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ABSTRACT to minimize the secondary users’ spectrum-searching time.

Modulation forensics detect the modulation type in wire- NOte that we assume the secondary users know the primary
less communications by the received signal only. It praside US€rs’ communication protocols, such as the modulatiomatet
a powerful tool for spectrum sensing since by identifying If the secondary users can tell the modulation types of the
the modulation type, the secondary users in cognitive radioSignal in the spectrum just by listening to the band, spec-
systems can detect whether the primary user occupies thdflum sensing can be done without any interference to the
spectrum. In this paper, we investigate modulation foemsi Primary users. In this paper, we utilize modulation type as
of linear digital modulations and space-time diagonal alge & distinguishing feature of the primary users, and propose
braic codes in slowly varying, frequency-selective fading 2 high-accuracy modulation forensics detector for spettru
channels. With unknown channel vector, and phase distor-S€Nsing.
tion at the receive side, we derive a composite test congisti The first step of the modulation forensics detector is pre-
of second-moment nonlinearity and maximum likelihood processing as in Figure 1. In all the prior art, the prepro-
tests, and discuss the performance and the forensics syster@essing may include noise reduction, estimation of carrier
confidence measure. Itis shown that the proposed algorithmfrequency, symbol period, signal power, and equalization.
achieves almost perfect identification of the space-tinte co The second step is the modulation classification.

ing, and high accuracy rate of the modulation type. In the literature, two categories of classification appheac
have been adopted to tackle the modulation forensics prob-
1. INTRODUCTION lem. One is the statistics-based pattern recognition a0

in which features are extracted from the received signal and

Within the past decade, the explosive development of wire- their differences are used for decision making [2], [3],[4]
less communication technologies has facilitated the trans Although statistics-based approaches may not be optimal,
mission of all kinds of information and data over wireless they are usually simple to implement with near-optimal per-
channels. High traffic of emerging wireless applications formance, when designed properly. The other category is
has resulted in a shortage of spectrum—most of the usabldikelihood-based approach, in which the likelihood fupati
electromagnetic spectrum has already been allocated-for li (LF) of the received signal is computed and a likelihood ra-
censed use, while the unlicensed frequency bands are overtio test is used for detection [5],[6], [7].[8], [9].[10]. hie
crowded. To alleviate this problem, a new spectrum shar- likelihood-based method is shown to be asymptotically op-
ing paradigm called dynamic Spectrum access, where li- timal under additive GaL_]SS|an noise in [5], and the th_eore“
censed bands are opened to unlicensed operations on a noal performance bound is derived under the assumption that
interference basis, has been studied [1]. all communication parameters are known.

There are two kinds of users in a cognitive radio system: In recent years, new technologies for wireless commu-
licensed are referred to as primary users, while unlicensednications have emerged. The orthogonal frequency divi-
users that access spectrum opportunistically are reféored sion multiplexing (OFDM) systems have become one of the
as secondary users. Secondary users must be able to scannaost popular digital modulation schemes due to the effi-
certain spectrum range and intelligently decide which spec ciency of OFDM technique in transmitting information in
trum bands can be used for its transmission. This procesdrequency-selective fading channels without complex qua
is called spectrum sensing. During spectrum sensing, ifizers[11],[12]. Multiple-input multiple-output (MIMO) vth
a secondary user detects that it is within a primary user's multi-antenna space-time encoding [13] is also widely used
protected region, it refrains from accessing that band andin modern wireless communication systems to achieve trans-
searches for another band that is accessible. If no primarymit diversity. These emerging technologies in wirelesscom
users are detected, ideally the secondary users coordinatenunications have raised new challenges for the designers
with each other to share the unused spectrum. of the forensics identifier of discriminating between OFDM

