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ABSTRACT 

 
Architecting Software Defined Radio (SDR) for handheld 
multimedia devices has become a major challenge in bring-
ing mobile internet services to consumer markets. This paper 
describes a multiradio computer driven approach to software 
radio design. A model for a unified radio system is presented 
as the key concept to bring different radio applications under 
a common multiradio resource management scheme. This 
architecture provides basis for designing a multiradio oper-
ating system to guarantee that simultaneously executing ra-
dios can meet their real-time behavior requirements while 
sharing the computing, communication and hardware re-
sources of the radio computer. 
 
 

1. INTRODUCTION 
 
The emerging need for high data rate wireless services and 
the ever-growing number of wireless standards leads to an 
urgent demand for an SDR architecture that is optimized for 
multiradio control and run-time resource management. Ma-
jor issues are related not only to new technology driven ra-
dio access methods but also to the coexistence with earlier 
standards having a solid global installation base, like GSM, 
WCDMA and WLAN. The optimized radio access for each 
application strongly depends on technology parameters and 
market situations. This has led to an ever growing number of 
radio standards embedded in consumer devices such as mul-
timedia computers, internet tablets, enterprise products and 
mobile phones.  
 To satisfy these needs an architecture for a multitasking 
radio computer is presented in Section 2. Together with the 
radio operating system, which provides multiradio resource 
management, multiple individual radios can be executed 
simultaneously on top of shared computing, communication 
and hardware resources. Note that a radio computer also 
differs from conventional ones and has several unique char-
acteristics. The behavior of radio applications is strictly 
regulated by their frequency and time domain behaviors, 

which has led to the unified radio system model described in 
Section 3. 
 All functionalities of the multiradio computer are speci-
fied in a model-driven and service-oriented manner with 
well defined interfaces between all service and system com-
ponents. This architecture is then further decomposed in 
order to separate SDR control functions from the set of radio 
system applications. These SDR control functions, which are 
common to all radio applications, are provided at the Uni-
versal Radio System Interface. This interface makes all ra-
dios subject to a common multiradio resource management 
framework as described in Sections 4 and 5. 
 This architecture and the related resource model are 
essentially platform neutral in the sense that they allow 
widely different implementation choices. As an embodiment, 
we outline in Section 6 a heterogeneous multiprocessor plat-
form which supports the multiradio resource management 
framework and allows for fine-grained resource sharing, 
while still allowing each radio to be designed according to 
common paradigm and executed in virtual isolation from 
other radios. 
 

2. FUNCTIONAL ARCHITECTURE OF A RADIO 
COMPUTER 

 
2.1. Overview of the SDR functional architecture 
 
The functional architecture of a radio computer device is 
illustrated in Figure 1. All services of the radio computer 
are provided at the Multiradio Access Interface. The ser-
vices may include connectivity and data transfer, but also 
positioning and broadcasting services. User applications 
access the radio computer via a networking stack and mobil-
ity policy manager, which maintains user preference policies 
for selecting radios. Additional services for installing new 
radios into radio computer are available to the administrator 
user. 
 The Multiradio Access Interface is supported by a 
common SDR control framework, which consists of the 
Configuration Manager, Radio Connection Manager, Flow 
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Controller, Multiradio Controller and Resource Manager 
system components. Their functionalities are common to all 
radio systems and become part of the radio operating sys-
tem. This SDR control framework is responsible for install-
ing, loading and activating different radios and maintaining 
user data flows, which can also be switched from one radio 
system to another. The radio operating system also does 
multiradio control and resource management for sharing of 
available spectrum and radio computer resources among 
simultaneously executing radio systems. 

 
Figure 1 – SDR Functional Architecture 
 
  The services of the SDR control framework are 
available to the radio systems at the Unified Radio System 
Interface (URSI). With this interface every radio system can 
be integrated into radio computer in a unified manner by 
making them subject to common multiradio resource man-
agement.   
 The Unified Radio System Interface can be used as 
reference, when checking the compatibility of individually 
developed radio system software implementations. It can 
also be regarded as a harmonization interface for developing 
future radio systems to this architecture. More detailed de-
scription of this interface is given in Section 3. 
 
2.2. Architecture modeling 
 
The functional architecture described above has been mod-
eled by using model-driven architecting method [1], which is 
based on rigorous service-oriented approach for specifica-
tion of communicating distributed systems [2]. By being 
able to execute the radio computer functions already at this 

architectural specification phase the new approach to SDR 
system design can be visualized and communicated. It also 
provides basis for specification and implementation of test-
ware for checking compatibily against the two major archi-
tectural interfaces. 
 
 

3. UNIFIED RADIO SYSTEM MODEL  
 

3.1. Life cycle of a Radio System 
 
Following the radio computer paradigm, the SDR control 
framework allows bringing in and removing radio applica-
tions during run-time. A set of radio applications may be 
pre-installed into the radio computer, and new ones may be 
brought in by using the administrator services of the Multi-
radio Access Interface. We describe the life cycle of a radio 
application inside the radio computer by using four distinct 
administrative states, which differ by their use of the shared 
platform resources. 
 A not installed radio application is unknown by the ra-
dio computer. In the installed state, the radio computer has a 
copy of the radio system package (including resource budg-
ets and executables); it may be stored in mass storage in 
compressed format for minimal memory footprint. A loaded 
radio application is available for the end user, but is not yet 
in execution. Once an instance of the radio application is in 
execution, it is considered to be in the active state, and is 
using various hardware codecs and radio frequency circuitry 
in addition to the computation, memory and communication 
resources. 
 
3.2. Radio System Operational State 
 
From the resource sharing point of view, the active adminis-
trative state is the most interesting. Operational states are 
defined as sub-states of the active administrative state, and 
are used to describe different resource requirements. 
 For example, an 802.11 WLAN station that is in the 
power-saving mode only needs to process beacon frames 
sent by the access point, and has no need for any transmitter 
resources, leaving them for the use of other radio systems. If 
the access point indicates buffered frames for the station, or 
the station itself has frames to transmit, transition to normal 
communication operational state occurs. 
 The radio system designer may divide the application to 
various operational states, in order to facilitate more effi-
cient resource sharing. Inside an operational state, the radio 
application is allowed to operate freely within the given lim-
its. Transitions between operational states originate from the 
user or an external entity (e.g. radio network), and are re-
quested from the resource manager, which is part of the 
SDR control framework. No real-time guarantees are given 
for serving these requests, and the radio system must accept 
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also denied transition requests due to resource limitations. In 
those cases, the application may propagate the deny infor-
mation to the Multiradio Access Interface so that the higher-
level control elements can take the necessary actions (e.g. 
deactivate lower priority radios, thereby freeing resources). 
The SDR control framework guarantees resources for the 
granted operational states. 
 
3.3. Decomposition of a Radio System 
 
The platform neutral SDR functional architecture decom-
poses the unified radio system into two parts, (radio) proto-
cols and (radio) engines. The protocols part controls the 
time behavior of the radio system, and the engines part does 
the radio communication operations at a specific time and 
with a specific configuration. 
 More specifically, the protocols part takes care of inter-
action with the user and the external communication part-
ners. It knows the current operational state and detects the 
need to transition to another, if the resource demand 
changes. The engines part implements the signal processing 
and radio frequency functions, as instructed by the protocols 
part, and contains the accurate time of the radio system. 
 It is worth mentioning that the split between protocols 
and engines is not according to the OSI data link layer and 
physical layer, or real-time properties, or according to plat-
form components. The split is purely functional and allows 
the unified interface to be used for all radio systems. Other 
division criteria would lead to non-uniform interface de-
scription because radio systems differ in the OSI layer radio 
functionality distribution and real-time properties. 
 
3.4. Services at the Unified Radio System Interface 
 
The purpose of URSI is to harmonize the way of accessing 
dissimilar radio systems, as well as their behavior on the 
SDR platform. To this end, all radio systems must provide a 
set of services as specified in the URSI, to be compatible 
with the SDR functional architecture. They gain access to 
the shared platform resources and the radio spectrum only 
by using the SDR control framework services. 
 The services provided by unified radio systems relate to 
activation and deactivation, neighbor device discovery, and 
establishing communication and user data flows. Even 
though mapping of specific radio system functionality to the 
URSI services may not always be straightforward, the bene-
fit is that all radio systems can be used in the same manner. 
 The SDR control framework services are used by the 
radio systems to set up the baseband signal processing and 
radio frequency resources, and subsequently to access the 
radio spectrum. 
 

