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ABSTRACT

The success of a classification method will depend largely 
on the independence and expressivity of the features it 
chooses to observe. In that regard the Discrete Wavelet 
Transform ought to be especially useful, thanks to its 
orthogonality properties. We have already developed 
applications which use Wavelet Transforms of Power 
Spectrum estimates as the basic observations for classifying 
a variety of digital signals in adverse HF environments. 
Even with the simplest of scoring and modeling techniques, 
these applications have proved to be extremely accurate, 
robust, and efficient. However, these applications represent 
only a first step into a more systematic exploitation of 
Wavelet-based observations for general signal 
classification. Starting with an informal illustration of the 
original applications, we describe ongoing work at refining 
and extending Wavelet techniques towards a comprehensive 
system for signal classification. In particular we address 
issues in multiway classification, markovity versus 
cyclostationarity, online training and updating, and heuristic 
methods for reducing the computational overhead 
associated with complex Wavelets and quadrature signals.

1. INTRODUCTION

In  this  paper  we  describe  a  novel  general  method  for 
automatic classification of a large class of waveforms. The 
technique  described  has  been  implemented  and  used 
succesfully in a variety of fielded applications. It is simple, 
efficient, very accurate, and robust.

The success of a classification method will depend 
largely on the independence and expressivity of the features 
it chooses to observe. In that regard the Discrete Wavelet 
Transform [1] is found to be especially useful, thanks to its 
orthogonality properties. 

The first key element of the technique is the extraction 
of  features  from  power  spectrum  estimates  using  the 
Wavelet Transform. In this sense, the technique constitutes 
a  form  of  signature  or  template  matching  against  an 
exemplar derived from live data. However the second key 
feature is the accumulation of evidence over a sequence of 

trial  matches.  It  is  this  accumulation  of  evidence  that 
provides much of the discrimination power in adverse signal 
environments. The third key feature is an array of final tests 
that  are  applied  only  when  the  weight  of  accumulated 
evidence  exceeds  certain  predetermined  thresholds.  The 
robustness of the technique is afforded in large measure by 
these additional tests.

This method has proved effective in applications where 
either  the  aggregate  signal  environment  is  adverse 
(atmospheric  or  impulsive  noise,  adjacent  channel 
interference,  selective  fading)  or  the  collection  point  is 
disadvantaged (poor SNR, receiver mistuning).

Our  aim in this  discussion  is  to  provide  an  informal 
overview of the method rather than a rigorous exposition of 
the  component  steps.  With  that  as  a  starting  point,  we 
proceed to outline the directions in which the technique can 
be expanded and refined.

2. THE BASIC OBSERVATIONS

The basic  observations  in our  technique are  sequences  of 
power  spectrum  computations.  An  ongoing  signal  is 
transformed into a series of data frames representing power 
spectrum estimates computed by FFT. Each frame is then 
normalized to a peak power of 0dB, clipped at the low end 
to  a  uniform minimum (typically  -48dB),  and  justified  in 
frequency such that the total frequency span represented is 
the same for all signals (typically 4kHz represented by 1024 
bins).  Each  processed  frame  is  then  subjected  to  the 
Forward  Discrete  Wavelet  Transform  (typically  using  a 
Daubechies  20  [2]  mother  wavelet).  From  the  resulting 
frame  of  wavelet  coefficients,  a  contiguous  subset  of 
coefficients is extracted (typically, the low ½ of the points). 
In  addition  the  Wavelet  Power  Spectrum  (WPS)  [3]  is 
computed from the full set of coefficients.

The  resulting  subvector  of  coefficients,  along  with 
normalized  WPS  values,  constitute  the  feature  set  of  a 
single frame of the input signal.

The  chief  difference  between  observation  sequences 
and exemplars is merely that an exemplar is represented by 
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a  single  subvector-and-WPS  collection,  which  was  pre-
computed  from  the  total  estimated  power  spectrum  of  a 
segment of live data of interest. In  a later section we will 
touch on the uses of multiple exemplar representations, as 
they may apply to signals exhibiting significant markovity.

3. COMPARISON AND SCORING

The main iteration in the technique consists of repeatedly 
forming  the  next  observation  frame  from  the  candidate 
signal,  and  comparing  it  with  the  exemplar  frame.  Each 
comparison  yields  a  score.  The  score  for  each  frame  is 
published to a supervisory procedure.

There  are  a  number  of  ways  to  compare  the  frames, 
amounting  to  score  computations  that  are  distributed 
statistically  differently  for  different  applications.  For 
purposes of this discussion, it suffices that the comparison 
yield  some  estimate  of  the  distance  [4]  between  the 
observation and exemplar wavelet coefficient vectors.

For example, one comparison might be performed by 
computing the vector cosine between the wavelet coefficient 
subvectors of the observation and exemplar frames.

Roughly, “close” vectors are understood to correspond 
to similar spectra. It should be easy to see that accumulation 
of scores is needed since the variance of estimates in short-
term spectral  frames.  A comparison between observations 
made on overall spectral estimates would be effective, but 
since  the  desire  is  for  an  online  system,  the  method  of 
accumulating scores makes it possible to identify matches as 
close as possible to their first occurrence in the candidate 
signal.

An  additional  twist  is  applied  in  the  “real” 
implementation. The frame-by-frame comparison is applied 
in  fact  to  segments  of  the  power  spectrum  vectors  at 
multiple offsets, and the best match distance and offset are 
published.  This  adds  little  complexity  to  the computation 
but eliminates most of the effects of receiver mistuning.

