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ABSTRACT
Modulation forensics detect the modulation type in wire-

less communications by the received signal only. It provides
a powerful tool for spectrum sensing since by identifying
the modulation type, the secondary users in cognitive radio
systems can detect whether the primary user occupies the
spectrum. In this paper, we investigate modulation forensics
of linear digital modulations and space-time diagonal alge-
braic codes in slowly varying, frequency-selective fading
channels. With unknown channel vector, and phase distor-
tion at the receive side, we derive a composite test consisting
of second-moment nonlinearity and maximum likelihood
tests, and discuss the performance and the forensics system
confidence measure. It is shown that the proposed algorithm
achieves almost perfect identification of the space-time cod-
ing, and high accuracy rate of the modulation type.

1. INTRODUCTION

Within the past decade, the explosive development of wire-
less communication technologies has facilitated the trans-
mission of all kinds of information and data over wireless
channels. High traffic of emerging wireless applications
has resulted in a shortage of spectrum–most of the usable
electromagnetic spectrum has already been allocated for li-
censed use, while the unlicensed frequency bands are over-
crowded. To alleviate this problem, a new spectrum shar-
ing paradigm called dynamic spectrum access, where li-
censed bands are opened to unlicensed operations on a non-
interference basis, has been studied [1].

There are two kinds of users in a cognitive radio system:
licensed are referred to as primary users, while unlicensed
users that access spectrum opportunistically are referredto
as secondary users. Secondary users must be able to scan a
certain spectrum range and intelligently decide which spec-
trum bands can be used for its transmission. This process
is called spectrum sensing. During spectrum sensing, if
a secondary user detects that it is within a primary user’s
protected region, it refrains from accessing that band and
searches for another band that is accessible. If no primary
users are detected, ideally the secondary users coordinate
with each other to share the unused spectrum.

To maximize the throughput of a cognitive radio sys-
tem, spectrum sensing must be both reliable and fast. It
must have very high accuracy to ensure that primary users’
privileges are not infringed upon, and must work very fast

to minimize the secondary users’ spectrum-searching time.
Note that we assume the secondary users know the primary
users’ communication protocols, such as the modulation method.
If the secondary users can tell the modulation types of the
signal in the spectrum just by listening to the band, spec-
trum sensing can be done without any interference to the
primary users. In this paper, we utilize modulation type as
a distinguishing feature of the primary users, and propose
a high-accuracy modulation forensics detector for spectrum
sensing.

The first step of the modulation forensics detector is pre-
processing as in Figure 1. In all the prior art, the prepro-
cessing may include noise reduction, estimation of carrier
frequency, symbol period, signal power, and equalization.
The second step is the modulation classification.

In the literature, two categories of classification approaches
have been adopted to tackle the modulation forensics prob-
lem. One is the statistics-based pattern recognition approach,
in which features are extracted from the received signal and
their differences are used for decision making [2], [3],[4].
Although statistics-based approaches may not be optimal,
they are usually simple to implement with near-optimal per-
formance, when designed properly. The other category is
likelihood-based approach, in which the likelihood function
(LF) of the received signal is computed and a likelihood ra-
tio test is used for detection [5],[6], [7],[8], [9],[10]. The
likelihood-based method is shown to be asymptotically op-
timal under additive Gaussian noise in [5], and the theoreti-
cal performance bound is derived under the assumption that
all communication parameters are known.

In recent years, new technologies for wireless commu-
nications have emerged. The orthogonal frequency divi-
sion multiplexing (OFDM) systems have become one of the
most popular digital modulation schemes due to the effi-
ciency of OFDM technique in transmitting information in
frequency-selective fading channels without complex equal-
izers [11],[12]. Multiple-input multiple-output (MIMO) with
multi-antenna space-time encoding [13] is also widely used
in modern wireless communication systems to achieve trans-
mit diversity. These emerging technologies in wireless com-
munications have raised new challenges for the designers
of the forensics identifier of discriminating between OFDM
and single-carrier modulations [14] and identification of sig-
nals transmitted from multiple antenna systems. As a spectrum-
sensing tool for cognitive radio, our modulation forensics
detector must not only detect the conventional modulations

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Pre-

processing
ChannelsModulator

Input

symbols

Receiver additive noise 

Modulation

classifier

Modulation Forensic 

Detector

Figure 1: Modulation Forensics System Model

like PSK, but also consider modern wireless communication
technologies.

