VRT Radio Transport for SDR Architectures

Robert Normoyle, DRS Signal Solutions Paul Mesibov, Pentek Inc.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Agenda

- VITA Radio Transport (VRT) standard for digitized IF
- DRS-SS VRT implementation in SDR RF Tuner
- Pentek VRT implementation in SDR processor
- Notional 8 channel system architecture

Benefits of VRT

Synergy provided by a common Data Framework:

- Within an organization and between organizations
- Common product framework reduces product life-cycle-cost
 - Focuses development of common toolset for demonstration capabilities
 - Improves customer ease-of-use of product upgrade

Open Architecture Framework for SW & HW

- Abstracts interfaces from physical links and HW implementations
- Data structures and SW can be developed independent of HW
- HW can be upgraded with minimal impact on overall architecture
- Scalable and Flexible architectures

Benefits of VRT

Interoperable Data Transport

- Efficient and flexible data structures for Sensor Signal data and Meta data
- Signal Data
- Sensor Metadata (Context Data)
- Time Stamping
 - Synchronization of multiple receivers in same/different platforms
 - Coherency between multiple receivers co-located in same platform
- **Multiplexing** of many signal channels onto common link

Working together

VRT Protocol Infrastructure

Signal Data Packets

- Purpose: Convey digitized IF/RF signal data
- Construct:
 - Packet Identifiers
 - Timestamp
 - Signal Data: 1-32 bits real, complex, floating point, vectors, event flags
 - Trailer

Context Packets

- Purpose: Convey information on the SDR settings and spatial information
- Construct:
 - Packet Identifiers
 - Timestamp
 - Context Fields: Freq, BW, Power, Gain, Delays, sampling rate, overload, valid data, event flags

Working together

VRT Packet Structure

- Packet Identifier
 - Header
 - Stream ID
 - Class Code
- Time Stamp
- Payload

Trailer

Bit 31 • • • • • • • • • • • • • • Bit 0

Header (1 Word, Mandatory)

Stream Identifier (1 Word, Optional)

Class Identifier (2 Words, Optional)

Integer-seconds Time Stamp (1 Word, Optional)

Fractional-seconds Time Stamp (2 Words, Optional)

Data Payload (Variable, Mandatory)

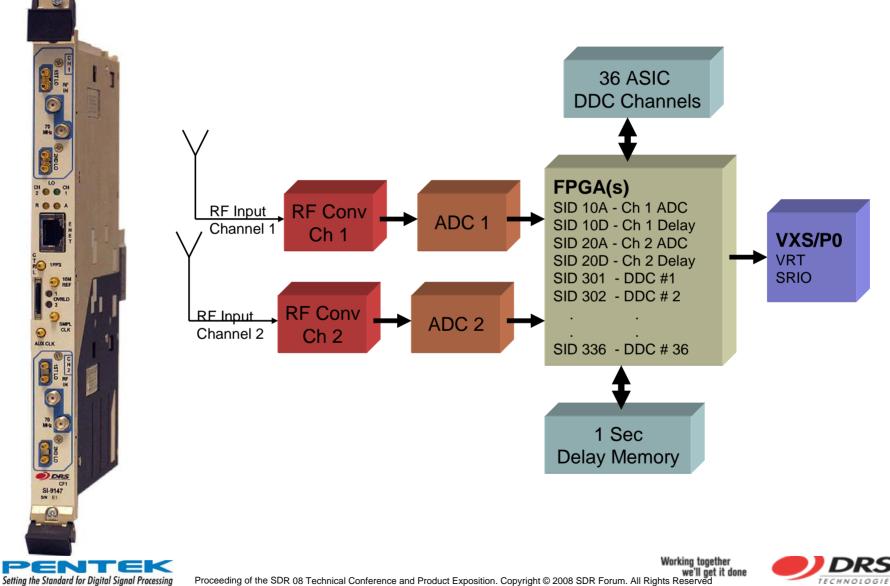
Trailer (1 Word, Optional)

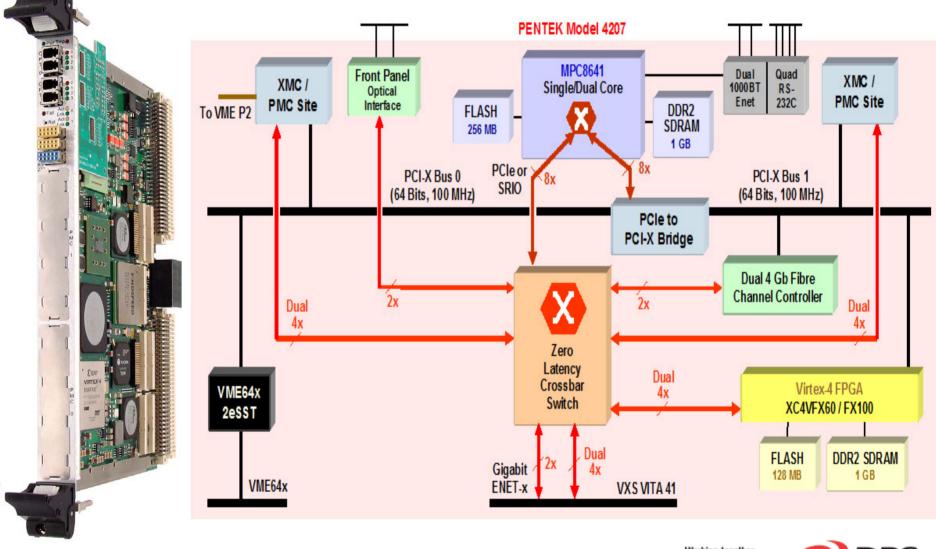
Figure 1. The IF data packet class template.