4. PRIMARY SCORE EVALUATION

As scores are produced by the comparison operation, they 
are  published  to  a  supervisory  process.  The  job  of  the 
supervisor is simple. It merely takes the most recent score 
and adds it to the current aggregate score for the candidate 
stream.  If  the  resulting  aggregate  score  exceeds  a 
predetermined threshold, the supervisor proceeds to execute 
secondary tests.

5. SECONDARY SCORE EVALUATION

The Primary test threshold is tunable, in the sense that it can 
be tweaked to be more or less permissive. (It  will be seen 
that in the rigorous version of this method, favoring Type I 
or  Type  II  errors  can  have  significant  consequences  for 
multiway classification.) A more permissive setting puts a 

great  deal  of  emphasis  on  secondary  testing.  In  this 
technique,  the  secondary  test  consists  of  a  similarity 
measure  much like  the main  spectrum/wavelet  coefficient 
vector  distance,  but  carried  out  on  the  WPS.  The  test 
consists of a single scalar comparison of distances between 
the WPS values of the observation stream to date and the 
exemplar. For wavelet-based features, the WPS is effective 
at summarizing the general concentration of details. In other 
words,  it  is  capable  of  distinguishing  whether  similar 
features  also happen in the “right  place” in the spectrum. 
This  is  especially  important  in  discriminating  among 
closely-related signals.

Observation  streams  that  pass  the  secondary  test  are 
signaled as showing onset of the signal of interest.

In  some  applications,  the  entire  process  is  continued 
indefinitely, since the disappearance of the signal of interest 
may also be consequential.

6. HOW GOOD IS IT?

One realization of  this method has been integrated into a 
system  for  classifying  a  family  of  HF  signals.  For  this 
application,  a  complete  suite  of  exemplars  was  prepared 
from live sample data covering the total repertoire of signals 
emitted by devices from a single commercial vendor.  The 
goal was to distinguish these signals from a fairly extensive 
universe of signals of every kind found on HF.

The  classifiers  associated  with  these  exemplars  were 
subjected  to  an  extensive  battery  of  tests  against  over 
10,000  signal  samples  of  virtually  every  common  type, 
down to 3dB SNR and up to 20dB channel fading, with up 
to 3kHz mistuning.  A typical  result  was 100% success  at 
identifying signals of interest within 200ms of onset, with a 
false  alarm  rate  of  less  than  7%.  Typically,  a  classifier 
algorithm would  run  at  16  times  real  time on  a  1.5GHz 
consumer-level desktop.

On another front, an early version of this technique is 
employed  by  the  VAD  detection  system  running  on  the 
Agilent E3238S Signal and Intercept Collection Station.

7. EXTENSIONS AND REFINEMENTS

7.1. Multiway classification
The  method  described  thus  far  only  applies  to 

distinguishing a single exemplar from all other possibilities. 
It  is  desirable  to  extend  the  method  to  distinguish  one 
among a set of possibilities, from all remaining possibilities. 
The most favorable form of this configuration would be a 
process  that  assigned  weights  for  a  given  signal  as  an 
instance of any of the items of interest.

The method of accumulating evidence from comparison 
with exemplars creates difficulties here. The chief reason is 
that,  at  root,  the  technique  measures  non-normalized 
distances between vectors. It is not meaningful to compare 
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scores  between  different  exemplars.  The  upshot  is  that 
accumulating  sequences  of  evidence  may  reach  their 
determining thresholds at different stages. 

If  we  want  classifiers  to  run  in  precise  parallel,  the 
comparisons  must  in  fact  be  converted  to  evaluations  of 
likelihood  based  on  probability  models.  The  essential 
component  of  such  a  change  is  the  ability  to  normalize 
models based on misclassification cost [5]. This subject will 
be treated in greater depth in a subsequent paper.

7.2. Markovity and Cyclostationarity
A perceived  liability of  this technique  is  its  apparent 

dependence  on  stationarity  in  the  candidate  signals. 
Cyclostationarity  [6]  appears  to  circumvent  this 
shortcoming. However, we conjecture that cyclostationarity 
is  a  sub-case  of  the  larger  issue  of  markovity  among 
probability  models.  This,  too,  we  will  address  in  a 
forthcmoing discussion.

7.3. Real Wavelets with Complex Signals
Another shortcoming of this technique is the fact that it 

is  confined  to  real  (that  is,  not  quadrature)  signals. 
Furthermore complex wavelets are usually seen as incurring 
disproportionately high  computational  overhead.  We have 
developed  a  technique,  however,  for  reducing  wavelet 
computations  on  specifically  quadrature  signals,  to  real 
wavelet computations. This technique relies on the fact that 
all  frequency  components  in  quadrature  signals  exhibit 
constant  phase offset,  which survives  any modification of 
the magnitude components of the complex data. Once again, 
this algorithm will be detailed in a forthcoming paper.

8. CONCLUSION

We  have  described  a  simple  and  effective  method  for 
applying the Discrete  Wavelet  Transform to sequences  of 
power spectrum estimates, for the purpose of automatically 

classifying  signals  of  interest.  This  method  has  been 
realized  and  successfully  applied  in  a  number  of  fielded 
systems. Extensions and refinements of the method to cover 
a  wider  variety  of  signal  classes  and  presentations  are 
straightforward and under development.
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