
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

SOFTWARE DEFINED RADIO ARCHITECTURES EVALUATION

Álvaro Palomo Navarro (NUI Maynooth, Co. Kildare, Ireland, apalomo@eeng.nuim.ie);
Rudi Villing (NUI Maynooth, Co. Kildare, Ireland, rvilling@eeng.nuim.ie); and Ronan

Farrell (NUI Maynooth, Co. Kildare, Ireland, rfarrell@eeng.nuim.ie)

ABSTRACT

This paper presents an performance evaluation of GNU
Radio and OSSIE, two open source Software Defined Radio
(SDR) architectures. The two architectures were compared
by running implementations of a BPSK waveform utilising a
software loopback channel on each. The upper bound full
duplex throughput was found to be around 700kbps in both
cases, though OSSIE was slightly faster than GNU Radio.
CPU and memory loads did not differ significantly.

1. INTRODUCTION

Perhaps the most important feature of software defined radio
is its flexibility. Flexibility can take many forms including
dynamic run-time reconfigurability in response to network
changes (over a period of seconds or less), flexibility to
support new waveforms through firmware updates (with
interval between updates usually from weeks to years), and
flexibility to use common radio hardware in a family of
devices, with different features and computational
capabilities. Unfortunately, flexibility often comes at either
a significant monetary or performance cost. The purpose of
this study is to gain some insight into the performance of
software defined radios which use a general purpose
processor for implementing all baseband signal processing.

Two readily available open source frameworks for
software defined radio (SDR) are GNU Radio [1] and
OSSIE [2]. GNU Radio is a software application for
building and deploying SDR systems under a GNU General
Public License. It was initially developed by the
Massachusetts Institute of Technology (MIT) under the
Spectrum Ware project [3] but it has undergone substantial
development since then. It provides a number of signal
processing modules written in C++ language, which are
interconnected and configured using Python [4]. The GNU
Radio includes modules such as basic signal processing
elements, timing recovery and synchronization.

The use of Python provides to the design the benefits of
object-oriented programming with the ease of an interpreted
language, i.e. it can be recompiled during runtime. As a
disadvantage, its execution speed might not be as fast as
other compiled languages like C++.

OSSIE (Open Source SCA Implementation: Embedded)
is an SDR implementation of the Joint Tactical Radio
System (JTRS) Software Communications Architecture
(SCA) [5] developed by Virginia Tech University for
educational use as well as for research applications using
software defined radio in 2004. SCA also decomposes a
waveform application into components which might be
reusable by different waveforms. Unlike GNU Radio, the
interconnection, interoperation and properties of the blocks
are configured using XML [6] files. More significantly,
components are interconnected using a CORBA middleware
[7]. This provides the flexibility to transparently host
components in different processing nodes at the expense of
increased complexity.

The latency between OSSIE inter-component
communications has been studied previously (for example
[8]) identifying the key factors and proposing which
contribute to it. [9] studied the overhead associated with
CORBA inter-communication demonstrating that the CPU
load produced by the CORBA ORB is significally smaller
than the one produced by the signal processing modules of
the waveform. OSSIE memory usage is also studied in [10]
and [11] measured on a desktop computer implementing full
duplex and half duplex applications respectively. The
latency of GNU Radio has also been studied over a
completely transceiver chain using the USRP (Universal
Software Radio Peripheral) board [12] as hardware testbed
[13] concluding that the system is not suitable for real time
systems in the Mbit range.

It is useful to consider the upper limit on throughput
performance that can be achieved by particular SDR
framework. The absolute upper limit may ultimately be
constrained either by computation or input/output
bottlenecks. In this study, we examine the performance of
GNU Radio and OSSIE on the same hardware platform
when a full-duplex communications system is implemented.
The comparison investigates the CPU load, the memory
usage and the overall data throughput for each system.

The remaining sections of this paper address the
methodology used, the results and finally our conclusions.

2. METHOD

The hardware platform for the performance tests consisted
of a desktop computer with a 3GHz Intel Pentium 4 CPU

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

and 1024MB of RAM. The operating system was Ubuntu
7.1 [14], chosen principally for simplicity of installing GNU
Radio from its repositories. The operating system itself was
installed and configured for normal desktop use without any
additional performance configuration. The framework
versions used for the evaluation were GNU Radio 3.1.2 and
OSSIE 0.6.2.

In order to focus the performance evaluation on the
frameworks and not the specific modulation scheme in use a
simple and computationally lightweight waveform
application was desirable. A secondary factor, which
influenced the ease with which a test application could be
developed, was the availability of components that
implemented all or part of this modulation scheme. The
GNU Radio libraries contain a large number of C++ and
Python modules implementing a variety of different
components and reusable functions which facilitates rapid
development of waveform applications. On the other hand,
the current version of OSSIE (0.6.2) is distributed with a
rather limited set of components. Many components created
for previous versions of OSSIE are not compatible with the
current framework and require customization. Furthermore,
due to its nature as a research and education tool, many of
the modules are designated “experimental” status. Binary
phase-shift keying (BPSK) was eventually chosen as the
modulation scheme and waveform applications
implementing this scheme were implemented in both
frameworks. The common test application structure used is
depicted in Figure 1.

