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ABSTRACT 
 
Blind equalization and Automatic Modulation Classification 
(AMC) have been of significant importance for cognitive 
radios when the receiver has no information about the 
channel or modulation type. Choosing an appropriate 
equalizer is difficult when the channel is Multi Input Multi 
Output (MIMO), and when there is no information about the 
channel.  In this paper, an AMC based on cyclostationary 
feature detection and MIMO based Constant Modulus 
Algorithm (CMA) blind equalizers are used in conjunction. 
The probability of classification of the AMC is used as a 
metric and fed back to update the blind equalizer order. The 
equalizer and the AMC enhance the performance of each 
other. Computer simulations are given to illustrate the 
concept and yield promising results. 
 

1. INTRODUCTION 
 
One of the important aspects of cognitive radios is the 
ability to sense and characterize its RF environment and 
adapt accordingly [2]. Blind equalizers are used for 
recovering the transmitted input sequence using only the 
output signal with no knowledge of the channel. CMA is 
one of the popular blind equalization algorithms used for 
Single Input Single Output (SISO). The extension of CMA 
to MIMO systems is shown in [11]. It is also shown in [11] 
that the CMA equalizer can perfectly recover one of the 
input sequences from the output of the MOMO FIR channel 
thus reducing Co-Channel Interference (CCI) and Inter 
Symbol Interference (ISI). 
 
Another important component of cognitive radio is AMC. 
AMC improves the spectral efficiency of cognitive radio by 
adapting transmission according to the spectral environment 
[1]. In this paper, cyclostationary based signal detection and 
pattern matching proposed in [6] and [7] are used. Neural 

Networks trained using the Cyclic Domain Profiles (CDP) 
are used for signal classification due to their good pattern 
matching capabilities. It is shown in [6] that this AMC gives 
good performance under low SNR. The performance 
degradation of this AMC in the presence of the MIMO-FIR 
channel is shown. 
 
When the channel information is not known, choosing the 
length of the equalizer becomes a difficult task. In this 
paper, a unified framework for MIMO cognitive radios is 
proposed, i.e. MIMO based CMA is used in conjunction 
with the AMC. The order of the blind equalizer is adjusted 
based on the probability of classification of the AMC. 
 
This paper is organized as follows. In Section II, a brief 
background on blind MIMO equalization and MIMO based 
CMA is presented.  In Section III, the spectral correlation 
based AMC is discussed. The proposed unified framework 
and the algorithm for adjusting the number of taps in the 
equalizer are discussed in Section IV. Simulation results are 
shown in Section V, followed by the conclusion in Section 
VI. 
 

2. BLIND MIMO EQUALIZATION 
 

The basic block diagram of the MIMO system is shown in 
Fig. 1.  The d complex signals are passed through channels 

for ][nhij ,...1 Mi = and  to generate M outputs 
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The channel output  is ][nx
 

][][][ nanHnx ∗=  .                                                            (3) 
 
Equation (3) can be written in the Z-domain as 
 

),()()( zazHzx =                                                                (4) 
 
where ,  and are Z-transforms of ,   
and  respectively. 
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Fig1: MIMO-FIR Channel 
 

Blind equalizers are used to recover the input sequence 
only from the output . The block diagram of the 

MIMO equalizer is shown in Fig.2. To recover the input 
sequence we need to find  such that 
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where d  is a   identity matrix and  is the 
equalizer matrix given by 

I dd × ][nG
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Only the statistics of input signals are known, and hence the 
MIMO blind equalizer is subjected to phase and 

permutation ambiguity. Therefore the best possible 
equalizer is  
 

),()()( zPDzHzG =                                                       (7) 
where  P is the permutation matrix and D(z) is the diagonal 
matrix defined as 

},,...,{)( 211 njnj zezediagzD d −−= θθ  
 
where },{ ππθ −∈i . The equalizer which satisfies (7) is 
known as the distortion-less recovery equalizer.   
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Fig 2: Blind Equalization for MIMO channels 
 

2.1) CMA for MIMO FIR Channel 
 
CMA for SISO is extended to MIMO systems in [11]. A 
brief overview of MIMO CMA from [11] is presented here. 
The block diagram of the MIMO CMA is shown in Fig 3.  
In order to recover the input sequence from the output , 
after each channel output, a linear filter is added. The 
coefficients of the filter are adjusted to minimize the Godard 
cost function [12], [13] and [14]: 

][nx
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One of the important theorems from [11] is stated here. 

a

]  [nad
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Theorem: For a MIMO FIR channel of length  , if   
is irreducible with  being of full rank, then any 
MIMO-CMA FIR blind equalizer with length 
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 can achieve global convergence regardless 

of the initial setting.  
 
