

UWB Wave Radio

Presented by Mohamed AlJerjawi

Supervised by Prof. Chahé Nerguizian, Prof. Renato G. Bosisio

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Outline

- Previous architectures of Six-port Modulator/Demodulator
- New architecture of Six-port Modulator/Demodulator
- Simulated test bench
 - Monocycle pulse generator
 - Six-port Modulator/Demodulator
 - QPSK data generator
 - Power detectors
 - Detection
- System Parameters
- Results
- Conclusion

Modulator/Demodulator Architectures

Previous Six-port

• Modulator/Demodulator architectures based on Power Dividers(D), Hybrid Couplers(Q) and a Phase Shifter()

New Modulator/Demodulator

Architecture

• New modulator/demodulator architecture based on Power Dividers(PD), Power Combiners(PC) and Phase Shifters(PS)

Poly-Grames Research Center- École Polytechnique de Montreal

Test Bench of UWB Wave Radio System

• Simulation with ADS

Monocycle Pulse Generator

• Following UWB standard (BW_{min}=500MHz)

		. <u>.</u> .																	Mi	xer											
		. 2 1	3	TRA															MI	X2 ·											
		UH	Ø																Sig	deBar	nd=B	OTH									
		Т	ran																Im	ageR	ej=										
•	•	T	an1						•	•					·				ĹĊ	_Rej1	1=			•			•	• •	·	·	
·	·	Ś	topT	ïme=	100 r	isec		·	•	•	•	• •	•	•	·	• •			' LO	_Rej2	<u>2</u> ≐ `			·				• •	•		·
·		. M	axTi	meSt	iep≐1	00 ps	sec			·	•	· ·		•		• •	·	·	RF	-Rej	=	•		•	·		·	· ·		•	·
		· · O	rder	[1]=3	1 - E			•		·	•	· ·				• •	·	·	Co	onvGa	in=dl	opolar	(0,0)		·		·	· ·	•	·	·
				•															. S1	1=po	lar(0,	0).									
																			_ S2	2=po	lar(0,	0) _.									
																			. 53	3=0											
•	•	v1		D			v2	. Г	Ł			. v	3			8		· v	4		\sim		v6		18	$\overline{\chi}$		v7	~	~	·
1				DX	F(X)				ج.						77	टा					\sim				77	\sim			<u> </u>	2	
· ·	•		•	Diff	erenti	iator	• •	Att	tenu	ator		• •	•	•	IP	E Bu	tterw	orth			¥.		• •	•	B	DE B	utter	worth	Po	ort	•
· -			•	DIF	1	iaioi	• •	ÁT	TFN	N1	•	· ·		•	ΙP	F1					v5	•	• •	•	B		, and a	ionu	P1	•	·
1	•	VtPulse		Gair	i=1.			Lo	ss=	175	dΒ		•		Fpa	ass=ï	0.49	GHz							Fc	ente	r=3.	5 [°] GHz	NU S	um=1	١.
1		SRC3		Rret	f =50 .	Ohm	r ·	VS	SWF	R=1					Ap	ass=:	3 dB				1	√_1To	ne ·		· B\	Npas	ss=2	9 GH	z ·		
٦.)	-) '	Vlow=0 V													Fst	op=0	.5 G	Hz		. 1	T :	SRC2			Ap	ass=	=3·dE	3			
X	~	Vhigh=1	۷.												Ast	op=2	0 dB			($\overline{\mathbf{v}}$	√=1 V			. B\	Nsto	p=3	GHz			
_	.	Delay=0	nsec	;																	$\gamma_{!}$	Freq=3	3.5 G	Hz	As	stop=	20 d	B _.			
		Edge=line	ear																	-	· I ·	SaveC	urrer	nt=ye	es						
		Rise=0.1	nse	C					·						·						I			•			•		·	·	·
	•	Fall=0.1 r	ISec	•		·		•	·	·	•	• •			·	• •		·	• •	·								• •		·	•
1	·	VVIdth=1.	8 NS	ec	• •	·		•	·	·	•	• •		·	·	• •		·	• •		1			·				• •	·	·	·
		Period=5	บทร	ec																											
	F (τ · ·				·								•	·	• •	•	•			=						•	• •	•		