To maximize the throughput of a cognitive radio sys- and single-carrier modulations [14] and identificationigfs
tem, spectrum sensing must be both reliable and fast. Itnals transmitted from multiple antenna systems. As a spectr
must have very high accuracy to ensure that primary users’sensing tool for cognitive radio, our modulation forensics
privileges are not infringed upon, and must work very fast detector must not only detect the conventional modulations
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Modulation Forensic response of théh channel fading channdl, is the phase
Detector distortion of thelth channel, and.(-) is the additive Gaus-
---------------- sian noise.
Pre- || Modulation Candidate space-time codedetecting orthogonal block
processing classifier space-time code has been addressed in our prior work [15].
. [ ————— : Here we broaden our approach by including diagonal al-
Receiver additive noise gebraic codes [16],[17], which are the most popular full-
diversity space-time code that achieves the highest dta ra
Figure 1: Modulation Forensics System Model Candidate SISO modulation types Without loss of
generality, for the SISO modulations our modulation foren-
sics detector focuses on the family of phase-shift keying
like PSK, but also consider modern wireless communication (PSK) modulations, including BPSK, QPSK, and 8PSK [15].
technologies. The same forensics methodology can also be applied to other
Most of the prior works only discuss single input single conventional modulations, such as quadrature-amplituat m
output (SISO) systems, but emerging standards like WiMAX ulation (QAM).
and LTE use space-time coding widely. For forensics pur-
pose, it is crucial to differentiate MIMO and SISO systems, 3. FORENSICS DETECTOR
as well as how many transmit antennas are used by the trans-
mitter, and which space-time coding and modulation schemey this section, we discuss the methodology of the modu-
is employed. . lation forensics detector. First we introduce a subspace al
In this paper, we propose a SISO/MIMO modulation gorithm to jointly estimate the channel coefficients, chelnn
forensics detector in a frequency-selective fading chinne phase distortion, and possible SISO modulation type in Sec-
for spectrum sensing. In Section 2 the modulation forensicStion 3.1. Then based on the estimated channel coefficients
detector problem formulation is presented. The forensics and phase distortion, we identify the space-time code and

detector methodology is proposed in Section 3. Simulation nymber of antennas by the equalized received signal in Sec-
results are discussed in Section 4, followed by conclusionstjgn 3.2.

in Section 5.

Input
symbols

Modulator

3.1. SISO Modulation Forensics Over Frequency-Selective
2. PROBLEM FORMULATION Fading Channel

Figure 1 shows the system model of the forensics detector.The first step of the modulation forensics over frequency-
The original symbols are modulated (and possibly space-selectlve fading channel is to recoverthetransm_ltted «ymb
time coded) then traverse the fading channel via an unknownfrom the faded received signal. Here we combine the sub-
number of transmit antennas. The input of the modulation SPace blind equalization algorithm [18] and the likeliheod
forensics detector is the signal directly received from the based approach to identify SISO modulation types over gaqy-
secondary user’s receive antenna. selective fading channels.

Assumption: We assume the wireless channels are slowly- Assume there is only one transmit antenna, then the re-
changing frequency-selective fading channels with finite- Ceived signal at the modulation forensics detector becomes

length impulse responses. The transmitter can use single oo
or multiple antennas and the number of transmit antennas £ = h(t — kT)ed? " 2
is unknown. The additive noise at the receiver is modeled r(t) Z seh( Je’” +n(t), @

k=—o0

as zero-mean white Gaussian noise, in which the signal-
to-noise ratio can be estimated. In spectrum sensing, thewheres, is an information symbol of an unknown PSK sig-
secondary users know the communication protocol of the nal constellationS, h(-) is the discrete-time channel im-
primary user, therefore we can assume the forensics detecpulse response] is the known symbol intervald is the
tor know the signal interval. Unknown parameters include phase distortion, and(-) is the additive white Gaussian
phase distortion, channel distortion, the number of trahsm noise with varianceV and mean zero. We assume that the
antennas, the space-time code if multiple antennas are usedmpulse responsg(-) has finite support, i.ek(t) = 0 for
and the modulation type. t>JT;JeN.

Received signal model The received baseband signal

sequence by one receive antenna can be expressed as 3.1.1. Estimate the phase-distorted transmit symbols

i W 0 First we estimate the transmitted phase-distorted synibols
r(t) = Z Z zy, h(t — KT)e’™ +n(t), (1) the noiseless environments (noise variaince= 0) by the
=1 k=—00 subspace method in [18], and extend the estimation method
to noisy environments.
wherex") = (...,xgl),x(zl), ..... )T is the transmitted symbol Following the subspace algorithm in [18], we observe

sequence through théh channelg is the number of trans-  and sample the received noiseless sigitg) in (2) for du-
mit antennasT is the symbol intervalp,(-) is the impulse  ration MT by J times the baud rate, i.e., taking samples at
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nT 461, nT+0d2,....nT+57,0<d <o <..<dy<T,
where the FIR channel has lengitfi’. Therefore, we have
JM equations:

y(i) = es;-
y(] + J) = eJQSth + Sj_lhj+j + ...+ Slh(J,l)JJrj,

sj—1hj +s52hyrj+ ...+ soh—1)45,

y(j + J(M = 1)) = e’ sarig-ohj + sarys-shisg
+. ot su—1h—1) g4, (3

where

y(Jn—J+j—1) =r(nT +6§j), and
hyntjo1 =h(nT+6j) V1<ji<J  (4)