Most of the prior works only discuss single input single
output (SISO) systems, but emerging standards like WiMAX
and LTE use space-time coding widely. For forensics pur-
pose, it is crucial to differentiate MIMO and SISO systems,
as well as how many transmit antennas are used by the trans-
mitter, and which space-time coding and modulation scheme
is employed.

In this paper, we propose a SISO/MIMO modulation
forensics detector in a frequency-selective fading channel
for spectrum sensing. In Section 2 the modulation forensics
detector problem formulation is presented. The forensics
detector methodology is proposed in Section 3. Simulation
results are discussed in Section 4, followed by conclusions
in Section 5.

2. PROBLEM FORMULATION

Figure 1 shows the system model of the forensics detector.
The original symbols are modulated (and possibly space-
time coded) then traverse the fading channel via an unknown
number of transmit antennas. The input of the modulation
forensics detector is the signal directly received from the
secondary user’s receive antenna.

Assumption: We assume the wireless channels are slowly-
changing frequency-selective fading channels with finite-
length impulse responses. The transmitter can use single
or multiple antennas and the number of transmit antennas
is unknown. The additive noise at the receiver is modeled
as zero-mean white Gaussian noise, in which the signal-
to-noise ratio can be estimated. In spectrum sensing, the
secondary users know the communication protocol of the
primary user, therefore we can assume the forensics detec-
tor know the signal interval. Unknown parameters include
phase distortion, channel distortion, the number of transmit
antennas, the space-time code if multiple antennas are used,
and the modulation type.

Received signal model: The received baseband signal
sequence by one receive antenna can be expressed as

r(t) =

q∑

l=1

∞∑

k=−∞

x
(l)
k hl(t − kT )ejθl + n(t), (1)

wherex(l) = (..., x
(l)
1 , x

(l)
2 , .....)T is the transmitted symbol

sequence through thelth channel,q is the number of trans-
mit antennas,T is the symbol interval,hl(·) is the impulse

response of thelth channel fading channel,θl is the phase
distortion of thelth channel, andn(·) is the additive Gaus-
sian noise.

Candidate space-time codes: Detecting orthogonal block
space-time code has been addressed in our prior work [15].
Here we broaden our approach by including diagonal al-
gebraic codes [16],[17], which are the most popular full-
diversity space-time code that achieves the highest data rate.

Candidate SISO modulation types: Without loss of
generality, for the SISO modulations our modulation foren-
sics detector focuses on the family of phase-shift keying
(PSK) modulations, including BPSK, QPSK, and 8PSK [15].
The same forensics methodology can also be applied to other
conventional modulations, such as quadrature-amplitude mod-
ulation (QAM).

3. FORENSICS DETECTOR

In this section, we discuss the methodology of the modu-
lation forensics detector. First we introduce a subspace al-
gorithm to jointly estimate the channel coefficients, channel
phase distortion, and possible SISO modulation type in Sec-
tion 3.1. Then based on the estimated channel coefficients
and phase distortion, we identify the space-time code and
number of antennas by the equalized received signal in Sec-
tion 3.2.

3.1. SISO Modulation Forensics Over Frequency-Selective
Fading Channel

The first step of the modulation forensics over frequency-
selective fading channel is to recover the transmitted symbol
from the faded received signal. Here we combine the sub-
space blind equalization algorithm [18] and the likelihood-
based approach to identify SISO modulation types over frequency-
selective fading channels.