DATA

GENERATOR

FRAME

BPSK

MODULATOR

LOOPBACK CHANNEL

BPSK

DEMODULATOR

DE-FRAME

DATA

COMPARATOR

Figure 1 Test waveform application structure used with both

the OSSIE and GNU Radio frameworks.

In the OSSIE implementation, the Data Generator generates
packets by copying a preallocated data block representing
400 application data bits. After framing, the packet size is
512 bits. (It is important to comment that many of the
OSSIE components used were designed with the assumption
that packets would only be 512 bits and lifting this
restriction would have required more code modification than
was worthwhile for this evaluation.) The loopback channel
copied the received bits without introducing any kind of
channel noise, attenuation, or phase shift. Finally the
Demodulator, Depacketizer and Data Comparator
implement the receive path.

The GNU Radio implementation is similar. Unlike the
OSSIE implementation, data packets are generated
dynamically, using the last bits of the packet number as the
packet data. During the framing operation a preamble, an
access code, a heading, and a cyclic redundancy code (CRC)
are attached in every packet. The BPSK modulator and
demodulator were implemented using the DBPSK
(Differential BPSK) Python module of the GNU Radio
blocks library by disabling the differential encoder and
differential phase detector features. Since transmission is not
done over-the-air (OTA), the use of an interpolator and a
root raised cosine (RRC) filter in the transmitter as well as a
time-recovery module, a RRC filter and decimator in the
receiver was not necessary and these functions and
components were not part of the test application.

It was intended that both the GNU Radio and OSSIE
test applications would be tested in a number of
configurations. Unfortunately, the OSSIE test application
was only tested in one configuration due to hard-coded
assumptions about packet size distributed throughout the
application. OSSIE was tested with just one packet size (64
bytes) while GNU Radio was tested with 64, 256 and 1024
bytes.

Some differences between the test applications,
particularly in the area of framing, remained so the
evaluation was based on the amount of packet data
(consisting of original application data plus any additional
framing and control data) transmitted to/received from the
modulator/demodulator components. In both test
applications the size of the simulated application packet size
was adjusted so that the framed version was as specified for
the configuration under test.

The total amount of (framed) data to be transmitted
during a test was a constant 10MB for all configurations.
However differences in framing mean that the number of
packets transmitted may have differed slightly between the
two test applications.

3. RESULTS AND DISCUSSION

Maximum throughput was estimated for each of the test
configurations, defined by a combination of SDR framework

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

and packet size. Both memory and CPU loads were
estimated from several measurements made during just one
test configuration for each SDR framework. Finally the
GNU radio test application was profiled to gain additional
insight into the location and nature of the performance hot
spots where most of the computation effort was expended. A
similar exercise was not carried out for OSSIE and could be
substantially more complex due to the multiple process
implementation of a typical OSSIE waveform application.

3.1 Throughput

Total processing time required to transmit and receive
10MB of data (inclusive of framing and control information)
was measured for each of the test configurations and used to
calculate the throughput. This throughput is a first order
estimate of the maximum full duplex throughput achievable
in each test configuration, since each application is
processing data transmission and reception in parallel.

In the OSSIE test application, total processing time was
recorded using the standard gettimeofday function in
the transmitting data generator and receiving data
comparator code. In the GNU Radio application, the same
information was obtained using the standard time function
from the module of the same name introduced into the
main() function of the Python’s main module.

Table 1. Estimated maximum full duplex throughput per

packet size for each test configuration.

Framework Packet Size

(bytes)

Throughput

(Mbps)

OSSIE 64 0.72
GNU Radio 64 0.59
GNU Radio 256 0.68
GNU Radio 1024 0.71

The main results for each of the four test configurations are
shown in Table 1. It is apparent that GNU Radio throughput
depends on packet size. The relationship does not appear to
be linear, however. OSSIE at the smallest packet size
outperforms GNU Radio at all sizes, though the performance
difference is not much when GNU Radio uses larger
packets.

In a real SDR, the packet sizes communicated between
the software components will be affected by requirements of
the MAC layer frame size, RF front end packet size and
latency requirements. As such, the packet size may not be a
tunable parameter. However, the results above would
suggest that where the choice exists, a bigger packet size is
to be preferred, at least for GNU Radio.

The results also indicate surprisingly low values for
estimated maximum throughput possible on both GNU

Radio and OSSIE. It is probably reasonable to assume that
the full duplex throughput could be close to doubled in half
duplex operation, since the transmit and receive paths have
fairly symmetric implementations (at least for the simple
test applications in use).

The modulation scheme used for testing was explicitly
chosen for its computational simplicity, so that the
computational burden would be dominated by architectural
and framework features rather than modulation calculations.
It is safe to assume that a more complex modulation scheme
(for example OFDM or OFDMA) would achieve lower
throughput. It is also safe to assume that communication
with a separate RF board would further reduce throughput.

It seems likely that each of the frameworks has strengths
and weaknesses affecting their throughput performance. It is
likely that inter-process communication, in the form of
CORBA calls between components, adversely affects the
performance of OSSIE, while GNU Radio seems to have the
advantage of executing all components in the context of a
single process and address space allowing inter-
communication by direct function calls. Conversely, within-
component code, implemented in C++ in OSSIE can be
expected to run faster than the mix of interpreted Python and
compiled C++ used in GNU Radio.

Finally it should be noted that optimizing either the
component or framework performance was outside the scope
of the current study, whose purpose was to estimate the
maximum performance available from the frameworks in
their default state. For this reason existing components were
used and customized where necessary and it should be noted
that some of these components are explicitly of
demonstration or experimental quality rather than optimized,
production quality. Nevertheless, we were curious about
where optimizations might be made in the future, so we
decided to examine the distribution of computational for
GNU Radio.

3.2 Computation profile

GNU Radio was profiled using the cProfile [15] tool in each
of the test configurations for which throughput was reported.
The results were somewhat inconclusive and so a modified
test configuration where the number of packets, rather than
the total amount of data, was fixed. The main results are
shown in Table 2.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Table 2. Total computation time and computation time of two

most expensive functions for GNU Radio test application:

gr_py_msg_queue_insert_tail (insert queue) and

conv_0_1_string_to_packed_binary_string (pack

binary).

Condition Packet

Size

(bytes)

Total

(secs)

Insert

Queue

(secs)

Pack

binary

(secs)

10 MB data 64 155.9 48.6 47.4
 256 127.5 100.6 11.7
 1024 118.8 111.3 3.0
10000 packets 64 10.1 3.2 3.0
 256 32.7 25.4 3.0
 1024 125.4 117.6 3.2

The computation hot spots in this test application were the
functions gr_py_msg_queue_insert_tail, which is
used to transmit packets from one component to the next,
and conv_0_1_string_to_packed_binary_string,
which is used to convert a string consisting only of the
characters ‘1’ and ‘0’ (that is, the information content is 1
bit per byte) to a string with any valid 8 bit character (that is
the information content is 8 bits per byte). This latter
function is used primarily to attach the access code and
preamble bits to a packet.

When the total amount of data transmitted was constant,
the time spent communicating packets between components
increased slowly and non-linearly with packet size. The time
spent creating packed binary strings decreased rapidly and
approximately linearly with packet size.

When the total number of packets transmitted was
constant, the time spent creating packed binary strings
remained essentially constant. This is to be expected
because the number of times this function is invoked is
proportional to the number of packets and work to be done
does not depend on packet size. In contrast the time spent
communicating packets increased in a linear fashion with
packet size.

In summary, profiling indicated that most of the
computational effort was expended simply moving data
between components and not performing the actual
transformations within each component. While the balance
of effort would change with a more computationally
intensive modulation scheme, it nevertheless seems
worthwhile to investigate optimization of the component
intercommunication in the future.

3.3 CPU load

The CPU load was monitored, using the Linux top
command, during the execution of GNU Radio and OSSIE
test applications in the 64 byte packet condition. In both
cases the CPU load was essentially 100%. In the case of

OSSIE, individual components, implemented as separate
processes, typically consumed 10 to 20% of available CPU
load each. The sum of the CPU loads for OSSIE
components exceeded 100%, but this is an artifact of the
sampling mechanism used by the top command to measure
CPU load.

The CPU load indicates, as expected, that there is no
source of non-computation delays inherent in either
framework. A real SDR application with an external RF
front end, would exhibit non-computation delays (or
operating system device driver delays) due to the external
interface.

With all other factors being equal, it seems reasonable
to assume that the throughput achievable in either
framework will scale linearly with computation speed of the
processor in use. Given that a 3GHz Pentium 4 can achieve
a maximum throughput of about 700kbps, an embedded
processor (perhaps an earlier generation processor or one
that has a lower clock speed) with 14% of the processing
power could achieve just 100kbps in the absence of any
further optimization. Significant optimization would clearly
be required for all but the simplest systems.

3.4 Memory load

The exmap tool [16] was used to monitor the memory
consumed during the execution of GNU Radio and OSSIE
test applications in the 64 byte packet condition.

Determining memory consumption is complicated by
the sophisticated memory management schemes employed
by modern operating systems that enable a process or set of
processes to run successfully despite requiring more memory
than is physically available.