Let z; ands; be

z; = [y(j) y(J+)) y(2JT+J’)
y(M —1)J + )"
sj=[s; sj+18j42 sayjl
0<j<J-1. (5)
Therefore, we have
Z = ¢’SH (6)
where
Z:[Zo VAl Zj_2 ZJ_1],
S=[so s1 Sj—2  Sj_1)
H= [hl hsy h;_; h_]],where
hy = [hy—14r—1 hr—2)+k-1
hysk—1 hi-1]",
1<k<J. (7)
(7) tells that foro0 < 5 < J —1,
6jGSj € Spal’{ZO7 Zi, ... ZJ_1}. (8)

Therefore, fol0 < j < J — 1, we have

J—1

ells; = Z )\,(Cj)xk, 9)
k=0

Where)\fj) is the element on theth row andjth column of
the matrixH .

Note that from the definition o§; in (5), the bottom
M —1 elements 0§, is the same as the tdld — 1 elements
of s;11. Letu; andv; be the bottom\/ — 1 and topM — 1
elements ok;, respectively, then we have

BN =0, (10)

where

0 0 1 1 J—1 J—1
A= AL A AR A AT
(11)

and
fu v 0 0 00 07
0 w v O 0 0 O
0 0 w w 0 0 O
e A A e
(00000 - u v

(12)
which hasJ block-columns, O represents tii¢ — 1 by J
zero matrix, and

u.ffl]a
’Ujfl].

u=luy wu
v=[vg v

Uj—2
Vj—2

(13)

From (10), we know thah is in the null space of the
(M —1)J by J? matrix ®. If ® has a one-dimensional null
space, them can be correctly calculated, leading to per-
fect reconstruction of the phase-distorted transmit symbo
sequence’?{s;}7_,. It has been proved in [18] that if the
channel matriXH is invertible, then

P(® has a one-dimensional null space
1

1 - .
(size of the symbol sgt/ —27 (14)

Which means as long as the observation is long enough,
with probability 1 that the phase-distorted symbol seqeenc
can be recovered.

In the noisy situation, the same algorithm can be applied
with the small modification that in solving foy, instead of
finding the null space ob, we find the singular vector cor-
responding to the smallest singular valuedof Therefore,
we can still estimatés’}7_, by the same algorithm [18].

3.1.2. Likelihood-based 9SO Modulation Type Detec-
tion

After we have the estimated channel coefficients for the fad-

ing channel, we can apply equalization to the received base-

band signat, and the equalized signal sampled by the baud

rate can be formulated as follows:
r' =ePs+n'. 15)

With a perfect equalizen’ is a zero-mean Gaussian random

vector with varianceV.

Given the equalized signal in (15), the SISO modulation
forensics detector, with the likelihood-based approash, i
formulated as a multiple composite hypothesis testingprob
lem [19]. Under hypothesild;, meaning théth modulation
was transmitted,where= 1, ..., N,,..q4, the likelihood func-
tion can be computed by estimating the unknown parameter
. By assuming that the equalized received symbols are sta-
tistically independent, under hypothesls, the conditional
likelihood function is given by

K
i 1 1 0 (i
P s M 0) = [T pexel—plrk — s}
k=1
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1

( N/)K p{ ||I‘ 76]0 ’L)”Z} (16)

and the likelihood function is computed by averaging over

the unknown signal constellation poin@sg)}f:1 and re-
placing the unknown phase distortion with its respective es
timate. Thus, the likelihood function under tite hypothe-
sis can be written as

LFO@) = B oy £ Bl Y]

[-] is the expectation with respect to the un-

(17)

whereE,
{5y,

known transmitted symbol constellation points @hid the
unknown phase distortion estimates underithehypothe-
Sis H;. _

The final decision of modulation scheris made based
on maximum likelihood criteria, that issatisfies

max

seesiVmod

i=arg LF® (¢

=1

(18)

Since the likelihood function in (17) is computed by us-

ing the maximum likelihood estimate of phase distortién,
should satisfies

Of (' {sy }1.,0)
59 = g =0 (19)
By solving (19), we show that
~ ] ()H
(N T .
0\ = 5 In <rHs<i>> (20)

3.2. Space-Time Code Identification

If only one transmit antenna is used, the SISO modulation

forensics presented in Section 3.1 can be used to detect the
modulation type. Then the next question to answer is how to

identify the number of transmit antennas. If multiple trans

mit antennas are used, how do you identify the space-time

code?