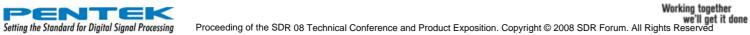
Context Fields

Context Fields convey a rich set of characteristics

- Analog settings
- Digital settings
- Spatial information
- Time Delays

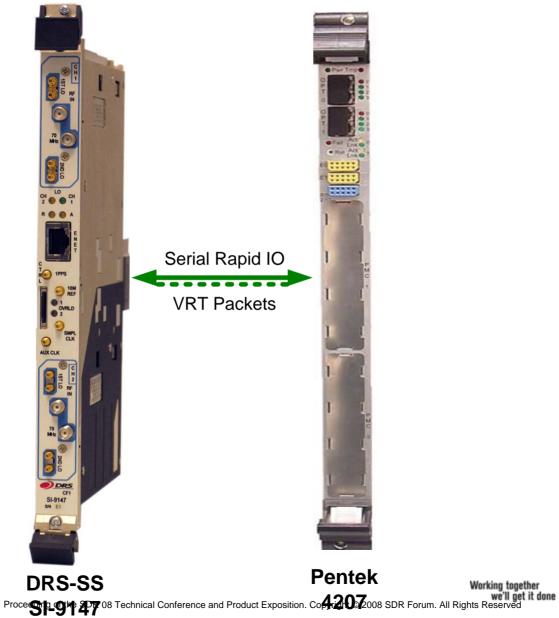

Field Name	Min. Range	Max. Range	Resolution			
Time Stamp	Present Time	136 years	1 psec or 1 sample			
Frequency and BW	–8790 GHz	+8790 GHz	0.95 µHz			
Gain or Power	-256 dB or dBm	+256 dB or dBm	1/128 dB or dBm			
Sample Rate	0 Hz	+8790 GHz	0.95 μHz			
Table 1. Sample of VRT context fields range and resolution.						




Working together

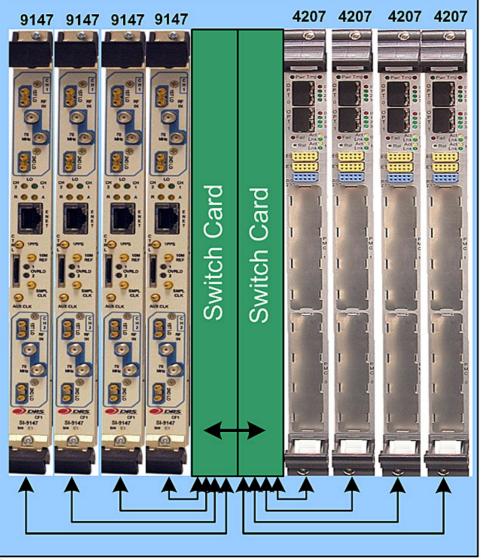
DRS-SS SI-9147: VXS Tuner SDR

Pentek 4207: VXS Digital SDR



ENTE

ECHNOLOGIE


Pentek & DRS VRT Demonstration System

Eight Channel Multi-Function SDR Architecture

Working together

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Eight Channel Multi-Function Receiver

Dynamic Allocation of Resources

- High speed fabric
- Supports many routing options of signal from antenna to DSP
- Dynamic routing between receiver and DSP components

Simultaneous support of multiple functions

- Radar
- Communications
- Electronic Warfare
- Surveillance
- Other

Conclusion

VRT Enhances SDR system architectures

- Eliminates stove-pipe architectures
- Enhances interoperability between components
- Standard for multi-channel phase coherent architectures
- Transport for multi-function SDR architectures

Appendix

DRS-SS VRT Integration Plans

Product	Form Factor	Digital IF Transport	RF Range	RF Chan	Max Analog BW	DDC	Avail
SI-9136C	VME	SFPD Front panel	VHF/UHF	2	30 MHz	FPGA	Now
SI-9146	VXS	P0-Aurora P0-SFPDP	VHF/UHF	2	30 MHz	FPGA	Now
SI-9147	VXS	PO-SRIO PO-SFPDP	VHF/UHF	2	30 MHz	36 ASIC + FPGA	Now
SI-9149	Brick	USB 2.0	VHF/UHF	1	200 KHz	FPGA	Now
SI-9479	Brick	USB 2.0	70 MHz	1	200 KHz	FPGA	Now
SI-8728	1U Chassis	G-E	HF	8	25 KHz	FPGA options	Q1/2009

VRT independent (agnostic) of physical link VRT has flexible data structures configurable for sample bit widths and data rates

Working together we'll get it done Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Pentek VRT Integration Plans

Product	Form Factor	Digital IF Transport	Sample Rate	A/D Chan	Max Signal BW	DDC	Avail
4207	VXS	SRIO or Aurora	N/A	N/A	N/A	N/A	Now
6826	VXS	Aurora	2 GHz	2 A/D	1 GHz	FPGA	Now
7141	XMC	Aurora	125 MHz	2 A/D 2 D/A	50 MHz	ASIC + FPGA	Now
7142	XMC	Aurora	125 MHz	4 A/D 1 D/A	50 MHz	FPGA	Now
7151/52	XMC	Aurora	200 MHz	4 A/D	80 MHz	FPGA	Now
7156	XMC	Aurora	400 MHz	2 A/D 2 D/A	160 MHz	FPGA	Q1/2009

VRT independent (agnostic) of physical link VRT has flexible data structures configurable for sample bit widths and data rates

Working together we'll get it done Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved