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ABSTRACT
The concept of cognitive radio has put together a vast area

of expertise from signal processing and communication to data
mining algorithms. This is possible because of the recent advances
in development of Software Defined Radio (SDR). A cross layer
approach in SDR network supplies the MAC layer with more
information to take advantage of opportunistic channel access. One
major requirement of cognitive radio is to be aware of other legacy
radios and avoid using active channels. Using a basestation for
channel allocation and node coordination, collaborative spectrum
sensing (by filterbanks) determines the best estimate for background
noise. Afterwards, the noise temperature is used to profile the
presence of the active users in the spectrum based on the location
and time of the experiment. A probabilistic approach identifies
the model of the spectrum activity as arrival/departure of many
narrowband radios in the spectrum. A game theoretic approach for
spectrum selection is then developed which sets spectrum usage
prices according to space-time statistics of spectrum activity pattern.
Furthermore, using a filterbank multicarrier technique, cognitive
nodes can keep their transmission power under the noise level in
the active parts of the spectrum while filling the spectrum holes.

1. INTRODUCTION

Licensed frequency bands are not used efficiently every-
where and over time [1], [2]. The unutilized part of the
spectrum is called a spectrum hole. The next generation of
radios will be based on Cognitive Radio (CR) technologies,
[3]. CR addresses the inefficiency of the frequency spectrum
usage by allowing the coexistence of different radios in the
shared unlicensed bands. CR utilizes the spectrum holes over
time and space. Legacy devices are the Primary Users (PU)
of the spectrum which have priority access to the spectrum.
To address the spectrum underutilization issue, the FCC
has allowed secondary users (SU) to share some previously
dedicated bands under condition of minimal interference to
legacy devices of the band [4]. For SU, spectrum holes are
opportunities that need to be discovered and exploited [5]. To
be transparent to the PU network, SU should operate under
interference temperature.

CR should sense the spectrum to detect the activity of
PU. Spectrum sensing for CR could be implemented using
feature detection or energy detection. Energy detection is
often the preferred method for simplicity and because it does
not assume prior distribution for spectrum usage. However,
one problem of energy sensing is to define a reliable energy
threshold which indicates an active PU. Cognitive nodes are
required to keep their power level below this threshold over
active bands.

Emulab [6] is being used to evaluate the available spec-
trum. Emulab is a network containing many different types
of nodes. The nodes used for this project are those equipped
with USRP (Universal Software Radio Peripheral) devices.
The software platform for USRP devices is GNU Radio [7].
This software provides users with many different programs
to both transmit and receive signals and allows users to
write their own programs or modify existing programs as
they see fit. Using GNU Radio, the Emulab’s USRP nodes
were programmed to take measurements of the spectrum by
modifying existing programs in the GNU Radio package.
This program measures the magnitude and phase of the
spectrum over a specified bandwidth. The Emulab requires
one to start an experiment by creating what is known as
an NS (Network Simulator) file. By creating an NS file,
measurements are made on up to 16 different nodes. Within
the NS file, program agents (specified lists of programs to
be run) have been defined to take measurements on multiple
nodes simultaneously. Software defined radio [8] simplifies
the digital processing algorithms needed for noise reduction.

The distributed spectrum sensing mechanism reliably de-
termines the background noise level [3]. After the noise
floor is detected, we use a threshold above the noise floor
to detect the power of the active PU with 95% certainty.
The higher the detection threshold the more accurate the
model is, but at the same time higher threshold decreases
the effective dynamic range of spectrum measurement. The
filterbank based power detection technique [9] enables us to
initially model the activity of the PU as a renewal process
with two distributions for presence and absence of the PU
similar to [5]. Higher order statistics can extract some useful
information about PU activity. The general random process
based modeling improves the cognitive spectrum assignment
marginally because it lacks a priori knowledge about indi-
vidual channels. For example, a channel used by handset
devices more resembles a Poisson process than a channel
used by a TV station. Handset users may come and leave the
channel with exponential inter-arrival times but a TV station
broadcasts continually during certain times of the week.

The spectrum assessment algorithm is provided with chan-
nel templates containing customized models for each channel.
A learning algorithm is thus being devised to fuse the spec-
trum measurement results with each channel usage template
over time. The final spectrum analysis result is saved inside
a local database that can be queried by cognitive nodes over
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the internet.
The problem of spectrum allocation is then modeled using

a game theoretic approach. A potential game model is used
for this problem and as a result if the users make unilateral
decisions the play will converge to a Nash Equilibrium (NE)
and it will have a steady-state solution [10]. An action space
and a utility function will be defined for this game. The
system will be a part of the Software Radio Smart Radio
Challenge 2008 [11].