The above theorem states that the MIMO-CMA equalizer 
can recover one of the input signals, remove ISI, and 
suppress CCI, regardless of the initial setting. 
 
 

 
Fig 3: MIMO-CMA Blind Equalizer 

 
3. CYCLOSTATIONARITY BASED AMC 

 
3.1. Background on cyclostationary spectral analysis. 
If the mean and autocorrelation of a process  is 
periodic, then the process is said to be a cyclostationary 
process [8] i.e.   and  

 for all 

)(tx
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),(),( 00 utRTuTtR xx =++ t  and u .  Since the 

autocorrelation function is periodic it can be expressed as a 
Fourier series [9]. 
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The Weiner theorem for stationary processes can be 
extended to cyclostationary processes. The Spectral 
Correlation Function (SCF) is defined as a Fourier 
transform of (12)  
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In practice there is only a limited number of samples 
available and hence SCF needs to be estimated from these 
samples. Let us define the cyclic periodogram as [10], [11]: 
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where    is the time invariant Fourier transform 
given by 
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The estimate of SCF can be obtained by the frequency 
smoothing of (14) 
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It is shown in [7] that SCF can be obtained by increasing the 
observation length T and decreasing , that is fΔ
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3.2. Spectral Coherence (SC) and  profile: 
SCF is a correlation of frequency components shifted by 

2
α

−f  and 
2
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+f . It is intuitive to define Spectral 
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2
1

)]
2

()
2

([

)(

αα

α
α

−+

=

fSfS

fS
C x

x   .                                       (18) 

                                                           
The magnitude of SC is always between 0 and 1. In order to 
reduce the computational complexity, one just uses the 
Cyclic Domain Profile (CDP) or α-profile which is defined 
as 

)(max)( fCI x
f

αα = .                                                        (19) 

 
3.3. Automatic Modulation Classifier 
Most modulated signals exhibit second order 
cyclostationarity [8]. From the CDP of the signal, important 
information about the signal like modulation type, keying 
rate, pulse shape, and carrier frequency can be obtained, [6] 
and [5].  Fig. 4 and Fig. 5 show the Cyclic Domain Profile 
(CDP) function for BPSK and QPSK respectively. To 
generate these plots the SQRC pulse with a roll off factor of 
0.32 was used. Time domain and frequency domain 
smoothing were performed in order to estimate the SC. For 
time averaging the method suggested in [7] is used, i.e. 

∑
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 N= 20 and T= 128 are used, which means a total of    N x T 
= 1560  samples were used.  
 
The block diagram of the cyclostationarity based AMC is 
shown in Fig. 6.  SCF creation and CDP extraction were 
discussed in the previous section. The final stage of the 
AMC is to classify the α-profile using pattern matching. 
Pattern matching is performed using a feed forward neural 
network. The MAXNET structure shown in Fig. 7 is used. 
Each feed forward network has two hidden layers with 5 
neurons in each layer, and the activation function used 
is . The network is trained using the back 
propagation algorithm with an initial learning rate of η=0.05 
and a momentum constant of α=0.7. The input to the feed 
forward network is the 200 point α-profile and the output 
varies between [-1, 1]. The function of the MAXNET 
structure is to choose the highest value among all the feed 
forward networks.  

)tanh(x
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Fig 5: Cyclic Domain Profile for BPSK. 
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Fig 6: Cyclic Domain Profile for QPSK. 
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Fig 7: Neural Network structure. 

