was performed in part under a contract with
Raytheon Intelligence and Information Systems, State
College, PA.

REFERENCES

[1] E. Mayo and J. Bryan, “Model-Based Design of

Communication Systems,” Mathworks Presentation, 2008.
[2] B. Bjerke and J. Proakis, “A Comparison of GSM Receivers

for Fading Multipath Channels with Adjacent- and Co-
Channel Interference,” IEEE J. on Selected Areas in Comm.,
Vol. 18, No. 11, pp. 2211–2219, November 2000.

[3] J. Proakis, Digital Communications, McGraw–Hill, 2001.
[4] “FPGAs for Software Radios,” Pentek, Inc.,

www.pentek.com.
[5] G.L. Stuber, Principles of Mobile Communications, Kluwer

Academic Publishers, 2001.
[6] Matlab Help function, version 7.0.1.
[7] S. Elnoubi et al., “BER Performance of GMSK in Nakagami

Fading Channels,” 21st National Radio Science Conference
(NRSC2004), 2004.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 3. SIMULINK model of a GMSK modulator/demodulator

Figure 4. Demodulator built using Xilinx block sets

Bits {dk} GMSK
modulator

Channel

Phase Rotation

Channel
Estimation

Differential
precoding

Detector Bits {d~
k}

n(t)
Matched filter

Figure 2. Complex equivalent baseband system model

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 5. Left side shows the input to the channel and right side is the output feed to the demodulator

Figure 6. (a) BER vs SNR in our GMSK demodulator, and (b) part of BER vs. SNR being compared to a theoretical limit in an AWGN

channel

 Figure 7. Transformation between band-pass and base-band components

LPF

LPF

90° 90°

√2 cosሺ2ߨ ݂ݐሻ √2 cosሺ2ߨ ݂ݐሻ

rI(t)

rQ(t)

r(t)

 ሻݐூሺݎ̃

 ሻݐொሺݎ̃

	Home
	Papers By Alpha
	Papers By Session