The rest of the paper is organized as follows. A brief
introduction to noise temperature detection and distributed
channel sensing is presented in Section 2. The algorithm for
frequency selection is given in Section 3. We finally talk
about the implementation status and draw our conclusions in
Section 4.

2. DISTRIBUTED SPECTRUM SENSING

One advantage of collaboration among cognitive radios
is to share the sensing information for better estimation of
the spectrum activities. A base station can fuse the spectrum
sensing results for estimation of the background noise. Noise
temperature [3] is calculated in an optimal detector [12].
A cognitive radio network may contain many nodes. Each
node can sense the spectrum independently of the others
with the aid of a filterbank or some other spectral estimator.
The purpose of this experiment is to demonstrate through
measured data the effectiveness of a distributed sensing
algorithm that is described in the next paragraph. The Emulab
network of nodes will be used for taking measurements. The
Emulab is a network of radio nodes used to run experiments
by researchers throughout the world. Currently, the Emulab
has 16 Universal Software Radio Peripheral (USRP) devices,
14 of which are active. These devices will be used to gather
samples for analysis on a computer. This data will be used to
define a probabilistic model of spectrum space-time usage.
The Emulab nodes are located in rooms throughout the
Merrill Engineering Building (MEB) on the campus of the
University of Utah in Salt Lake City, Utah. Figure 1 shows
the placement of these nodes.

The algorithm being tested begins by using K complex
time samples and dividing the signal at Γ different nodes
into sufficiently small slices of spectrum such that each
narrow band signal can be considered a single sinusoid
multiplied by some gain h. Some noise is present such that
the received signal is the transmitted signal multiplied by the
channel transfer function plus a random noise variable V. The
received signal at one frequency is expressed in the equation
X = hsH+V. X and V are Γ-by-K matrices. V is a matrix
of independent identically-distributed random variables (the
noise). We strive to estimate the signal power (including
channel effects) and the noise power. The best estimate would
be a time average of each quantity (i.e. (1/K) ×

∑
|sk|2,

(1/Γ)×
∑
|hγ |2, and (1/ΓK)×

∑
|vγk|2). Since s, h, and

V are unknown, it is impossible to calculate these quantities

directly. We can calculate estimates indirectly because V
is a zero mean independent identically-distributed random
variable. From these results, we can obtain an estimate of
the signal power by first forming the K-by-K matrix R =
E[XHX]; then finding its largest eigenvalue, λ0; and finally
using the following equations to obtain estimates of the signal
power and the noise power [12].

P̂sig =
Kλ0 − trace[R]

ΓK(K − 1)
(1)

P̂noise =
trace[R]− λ0

Γ(K − 1)
. (2)

Originally, the script usrp spectrum sense.py from the GNU
Radio distribution was modified and used to sense the spec-
trum from about 850 MHz to 950 MHz. It was determined
that this method was unreliable for analyzing the spectrum
activity. The file performed a large amount of filtering and
processing before converting to the frequency domain for
spectrum analysis, and there was no way to determine the
synchronization between measurements at differing nodes.
Due to these shortcomings, it was determined that post-
processing could be done in Matlab more efficiently. For this,
time samples were needed and not just the spectral estimates
provided by usrp spectrum sense.py.

To truly test the accuracy of the distributed sensing al-
gorithm, synchronization of the time samples is required.
Synchronization between nodes is not a trivial task. When the
experiment begins, each Emulab node being used is loaded
with the Linux operating system. Along with it, several useful
programs are loaded to assist in synchronizing the nodes.

Several different options were considered for synchroniza-
tion of the nodes. Among these, two are worth mentioning.
First, the open source program ntpd was used to synchronize
the nodes and keep them synchronized. According to the
official documentation, ntpd can synchronize the system
clocks to within one millisecond. An entry in the crontab
(an application scheduler) would then allow the measurement
script to run, and measurements could be automated to be
taken at synchronized times to within one millisecond. This
would have to be repeated at different times for different
bands since only a portion of the spectrum can be measured
at a time (due to hardware limitations). Because of these
limitations, it was concluded that more synchronous mea-
surements could be achieved by the second method.

The second method consists of using a program titled
emulab-sync which is a simple distributed synchronization
client available on all of the Emulab nodes. Using this
method, there is a master node and several slaves. The
slave nodes wait until the master node tells them to start
taking measurements before beginning. The times that these
measurements occur is recorded. It has been verified that
these recorded times are not more than one millisecond
apart (usually they are less). This appears to be the most
reliable method of synchronization available at the present
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Fig. 1. The placement of the Emulab nodes with USRP devices in the MEB. The green circles represent available nodes. The red circles represent nodes
that are out-of-service. The blue circles represent nodes that are in-use. The unfilled circles are the nodes on a different floor than the map.

time. The script file usrp rx cfile.py that is part of the GNU
Radio project was modified and renamed usrp rx fscan.py
to automate the measurement process, utilizing the emulab-
sync program to synchronize the measurements as much as
possible.