 
4. PROPOSED METHOD 

 
In general, all fading channels are modeled as time varying 
FIR filters and hence the length of the above equalizer, i.e. 
K, plays an important role. When the receiver has no 
information about the channel, choosing the length of the 
equalizer (K) is difficult. In this paper we choose the value 
of K based on the probability of classification of the AMC. 
The block diagram of the proposed method is shown in Fig 
8. A simple algorithm to choose the value of K is shown 
below. 
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Fig 8: Proposed system block diagram 
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Algorithm 
Step 1: Choose a small initial length for the equalizer, i.e. 
K=2. 
Step 2: find the probability of classification for the AMC 

. )( ap
Step 3: increase the number of taps in the equalizer if 

. tha pp <
Step 4: again find  and there is no need of updating if 

 or else repeat step 2. tha pp >
 

5. SIMULATION RESULTS 
 

Experiment 1: To show the recovered symbol sequence and 
convergence. 
 
In this experiment a 2-input/3-output MIMO channel is 
considered, and the channel impulse response is given by 
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Two QPSK sequences at SNR = 15dB is considered. The 
length of the equalizer considered was K=6 and the learning 
rate considered was 0001.0=μ .The received constellation 
of the signal before and after equalization is shown in Fig 9. 
It can be seen from the simulation that only one the 
sequence can be recovered, but we don’t know which of the 
input signals. In order to show convergence, the cost 
function is plotted and number of iterations is shown in Fig 
10. 
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Fig 9: Received Samples and equalized symbols . )(1 nx )(ny
 

Experiment 2: To show the performance of the AMC 
a)  Performance of AMC 
The network was trained with 500 α-profiles (each α-profile 
has 200 points) of each BPSK, QPSK, FSK and MSK. No 
noise was added during the training process. The 
performance of the AMC in the presence of AWGN is 
evaluated using Monte Carlo simulations. Table 1 shows the 
probability of classification of AMC in the presence of the 
noise of SNR= 5dB.  It is also shown in [7] that the 
performance of the AMC improves when the network is 
trained in the presence of noise of different variances. 
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Fig 10: Convergence of CMA to one input sequence. 

 
  
 

 BPSK QPSK FSK MSK 
BPSK 0.999 - - - 
QPSK - 0.957 - 0.002 
FSK - 0.001 0.987 - 
MSK - - - 0.99 
Table 1: Probability of classification of AMC in the 

presence of AWGN (SNR = 5dB). 
 

b) Performance of AMC in the presence of a FIR channel. 
In this section, degradation in the performance of AMC due 
to the presence of the MIMO FIR channel is shown using 
simulations.  The channel considered was a 2- input /3-
output MIMO channel with each entry modeled as a random 
8-Tap FIR filter. The 2-inputs considered were of the same 
modulation type and AMC was added to all 3-outputs. 
Monte Carlo simulation is performed on each output and the 
average probability of classification for each modulation 
scheme is presented in Table 2. The simulation results 
indicate that AMC provides inconsistent results in the 
presence of a multipath fading channel for a particular 
modulation scheme and hence the probability of correct 
classification decreases. 
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 BPSK QPSK FSK MSK 
BPSK 0.41 0.20 - 0.39 
QPSK 0.32 0.31 - 0.35 
FSK - 0.14 0.72 0.14 
MSK 0.62 - - 0.38 

Table 2: Probability of classification for  AMC in presence 
of a MIMO FIR channel (SNR=5dB). 

 
 

C) Performance of AMC in the presence of an equalizer of 
different lengths. 
In this section the effect of using an equalizer of different 
order for a particular channel is shown using simulations. 
For the 2-input/3-output MIMO FIR channel considered in 
the previous section, MIMO CMA is added and one of the 
input sequences is recovered.  The length of the MIMO 
CMA equalizer is varied. Monte Carlo simulations are 
performed and results are shown in Fig 11. The results show 
that the performance of AMC improves by increasing the 
order of the equalizer. These results illustrate the promise of 
the algorithm proposed.  
 

5. CONCLUSION  
 

In this paper, performance degradation of the 
cyclostationarity based AMC in the presence of a MIMO 
FIR channel was shown by simulation. MIMO CMA was 
implemented and it was shown that one of the input 
sequences can be recovered, suppressing the others. Hence 
by proper initialization, the desired signal can be obtained 
thereby reducing ISI and CCI.  A combined MIMO CMA 
blind equalizer and AMC was proposed. The effect of the 
length of the equalizer on the performance of AMC was 
demonstrated based on a simple algorithm to update the 
length of the equalizer.  
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