4. MULTIRADIO CONTROL AND SCHEDULING 
 
4.1. Multiradio scheduling concepts 
 
Like a conventional computer, the radio computer has to be 
able to execute multiple concurrent applications. Radio 
spectrum is perhaps the most critical scarce resource all ac-
tive radios need to access. The SDR functional architecture 
contains a special entity to dynamically schedule access to 
spectral resources, called multiradio controller (MRC). Its 
main responsibility is to detect in advance the interoperabil-
ity problems between simultaneously active radios and solve 
them. Typical sources of interoperability problems are 1) 
wide band noise from frequency synthesizer and power am-
plifier, 2) harmonics, 3) intermodulation results of two or 
more transmitters, 4) RF blocking (desensitization) and 5) 
clock leakage. The typical way to solve interoperability 
problem is to forbid one or more of the simultaneously ac-
tive radios to operate. Such a decision can be based on for 
example different priorities associated to radios. 
 Radios connect to MRC via URSI, which makes it pos-
sible to add new radios to the multiradio control scheme. 
The MRC scheduling concept is a fundamental paradigm 
change compared to the traditional way where there are 
separate pairwise coexistence schemes between radios. For 
example, the described scheme allows radios loaded at run 
time to cooperate cleanly with existing radios. 
 To enable this scenario, radios executed in the SDR 
platform need to have two additional functions: 1) The radio 
has to tell MRC in advance its temporal requirements and 
parameters of transmission and reception and 2) it has to be 
able to provide its internal time and synchronization infor-
mation to MRC. Optionally, a radio can be built to utilize 
scheduling results, for example it may start to prepare re-
transmission when MRC denies operation or go to sleep 
mode at the end of granted radio access. 

 
Figure 2 - Time concept in MRC scheduling 
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Figure 2 presents the time concept used for multiradio 
scheduling. Each individual radio has its own native time. In 
the SDR control framework, this is called “radio time” and it 
is generalized to consist of a smaller time unit called tick 
which represent the finest time granularity, and a larger time 
unit called frame which represents a repetitive structure used 
to refer time inside the radio. One frame consists of multiple 
ticks. Both the length of the tick and the number of ticks in 
one frame can be freely selected for each radio.  
 To be able to detect spectral conflicts, MRC converts 
radio access start and stop times into its own scheduling time 
domain. The relation between different radio times and 
common MRC scheduling time has to be known in advance. 
Each active radio executed in the SDR platform is required 
to provide MRC its time synchronization information when 
the radio is initially started, and maintain that during the 
time the radio is active.  
 
4.2. Time behavior model 

Figure 3 - Multiradio scheduling timeline  
 
Figure 3 illustrates the MRC time domain behavior: 
• Scheduling window tw defines the time window of 

scheduling requests solved during one scheduling round  
• Time t1 defines the deadline when MRC must have the 

information about the behavior of radios to be able to 
calculate a schedule.  

• Time t2 defines when scheduling decisions have to be 
communicated back to radios to have enough time to 
configure radio HW and SW for radio operation. 

• Time t3 defines when radio HW and SW configuration 
has to be ready. It may be earlier than the actual starting 
time of radio operation. 
  

 Defining the values for these time parameter depends 
both on the performance of the SDR platform and the ability 
of radios to tell their estimated schedule in advance.  
 
4.3. Multiradio scheduling service 
 
MRC provides scheduling service for radios via URSI. This 
service can be used in three different ways: 

1. Rigid request is used when a single radio operation has 
fixed start and end times. The requested time slot is ei-
ther accepted as a whole, or rejected. Because the re-
quest needs to be solved during one scheduling round, it 
cannot be longer than tw. 

2. Continuous request is used when a single radio opera-
tion takes longer than tw. Continuous request is sched-
uled in multiple parts and communicated back to the ra-
dios one part at a time 

3. Flexible request is used when MRC is allowed to select 
one of multiple alternatives or modify the timing of ra-
dio operation in case of conflict. For example, MRC 
may either advance or delay the granted time slot. 
  

 To be able to accurately detect and solve interoperabil-
ity problems, MRC needs to know the characteristics of re-
quested radio operations. Besides timing parameters, the 
following parameters can be specified for each scheduling 
request: 1) priority of request, 2) transmitter power, 3) re-
ceiver signal quality information (RSS) 4) channel band-
width, 5) carrier frequency and 6) crest factor.  
 