Assume there is only one transmit antenna, then the re-
ceived signal at the modulation forensics detector becomes:

r(t) =
∞∑

k=−∞

skh(t − kT )ejθ + n(t), (2)

wheresk is an information symbol of an unknown PSK sig-
nal constellationS, h(·) is the discrete-time channel im-
pulse response,T is the known symbol interval,θ is the
phase distortion, andn(·) is the additive white Gaussian
noise with varianceN and mean zero. We assume that the
impulse responseh(·) has finite support, i.e.h(t) = 0 for
t ≥ JT ; J ∈ N .

3.1.1. Estimate the phase-distorted transmit symbols

First we estimate the transmitted phase-distorted symbolsin
the noiseless environments (noise varianceN = 0) by the
subspace method in [18], and extend the estimation method
to noisy environments.

Following the subspace algorithm in [18], we observe
and sample the received noiseless signalr(t) in (2) for du-
rationMT by J times the baud rate, i.e., taking samples at

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



nT +δ1, nT +δ2,...,nT +δJ , 0 < δ1 < δ2 < ... < δJ < T ,
where the FIR channel has lengthJT . Therefore, we have
JM equations:

y(j) = ejθsJ−1hj + sJ−2hJ+j + . . . + s0h(J−1)J+j ,

y(j + J) = ejθsJhj + sJ−1hJ+j + . . . + s1h(J−1)J+j ,

...

...
y(j + J(M − 1)) = ejθsM+J−2hj + sM+J−3hJ+j

+ . . . + sM−1h(J−1)J+j , (3)

where

y(Jn − J + j − 1) = r(nT + δj), and
hJn+j−1 = h(nT + δj) ∀ 1 ≤ j ≤ J. (4)

Let zj andsj be

zj = [y(j) y(J + j) y(2J + j)

. . . y((M − 1)J + j)]T ;
sj = [sj sj+1sj+2 . . . sM+j−1]

T ,
0 ≤ j ≤ J − 1. (5)

Therefore, we have

Z = eθ
SH (6)

where

Z = [z0 z1 . . . zJ−2 zJ−1],
S = [s0 s1 . . . sJ−2 sJ−1],
H = [h1 h2 . . . hJ−1 hJ], where
hk = [hJ(J−1)+k−1 hJ(J−2)+k−1 . . .

hJ+k−1 hk−1]
T ,

1 ≤ k ≤ J. (7)

(7) tells that for0 ≤ j ≤ J − 1,

ejθ
sj ∈ span{z0, z1, ... zJ−1}. (8)

Therefore, for0 ≤ j ≤ J − 1, we have

ejθ
sj =

J−1∑

k=0

λ
(j)
k xk, (9)

whereλ
(j)
k is the element on thekth row andjth column of

the matrixH−1.
Note that from the definition ofsj in (5), the bottom

M −1 elements ofsj is the same as the topM −1 elements
of sj+1. Let uj andvj be the bottomM − 1 and topM − 1
elements ofzj , respectively, then we have

Φλ = 0, (10)

where

λ = [λ
(0)
0 ...λ

(0)
J−1 λ

(1)
0 ...λ

(1)
J−1 ...λ

(J−1)
0 ...λ

(J−1)
J−1 ]T ,

(11)

and

Φ(M−1)JxJ2 =




u v 0 0 · · · 0 0 0
0 u v 0 · · · 0 0 0
0 0 u v · · · 0 0 0

...
...

...
...

.. .
...

...
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · u v




,

(12)
which hasJ block-columns, 0 represents theM − 1 by J
zero matrix, and

u = [u0 u1 ... uJ−2 uJ−1],
v = [v0 v1 ... vJ−2 vJ−1]. (13)

From (10), we know thatλ is in the null space of the
(M − 1)J by J2 matrixΦ. If Φ has a one-dimensional null
space, thenλ can be correctly calculated, leading to per-
fect reconstruction of the phase-distorted transmit symbol
sequenceejθ{si}

J
i=0. It has been proved in [18] that if the

channel matrixH is invertible, then

P (Φ has a one-dimensional null space) ≥

1 −
1

(size of the symbol set)M−2J
. (14)

Which means as long as the observation is long enough,
with probability 1 that the phase-distorted symbol sequence
can be recovered.