Virtual memory size is the total address space that is
allocated to a process. It includes not only the amount of
memory required by the process in its current mode of
operation, but also any memory requested by the process to
date, whether or not that memory has been subsequently
used. Buffer space that has been allocated, but not yet
required falls into this category.

Mapped memory size is amount of virtual address space
that has ever been used. (This is a slight simplification as
read-only memory such as code sections can be unmapped
under memory pressure situations.) Once used, mapped
memory is either resident in RAM or temporarily stored on
disk in a paging or swap file. In an embedded system
without a disk, all mapped memory would have to be
resident in RAM.

Substantial portions of memory can be shared between
processes. For example all processes using a shared library
will share the code sections, though they will generally have
private data sections. Inter-process communication
frequently makes use of shared data memory. For this
reason, both the virtual memory size the mapped memory

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

size for a set of processes will count the same memory
multiple time giving a summed total that overestimates the
memory really required by the set of processes. The
effective mapped memory is an adjusted figure which
assumes that N processes sharing a piece of memory really
only use a fraction 1/N each and using this correction, the
sum is a more accurate reflection of the true memory needs.

The GNU Radio virtual memory allocation was 53MB
of which 20MB was actually mapped and just 17MB
effectively mapped to GNU Radio. The OSSIE virtual
memory allocation (summed across all processes used) was
690MB, of which 67MB was mapped and just 17MB was
effectively mapped to OSSIE processes.

It would appear that both frameworks require
approximately the same amount of memory for the test
application evaluated and that either application could run
within a 32 to 64MB memory.

4. CONCLUSIONS

Both OSSIE and GNU Radio require some customization in
order to run even a simple loopback performance
benchmark. Such a benchmark (assuming it is implemented
in the manner of typical waveform applications on the
framework in question) is a reasonable estimator of an upper
performance limit on the throughput performance of that
framework. Real SDR applications will always achieve
lower performance than this limit.

The evaluation indicated that, without any specific
effort spent optimizing the application, the upper limit of
throughput performance for both OSSIE and GNU Radio
was surprisingly low (around 700kbps), although OSSIE
was the faster of the two by a narrow margin. Both
frameworks load the CPU and memory in an essentially
equal manner.

Future work may include optimization of the test
application itself followed by further study of the
computation profile to determine if and how the frameworks
themselves could be further optimized.

5. ACKNOWLEDGEMENTS

6. REFERENCES

[1] “GNU Radio – The GNU Software Radio”,
http://www.gnu.org/software/gnuradio/.

[2] Wireless@VirginiaTech, “OSSIE”,
http://ossie.wireless.vt.edu/trac/.

[3] V. Bose, “Design and Implementation of Software Radios
Using a General Purpose Processor”, Massachusetts Institute
of Technology, PhD, 1999.

[4] “Python Programming Language Official Website”,
http://www.python.org/.

[5] “Software Communications Architecture Specification”, Joint
Tactical Radio System (JTRS) Joint Program Office, Version
2.2.2, May 2006.

[6] “Extensible Markup Language (XML)”,
http://www.w3.org/xml.

[7] “The OMG´s CORBA Website”, http://www.corba.org/.
[8] T. Tsou, P. Ballister, and J.H. Reed, “Latency Profiling for

SCA Software Radio”, SDR Forum Technical Conference,
Denver, CO, November 2-4, 2007.

[9] P.J. Balister, M. Robert, J.H. Reed, “Impact of the Use of
CORBA for Inter-Component Communications in SCA Based
Radio”, SDR Forum Technical Conference, 2006.

[10] P.J. Balister, C. Dietrich, J.H. Reed, “Memory Usage of a
Software Communications Architecture Waveform”, SDR
Forum Technical Conference, Denver, CO, November 2-4,
2007.

[11] P.J. Balister, “A Software Defined Radio Implemented Using
the OSSIE Core Framework Deployed on a TI OMAP
Processor”, M.Eng.Sc, December 4th , 2007, Blacksburg,
Virginia.

[12] “GNU Radio – Universal Software Radio Peripheral”
http://gnuradio.org/trac/wiki?UniversalSoftwareRadioPeriphe
ral/.

[13] S. Valentin, H. von Malm, and H. Karl, “Evaluating the GNU
Software Radio for Wireless Testbeds”, Technical Report TR-
RI-06-273, University of Paderborn, February 2006.

[14] “Ubuntu Official Website”, http://www.ubuntu.com/.
[15] “cProfile Reference Manual”,

http://docs.python.org/lib/module-profile.html/.
[16] “Exmap Official Website”, http://www.berthels.co.uk/exmap/

The authors wish to thank Jean-Christophe Schiel and
François Montaigne for their assistance and support. Also
the authors extend thanks to the sponsors EADS and
IRCSET for the PhD program.

	Home
	Papers By Alpha
	Papers By Session