5. RESOURCE MANAGEMENT FRAMEWORK 
 
5.1 Multiradio resource management concepts 
 
 Radios are Real-Time (RT) applications. This means 
that the validity of the computational results depends not 
only on values, but also on the time at which these are pro-
duced. The RT behavior of an application is dependent on 
the amount of resources available to it during execution. 
Uncertainty in resource provision may cause unpredictable 
temporal behavior. 
 In a multiradio system, many radios may be active at the 
same time. Furthermore, each radio can be in one of several 
different operational states. Each operational state has dif-
ferent resource requirements. 
 In order to allow maximum flexibility at the lowest cost, 
radios must share computation, memory and communication 
resources, as well as hardware resources like RF transceivers 
and antennas. This poses a difficult problem for any RT sys-
tem: as satisfaction of the temporal constraints depends on 
resource availability, resource sharing can make the tempo-
ral behavior of each radio depend on the behavior of all 
other radios in the system, which is difficult to predict in a 
case such as this, where radio combinations are dynamic.  
 Our approach to this problem is to give radios a degree 
of independence from the rest of the system by using a 
strong resource management policy. Conceptually, it is de-
signed to isolate each radio in such a way that it only sees a 
fraction of the platform resources, and these are exclusively 
reserved for it. It is thus a form of virtualization. We do this 
by associating a resource budget with each operational state 
of a radio. The resource budget lists all resources of the plat-
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form that the radio will require once it is in that operational 
state to meet its RT requirements.  
 The resource management policy should ensure two 
things: a) admission control - a radio is only allowed to 
change operational state if the system can allocate upon re-
quest the resource budget it requires for that operational 
state; and b) guaranteed resource provisions - the access of 
a radio to its allocated resources cannot be denied by any 
other radio. Notice that a change of operational state may be 
rejected by lack of resources on the platform. Because of 
this, no RT guarantees can be given across operational state 
changes.  
 A resource budget, may contain for example, per task, a 
list of resource requirements like processor type, required 
amount of instruction memory, data memory and scheduler 
settings (e.g. size of time slice on a TDMA scheduler). Fur-
thermore, the channels for inter-task communication have 
bandwidth, and buffer memory requirements. 
 The resource budgets are pre-computed offline per op-
erational state of the radio. The RT components of a radio 
can be expressed as Synchronous Data Flow (SDF) graphs 
[3]. This allows for the temporal analysis of execution on a 
specific platform and calculation of worst-case resource 
requirements to guarantee compliance to RT demands. For 
this to be possible, the streaming platform must allow tight 
bounds on resource usage to be inferred. Resource budget 
calculation from SDF graphs is described in [4], where 
802.11a WLAN and TD-SCDMA are given as examples.  
 Algorithms have been proposed [5] that do the admis-
sion control by mapping a vector of such requirements to a 
vector of provided resources on the platform, which amounts 
to solving an extension of the vector bin-packing problem. 
  
5.3 Hierarchical resource management services 
 
 Different components of a radio application have differ-
ent RT requirements (in terms of strictness and time scale). 
Baseband (BB) and RF are essentially hard RT, as a failure 
in meeting deadlines may cause  the output to be worthless 
(e.g. decoding a WLAN packet must be done within the 
SIFS deadline), while the higher level control protocols can 
be laxer in meeting their RT constraints. 
 They are also different in terms of the type of computa-
tion: the RT BB processing mostly performs iterative alge-
braic and bit-manipulation operations over a periodic incom-
ing stream of data, whereas radio protocols are typically 
communicating finite state machines, exhibiting complex 
control flow and much more irregular activation patterns.  
 Because of these different requirements, and also due to 
vendor specialization, one can expect a radio platform to be 
divided into several subsystems, or platform components, 
each tailored to a specific part of the radio functionality and 
related to a type of RT requirement. Also, the different type 
of temporal requirements per platform component means 

that there may be diversity in the way that resource man-
agement is applied to each sub-system. This means that, for 
instances, the strict timings of the baseband stage may re-
quire strict budgeting based on the dataflow approach re-
ferred to above, while for protocols it may be enough to 
provide mere estimations of resource requirements and also 
less strict scheduling algorithms may be used. 
 Due to these considerations, the resource management 
functionality in our SDR radio computer platform is distrib-
uted in a hierarchical manner. The central resource manager 
services operational state change requests. It oversees the 
platform component resource managers, each of which pro-
vides admission control and resource reservation services 
for its platform component. The platform component re-
source managers communicate with other entities (e.g. local 
processor schedulers, memory managers) that actually own 
the resources and do the fine-grained scheduling.  
 In the current framework, resources are reserved and 
configured in the following steps. First, an admission check 
is done, without reservation, for all the platform component 
resource managers. This is to avoid roll back of reservation, 
if admission on one of the platform components is denied. 
The platform component resource managers retrieve the 
operational state specific resource budgets from the radio 
system description package, if needed. Once admission has 
been granted on all platform components, the central re-
source manager proceeds with resource reservation. Re-
source reservation includes configuration of the resources. 
Local dynamic loaders are instructed to request executables 
from the radio system package in the central repository and 
store them in a specific position in memory. 
 In the central resource manager, the operational state 
change requests for the different radio jobs are queued. The 
admission check and resource reservation with configuration 
constitute one single atomic operation. 
 