The measurements taken with usrp rx fscan.py are com-
plex time samples that have been demodulated from their
center frequency to the baseband. They include 4 MHz of
bandwidth for each frequency measured. Assuming that these
measurements are synchronized to within one millisecond,
the narrow band signals must be much smaller than one
kilohertz for justification of the assumption that the narrow
band signal gain is constant over its bandwidth. This data
will pass through a uniformly modulated DFT filterbank to
obtain an estimate of the signal power over narrow bands
(much smaller than one kilohertz). Then, the data from all of
the nodes will be combined and processed via the algorithm
described above. This experiment shall demonstrate the effi-
cacy of the algorithm in improving the results of a distributed
spectrum sensing network.

Since a sufficient amount of data for analysis is just
beginning to be compiled using the usrp rx fscan.py script
at the writing of this paper, quantitative measurements us-
ing experimental data are unavailable. To illustrate that the
algorithm works based on the proposed assumptions, a sim-
ulation was created in Matlab. The simulation presupposes
sufficiently narrow bands and time synchronization of the
nodes’ measurements.

At the outset of the simulation, a vector s that contains the
source signals at each frequency is created. Each signal is
represented internally by a complex number with magnitude
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Fig. 2. The received power, the actual noise power at the receiver, and the
estimated noise power

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

 

 

Frequencies (unitless simulation only)

Si
gn

al
P

ow
er

(u
ni

tl
es

s)

Prec
Psig

P̂sig

Fig. 3. The received power, the actual signal power at the receiver, and
the estimated signal power
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and phase. Also, the transfer function h from each signal
source to the each node is randomly generated for each
frequency (also represented by a complex number). Then
the program runs through a loop over all the frequencies.
For each frequency in the loop, a noise level is randomly
determined and a matrix of normally distributed noise V
is generated. Then, the received signal is calculated using
X = hsH+V. Relevant quantities are recorded in vectors for
graphing. These include: the actual signal power, calculated
by taking a time average of the magnitude squared of the
elements of s at a specific frequency; the signal power
estimate, calculated from the equation for P̂sig; the actual
noise power, calculated by taking the time average of V over
all nodes and times; the noise power estimate, calculated
from the equation for P̂noise; and the total received power
(or simply the received power), calculated by taking the time
average of X over all nodes and times. These were recorded
for each of the 51 frequencies used in the simulation. The
results are graphed and shown in figures 2 and 3.

For this simulation, five nodes were simulated with 100
sets of measurements taken at differing times (synchronized
at each node). Signals with various levels of power were
generated at the following frequency indices: 13, 14, 15, 16,
17, and 31. All other signals were zero (considered inactive).
Noise was generated at all frequencies. The noise is shown
in Fig. 3. Notice in Fig. 2 that the algorithm is able to reduce
the peaks of noise at 22 through 25 even though these peaks
are comparable to the power being transmitted by the signals.
In Fig. 3, it is shown that the noise estimate recognizes this
peak as noise and attenuates peaks at 13 through 17 and 31.
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Fig. 4. Normalized correlation of the actual signal power with the signal
power estimate

Another plot used to analyze the effectiveness of the
algorithm was the normalized cross correlation of the actual
signal power with the calculated signal power estimate. This
is shown in Fig. 4. It almost exhibits the symmetry one
would expect from an autocorrelation function, and its value
at zero is 0.98 (almost unity, a perfect match). Fig. 5 shows
the crosscorrelation function of the received power (before

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Samples

C
or

re
la

ti
on

Fig. 5. Normalized correlation of the actual signal power with the average
of signal power of the nodes

processing) and the actual underlying signal power. The
central peak is approximately 0.75 or 0.23 less than the
estimate in Fig. 4. The plot itself doesn’t seem to be close
to the symmetrical shape one would expect if the received
power were a true mirror of the underlying signal power.

These results are satisfying, but more work remains to be
done. When sufficient data has been compiled, the algorithm
will be applied to the data. The results will be tabulated and
graphed. As shown in the simulation, this should demonstrate
a noticeable improvement in distinguishing signal power
from noise compared to using the received signal power
at one node alone. Hence, the proposed algorithm will
greatly improve the accuracy of a spectrum sensing model
implemented in a cognitive radio network.

3. SPECTRUM SELECTION ALGORITHM

The spectrum assignment in our system has a distributed
algorithm and each cognitive radio node selects its own
frequency band based on the probability of availability of
that frequency band. Game theory is used for this decision
making process.

Game theory is a mathematical framework which is used
to analyze the choices of players when the outcome for each
player depends on both his choice and the choices of other
players. This is similar to what we have in a cognitive radio
where the outcome for each node depends on the choice of
itself and the choices of the other nodes.