• Composed of: PD, PC, TL(Tx lines) and PS

QPSK Data Generator

• Generates 2 independent data streams: In-phase and Quadrature

Power Detectors

• Mathematical expression that reflects the RF power detector operation

• De-mapping from power levels to modulation states

System Parameters

Parameter	Value
Generator Pulse Shape	Gaussian Monocycle
Bandwidth	1 GHz (3.0-4.0 GHz)
Carrier Frequency (f_c)	3.5 GHz
Data rate	20Mbps
Modulation Type	QPSK
Channel Model	AWGN

• Monocycle Pulse Generator

Proceeding of the SDR OPTEPY-ICal Conference and Brody t Exemption- Devipter P2008 to British P2008 to Briti

• Modulator output for a single tone input for different modulation states

Proceeding of the SDR OPTOPUNICIT Confees Restanding Exercision - Devision P2008 SCR FITUR All Right Restricted

• Demodulator output for a specific modulation state with a single tone input

Proceeding of the SDR OPTOPHy Car Conference and Brody to Exemption - Deviate P2008 Conference and Brong Research and Stranger and Stra

• Power detection of UWB wave radio system for a specific modulation state

• BER for Six-port UWB demodulator

• Six-port modulation states table

Modulation State	Port 3	Port4	Port 5	Port 6	Δ	Ι	Q
0	Ο	Ο	Ο	S	00	0	0
1	Ο	0	S	Ο	90 ⁰	0	1
2	Ο	S	Ο	Ο	1800	1	0
3	S	0	Ο	Ο	2700	1	1

• New Six-port UWB modulator/demodulator architecture was tested and verified using ADS simulations.

• The results show that Six-port modulator/demodulator works properly irrespective of the input UWB signal type.

• A new modulation table has been constructed for the new Six-port modulator/demodulator architecture.

• When used as a demodulator, the Six-port has proven comparable BER results to any other receiver.

References

[1] Ji Li, R. G. Bosisio, and Ke Wu, "Computer and Measurement Simulation of a New Digital Receiver," *IEEE Trans. On Microwave Theory and Techniques, vol. 43, no. 12, pp. 2766 - 2772, 1995.*

[2] R.G. Bosisio, Y.Y. Zhao, X.Y. Xu, S. Abielmona, E. Moldovan, Y.S Xu, M. Bozzi, S.O.Tatu , J.F.Frigon, C. Caloz, and K. Wu., "New Wave Radio," *IEEE Microwave Magazine*, pp 91-100, Feb. 2008.

[3] R. Bosisio, Y. Zhao, X. Xu, S. Abielmona, E. Moldovan, Y. Xu, M. Bozzi, S. Tatu, C. Nerguizian, J. Frigon, C. Caloz, K. Wu, "New-Wave Radio," *IEEE Microwave Magazine, vol.* 9, pp. 89 - 100, Feb. 2008.

[4] X. Xu, S. O. Tatu, E. Moldovan, R. G. Bosisio, and Ke Wu, "Analysis of FDSS Ultra-Wideband Six-port Receiver," in *Proc. Of IEEE RAWCON Conf., pp. 87 - 90, Boston, 2002.*[5] Y. Zhao, C. Viereck, J. F. Frigon, R. G. Bosisio, and K. Wu, "Direct Quadrature Phase

Shift Keying Modulator using Six-port Technology," *Electronics Letters, vol. 41, no. 21, pp. 1180 - 1181, 2005.*

[6] Y.Y. Zhao, J.F. Frigon, K. Wu, and R.G. Bosisio, "Multi Six-port Impulse Radio for Ultra-Wideband," *IEEE Trans. Microwave Theory Tech., vol. 54, no. 4, pp. 1707 – 1712, Apr.* 2006.