In the noisy situation, the same algorithm can be applied
with the small modification that in solving forλ, instead of
finding the null space ofΦ, we find the singular vector cor-
responding to the smallest singular value ofΦ. Therefore,
we can still estimate{s′i}

J
i=0 by the same algorithm [18].

3.1.2. Likelihood-based SISO Modulation Type Detec-
tion

After we have the estimated channel coefficients for the fad-
ing channel, we can apply equalization to the received base-
band signalr, and the equalized signal sampled by the baud
rate can be formulated as follows:

r
′ = ejθ

s + n
′. (15)

With a perfect equalizer,n′ is a zero-mean Gaussian random
vector with varianceN .

Given the equalized signal in (15), the SISO modulation
forensics detector, with the likelihood-based approach, is
formulated as a multiple composite hypothesis testing prob-
lem [19]. Under hypothesisHi, meaning theith modulation
was transmitted,wherei = 1, ..., Nmod, the likelihood func-
tion can be computed by estimating the unknown parameter
θ. By assuming that the equalized received symbols are sta-
tistically independent, under hypothesisHi, the conditional
likelihood function is given by

f(r′|{s
(i)
k }K

k=1, θ) =
K∏

k=1

1

πN ′
exp{−

1

N ′
|r′k − ejθs

(i)
k |2}
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=
1

(πN ′)K
exp{−

1

N ′
‖r′ − ejθ

s
(i)‖2} (16)

and the likelihood function is computed by averaging over
the unknown signal constellation points{s(i)

k }K
k=1 and re-

placing the unknown phase distortion with its respective es-
timate. Thus, the likelihood function under theith hypothe-
sis can be written as

LF (i)(r′) = E
{s

(i)
k

}K

k=1

[f(r′, θ̃|{s
(i)
k }K

k=1)] (17)

whereE
{s

(i)
k

}K

k=1

[·] is the expectation with respect to the un-

known transmitted symbol constellation points andθ̃ is the
unknown phase distortion estimates under theith hypothe-
sisHi.

The final decision of modulation schemeĩ is made based
on maximum likelihood criteria, that is̃i satisfies

ĩ = arg max
i=1,...,Nmod

LF (i)(r′) (18)

Since the likelihood function in (17) is computed by us-
ing the maximum likelihood estimate of phase distortion,θ̃
should satisfies

∂f(r′|{s
(i)
k }K

k=1, θ)

∂θ

∣∣
θ=eθ(i) = 0 (19)

By solving (19), we show that

θ̃(i) = −
j

2
ln

(
s
(i)H

r

rHs(i)

)
(20)

3.2. Space-Time Code Identification

If only one transmit antenna is used, the SISO modulation
forensics presented in Section 3.1 can be used to detect the
modulation type. Then the next question to answer is how to
identify the number of transmit antennas. If multiple trans-
mit antennas are used, how do you identify the space-time
code?

3.2.1. Estimating number of transmit antennas

Here we will propose an algorithm to estimate the number
of transmit antennas based on the received signal (1) with
unknownq based on the subspace properties.

It is easy to prove that if there are multiple transmit an-
tennas, i.e.q > 1 in (1), the subspace SISO equalization in
Section 3.1 will fail. Which means, the null space ofΦ in
(12) will not be rank 1 in noiseless space. Furthermore, in
the noisy environment, the smallest singular value ofΦ will
be relatively large.

The subspace blind equalization can be extended to the
multiple antenna case [20]. Similarly, if there areq trans-
mit antennas, theΦ matrix in the MIMO case will have a
q-dimensional null space when there is no additive noise.
Based on this property of the subspace algorithm, our mod-
ulation forensics detector estimates the number of transmit
antennas by threshold the singular values ofΦ as follows:

• Assume there areq transmit antennas, then calculate
theΦ matrix by the subspace algorithm

• Threshold the singular numbers ofΦ by TH, which
is a threshold defined by the forensics detector. The
value of TH should vary with SNR. Letq′ be the
number of singular numbers ofΦ that are less than
TH.