A game has three basic elements. These elements consist
of a set of players, an action space, and a utility function.The
set of players is denoted by N and is usually considered to be
equal to 1, 2, . . . , |N | ,where |N | is equal to the number of
players. Each player i has a set of available actions Ai. The
action space A is formed by calculating the cartesian product
of the sets of actions of all players. Each member of A is
called an action profile. Each player has a utility function ui
which maps the action space to the real numbers. The players
try to maximize their utility functions.
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A Nash Equilibrium (NE) is an action profile for which
unilateral deviation from this action profile will not result in
a higher utility. In other words, x = (x1, x2, ..., xN ) ∈ A is
a Nash Equilibrium if

uk(x) ≥ uk(x−k/x′k),∀x′k ∈,∀k ∈ N (3)

where x−k = (x1, x2, ..., xk−1, xk+1, xk+2, . . . , xN ) and
(x−k/x′k) = (x1, x2, . . . , xk−1, x

′
k, xk+1, xk+2, . . . , xN ).

When a NE is reached, the players are not willing to
change their decisions hence each NE can be considered as
a steady state solution for the game. A game may not have
a NE, and if a game has a NE the players actions might not
converge. However, for specific types of games there always
exists a NE, and the players actions will always converge.

Potential games are one type of game for which the
existence of NE and convergence of the player actions is
guaranteed [13] [14]. A game is called a potential game if
there exists a function v : A→ R such that

v(x−i/x′i)− v(x) = ui(x−i/x′i)− ui(x). (4)

The problem of dynamic frequency selection has been mod-
eled by potential games [15].

For our problem, a game G is defined. It will be shown
that G is a potential game. The player set N of G consists
of the cognitive radios, and the action set of player i ∈ N
is Fi where Fi is the set of available frequencies which that
player can use. Unlike [15] for our problem the occupancy
probability of every frequency band is known by each of the
cognitive nodes and hence we can define the utility function
in a different form. Therefore, PU can be considered an active
participant in the game. The utility function is defined as:

ui(f1, f2, . . . , fi, fi+1, . . . , fN ) =
{
Qfi

if fi 6= fj , ∀j 6= i
0 Otherwise

(5)
where Qfi

is the probability of the frequency band fi being
available.

In order to show that G is a potential game. The potential
function v is defined in the following way:

v(f1, f2, . . . , fN ) =
i=N∑
i=1

σ(fi)∑
j=1

Cfi
(j) (6)

where σ(fi) is the number of players using the frequency
band fi, and Cfi

is equal to

Cfi
(j) =

{
Qfi if j = 1
0 Otherwise . (7)

In order to demonstrate that this function is a potential
function for G, it must be shown that if a player i changes his
choice unilaterally the change in his utility function is equal
to the change in the potential function. Four cases should be
considered. The first case is when neither the current choice
f ′i nor the previous choice fi is occupied. The second case
is when f ′i is occupied but fi is not. The third case is when

f ′i is unoccupied but fi is occupied. The final case is when
both f ′i and fi are occupied. The following equations show
that the change in the utility function is equal to the change
in the potential function using equation (5).

1) ∀ j 6= i, fi 6= fj and f ′i 6= fj

ui(f−i/f ′i)− ui(f) = Qfi
−Qf ′

i
= v(f−i/f ′i)− v(f).

(8)
2) ∃ j 6= i, fi = fj and ∀ k 6= i, f ′i 6= fk

ui(f−i/f ′i)−ui(f) = 0−Qf ′
i

= v(f−i/f ′i)−v(f). (9)

3) ∃ j 6= i, f ′i = fj and ∀ k 6= i, fi 6= fk

ui(f−i/f ′i)−ui(f) = Qfi−0 = v(f−i/f ′i)−v(f). (10)

4) ∃ j 6= i, f ′i = fj and ∃ k 6= i, fi = fk

ui(f−i/f ′i)− ui(f) = 0− 0 = v(f−i/f ′i)− v(f). (11)

Equations (8) to (11) show that v is a potential function for
G which will result in having a game which will eventually
converge to a NE after a finite number of steps. The numeri-
cal analysis of this method will be demonstrated during SDR
challenge meeting.

4. STATUS OF IMPLEMENTATION, CONCLUSION AND
FUTURE RESEARCH

The need for a reliable background noise detection to
automate the detection of PU in a cognitive node [16] was ad-
dressed in this paper. The noise floor detection and spectrum
sensing are improved using the distributed sensing technique
discussed in the previous sections. This was demonstrated
through a computer simulation in Matlab. We are currently
working on the probabilistic modeling of PU activity and also
the spectrum selection algorithm.
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