6. RADIO COMPUTER PLATFORM 
 
The resource management framework of a multiradio system 
must provide to each radio, per operational state, a virtual 
platform which is a subset of the resources of the actual ra-
dio computer platform. It is part of the radio operating sys-
tem on the radio computer platform (Figure 4).  
 
 
 
 
 
 
 

 
 

Figure 4 - Radio Computer Platform 
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 The radio computer platform is made of seven stages, 
each covering both receive and transmit functions. From left 
to right (Figure 4) these stages comprise respectively one or 
multiple: 

1. antennas;  
2. front-end modules (filters, power amps, etc); 
3. RF transceivers; 
4. baseband processors for (de)modulation; 
5. baseband processors for (de-)coding; 
6. control processors for protocol stacks; 
7. application interface units; 

 
 Notice that while this split in stages may be reflected in 
the decomposition of the radio system in platform compo-
nents, this is not mandatory, as the decomposition is also 
dependent on the other factors that were stated in Section 5. 
 This multi-stage arrangement exploits structural simi-
larities among a large variety of different radios. Each stage 
has to offer the appropriate amount of reconfigurability or 
programmability [6]: sufficient to cover a specified set of 
radio standards and performance levels, but no more than 
can be afforded. Accordingly, the baseband part of an SDR 
platform for handheld devices may comprise: 

• a number of programmable digital signal proces-
sors (e.g. EVP [6]); 

• a set of (reconfigurable) accelerators (e.g. a multi-
standard Turbo decoder or descrambler); 

• a number of general purpose processors (e.g. 
ARM); 

In order to support the huge memory bandwidths required 
for DSP processing, these processors have to be supple-
mented with carefully designed distributed memory architec-
ture and a flexible interconnect.  
 We have opted for a form of FIFO-based asynchronous 
intertask communication. This allows for distributed, data-
driven synchronization of tasks, leading to a scalable solu-
tion with a low and bounded control overhead.  
 Dealing with the strict RT requirements of a multiradio 
use case on such a heterogeneous multiprocessor is challeng-
ing. Furthermore, radios need be designed independently of 
one another. This calls for a composable system [8]. Ac-
cordingly, cooperative scheduling cannot be used among 
different radio instances, leading to distributed preemptive 
scheduling. For example, meeting the so-called SIFS dead-
line (16 μs) of WLAN involves multiple processors. When a 
DVB-H radio occupies these processors, each of them must 
be preempted, and the SIFS-related tasks must be scheduled 
timely. Such tight RT guarantees can only be honored when 
(tight) upper bounds can be given for the timing of all in-
volved transactions, including inter-processor traffic and 
memory accesses. This poses some further constraints to the 
choice of arbiters and schedulers in the system. In [7], 

scheduler requirements for predictable dataflow execution 
are discussed. The TDM scheduler used in [5] fits these re-
quirements. 
 Given these upper bounds, worst-case execution times 
can be computed for all the tasks. This allows for offline 
computation of scheduler settings per operational state of the 
radio, as referred in Section 5, and described in detail in [5].  
 The radio operating system must also virtualize the dis-
tributed memories, to allow for run-time mapping of multi-
ple instances of each radio to the multiprocessor platform by 
the resource manager, and provide memory protection. 
 

7. CONCLUSION 
 
To meet the reconfigurability and resource sharing require-
ments of handheld software radio devices a functional  ar-
chitecture for a radio computer has been presented. This 
architecture provides functional interfaces for installing, 
loading and activating new radio systems at run-time. All 
active radio systems become subject to common multiradio 
scheduling and resource management framework provided 
by the radio operating system. Mapping of such architecture 
onto a programmable radio computing platform has been 
presented and is currently being experimented. 
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