• If q′ ≈ q, return the number of transmit antenna being
q. Otherwise, apply the same estimation procedure on
q + 1 transmit antennas.

3.2.2. Space-Time code detection

After estimating the number of transmit antennas, the next
step of the MIMO modulation detector is to detect the space-
time code. In this section, we use the support vector ma-
chine to classify the space-time code from the MIMO-equalized
received signal.

If we sample the MIMO-equalized received signal by
one received antenna at the baud rate, we will have

r
′ =

q∑

l=1

x
(l)ejθl + n′, (21)

whereq is the number of transmit antennas, andthetal is
the phase distortion of the channel between thelth transmit
antenna and the receive antenna.

Time-domain codeword length estimation: Since we
already know how many transmit antennas are used, time-
domain codeword length of the block code is the most im-
portant information about the space-time code. Here we
propose the second-moment test to identify the time-domain
codeword length for diagonal, algebraic, space-time codes.

We define the second moment test as

M(k, d) = E[r
′2
k r

′2
d+k] − E[r

′2
k ]E[r

′2
d+k]. (22)

Note that the diagonal codes are block based, which means,
rk andrd+k are independent ifd ≥ p, wherep is the time-
domain codeword length. Therefore,

E[r
′2
k r

′2
d+k] = E[r

′2
k ]E[r

′2
d+k] ∀d ≥ p, (23)

resulting inM(k, d) = 0, ∀d ≥ p.
If rk andrd+k are in the same block, thenrk andrd+k

are linearly dependent since they share at least one common
symbol. This linear dependency makesM(k, d) 6= 0 when
rk andrd+k are in the same block. Without loss of general-
ity, we take the2 × 2 diagonal algebraic code

C2 =

[
s1 s2

s1 ∗ −s2

]
(24)

as an example, in which the second moment testM(1, 1) is

M(1, 1) = E
[
(s1e

jθ1 + s2e
jθ2)2(s1e

jθ2 − s2e
jθ1)2

]

−E
[
(s1e

jθ1 + s2e
jθ2)2

]
E

[
(s1e

jθ2 − s2e
jθ1)2

]
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Figure 2: Overall modulation forensics detector scheme

=
(
2(e4jθ1 + e4jθ2)(E[s4] − E[s2]2)

−4e2j(θ1+θ2)E[s2]2
)
6= 0, (25)

Based on the above observation, we propose the algo-
rithm to estimate the time-domain codeword length:

1. Iteratively calculateM(1, d), d ≥ 1 from d = 1, and
increased by 1 each iteration untilM(1, d) = 0

2. Iteratively calculateM(k′, d) as the above step;k′ is
the smallest positive integer satisfyingM(1, k) = 0

3. The time-domain code lengthp is the smallest posi-
tive integer satisfyingM(k, p) = 0

SVM classifier: Now we have estimated the time-domain
codeword lengthp and the number of transmit antennasq
for the space-time code. Givenp, q, there is only a fi-
nite number of space-time codes and every code has the
unique formulation of{M(k, d)}k′=p−2,d=p−1−k

k′=1,d=1 . Thus,
we construct a support vector machine (SVM) classifier us-
ing{M(k, d)}k′=p−2,d=p−1−k

k′=1,d=1 calculated from the received
signalsr′ as the input feature.

Once we have the space-time code, we can decode the
received baseband equalized signal into symbol sequence
s
(i), and perform the same likelihood-based modulation de-

tection as the SISO system in Section 3.1.

3.3. Overall Forensics Detector Scheme

Figure 2 shows the overall methodology of the modulation
forensics detector over frequency-selective fading channels:
upon receiving the baseband signal, first apply the subspace
algorithm to determine the number of transmit antennas. If

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

False alarm (%)

P
d Probability of successfully

detect MIMO system

Figure 3: ROC curve of detecting MIMO system when SNR
= 15 dB with K = 100 symbols

only one transmit antenna is used, apply the SISO equal-
ization following by the likelihood detector. If multiple an-
tennas are used, first determine the time-domain codeword
length and then identify the space-time code using an SVM
as discussed in Section 3.2. Then apply the space-time de-
code process to recover the symbol sequence before space-
time encoding, and then apply the likelihood modulation de-
tector to each symbol.

The task of the forensics detector is not only to estimate
the correct modulation scheme as precisely as possible, but
it also gives a confidence measure to every estimation. We
define the detector’s confidenceC measure as follows:

C = 1 −
H(LF)

log2 Nmod

(26)

where

LF =
{LF (1), ..., LF (Nmod)}

∑Nmod

i=1 LF (i)
(27)

is the normalized likelihood vector of all hypotheses. From
the above analysis, whenLF (ei) is much larger than the other
LF (i)s, the vectorLF has a smaller entropyH(LF), which
means one of the modulation types is much more likely than
the others, thus we are more confident with the detection
result. The lower the entropyH(LF), the more confident
the forensics detector is. Based on this idea, the confidence
measureC is defined as the normalized entropy ofH(LF)
as in (26).

4. SIMULATION RESULT

We consider the most commonly used digital modulations,
BPSK, QPSK, and 8-PSK, as candidate modulations for
SISO systems and space-time diagonal algebraic codes with
size2 × 2, 4 × 4 and8 × 8. Without any loss of generality,
normalized constellations are generated in the simulation,
i.e.,E[|s

(i)
k |2]=1, thus the SNR is changed by varying the

noise power only. The pulse shape is rectangular, of unit
amplitude, and durationT seconds. The symbol periodT is
set to one millisecond. The channel is frequency-selective
with Rayleigh fading, and the filter length is 10.

Figure 3 shows the ROC curve of distinguishing MIMO
system with SISO system when the SNR is 15 dB with
K = 100 symbols. The number of symbols used to calcu-
lateP

(i|i)
c is 30 and another 30 symbols are used for blind
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Figure 4: Overall performance and confidence measure of
the modulation forensics detector including BPSK, QPSK,
8PSK, and diagonal algebraic codes of size 2x2, 4x4, 8x8
with K = 100 symbols

equalization. Since the space-time code scheme is deter-
mined based on the expectations of the received signal, we
need a little bit more symbols for the MIMO case, so here
we show the result ofK = 100 symbols. It is clear that
the MIMO identification algorithm in Section 3.2 achieves
very good performance since the probability of detection
achieves 0.96 with very low false alarm 0.05.

Figure 4 illustrates the performance of spectrum sens-
ing using the proposed modulation forensics detector. The
blue solid line and the blue dashed line show the probability
of sensing correctly and the confidence measure when the
primary user uses BPSK. The red triangle solid and dashed
lines shows show the probability of sensing correctly and
the confidence measure when the primary user uses a 2x2
diagonal algebraic space-time code (DAST) with 4PSK, ver-
sus SNR. It is clear that with a very short observation (K =
100 symbols), our system can correctly sense the primary
user with accuracy higher than 90%, while the classical cy-
clostationary method needs more than 1000 symbols to achieve
this accuracy. In the application of spectrum sensing, the
speed of the modulation forensics detector is crucial. The
fewer symbols the forensics detector needs, the better the
spectrum sensing performance. Although the modulation
forensics detector has a higher error in low SNR (SNR<10
dB), the corresponding output system confidence measure is
also low as in Figure 4. This means the modulation foren-
sics detector still works well in low SNR: the forensics de-
tector is very uncertain about the answer when making er-
rors.

5. CONCLUSION

In this paper, we proposed a modulation forensics detec-
tor as a new spectrum sensing tool. The forensics detec-
tor is a composite likelihood ratio and second moment test
for MIMO/SISO digital linear modulation forensics detec-
tion in frequency-selective fading channels, with unknown

channel amplitude vector and phase distortion. The over-
all modulation forensics detector achieves very high detec-
tion accuracy, which approaches 0.95 in SNR>15 dB, in
fading channel with only 100 symbols. The simulation re-
sults shows that the proposed space-time code identification
based on second-moment nonlinearity test is nearly perfect.
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