3.2.1. Estimating number of transmit antennas

Here we will propose an algorithm to estimate the number

of transmit antennas based on the received signal (1) with

unknowngq based on the subspace properties.

It is easy to prove that if there are multiple transmit an-
tennas, i.eq > 1in (1), the subspace SISO equalization in
Section 3.1 will fail. Which means, the null spaced®in

(12) will not be rank 1 in noiseless space. Furthermore, in .

the noisy environment, the smallest singular valué ofill
be relatively large.

The subspace blind equalization can be extended to the

multiple antenna case [20]. Similarly, if there arerans-
mit antennas, thé@ matrix in the MIMO case will have a
g-dimensional null space when there is no additive noise.
Based on this property of the subspace algorithm, our mod-
ulation forensics detector estimates the number of transmi
antennas by threshold the singular value®afs follows:

e Assume there arg transmit antennas, then calculate
the ® matrix by the subspace algorithm

Threshold the singular numbers &fby T'H, which

is a threshold defined by the forensics detector. The
value of TH should vary with SNR. Let/ be the
number of singular numbers d@f that are less than
TH.

If ¢’ ~ g, return the number of transmit antenna being
q. Otherwise, apply the same estimation procedure on
g + 1 transmit antennas.

3.2.2. Space-Time code detection

After estimating the number of transmit antennas, the next
step of the MIMO modulation detector is to detect the space-
time code. In this section, we use the support vector ma-
chine to classify the space-time code from the MIMO-eqealiz
received signal.

If we sample the MIMO-equalized received signal by
one received antenna at the baud rate, we will have

_ zq: o)
=1

wheregq is the number of transmit antennas, atdta; is
the phase distortion of the channel between/theéransmit
antenna and the receive antenna.

Time-domain codeword length estimation Since we
already know how many transmit antennas are used, time-
domain codeword length of the block code is the most im-
portant information about the space-time code. Here we
propose the second-moment test to identify the time-domain
codeword length for diagonal, algebraic, space-time codes
We define the second moment test as

el 4, (21)

M(k,d) = Elrrd,] - EndErd,). (22)

Note that the diagonal codes are block based, which means,
ri andrgy, are independent d > p, wherep is the time-
domain codeword length. Therefore,
E[rl1Elrd] Yd=p,  (23)
resulting inM (k,d) =0, Vd > p.

If rr, andrg., are in the same block, then andrg.x

are linearly dependent since they share at least one common
symbol. This linear dependency makesk, d) # 0 when

r andrg, k. are in the same block. Without loss of general-

’ ’
E[Tk2rd2+k] =

ity, we take the2 x 2 diagonal algebraic code

PR

as an example, in which the second momentiéét, 1) is

51
S1 % —S82

(24)

M(1,1)=E [(818]9l + 50€792)2(516792 — 55e7%1)2 ]
—F [(5163491 + szej92)2] E [(816j92 _ S2€j91)2]
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Input: Baseband Signal

'

Determine number

of transmit antennas
a>1

Subspace MIMO
equalizer

I

g=1

Determine time-domain
codeword length

Subspace SISO \
equalizer

SVM space-time
code detector

Likelihood-based modulation detector

I

Output: space-time code, modulation type
and confidence measure

Figure 2: Overall modulation forensics detector scheme

= (2(eM + M%) (B[s"] - B[s*)%)
—462j(91+02)E[82}2) £0,

Based on the above observation, we propose the algo-

(25)

rithm to estimate the time-domain codeword length:

1. lteratively calculaté/(1,d), d > 1 fromd = 1, and
increasel by 1 each iteration untid/ (1,d) =0

2. lteratively calculateV/ (k’, d) as the above step; is
the smallest positive integer satisfyiig(1, k) = 0

0.8

o® 061 Probability of successfully
04l detect MIMO system

0.2

. . . . . . . . .
5 10 15 20 25 30 35 40 45 50
False alarm (%)

Figure 3: ROC curve of detecting MIMO system when SNR
= 15 dB with K =100 symbols

only one transmit antenna is used, apply the SISO equal-
ization following by the likelihood detector. If multiplena
tennas are used, first determine the time-domain codeword
length and then identify the space-time code using an SVM
as discussed in Section 3.2. Then apply the space-time de-
code process to recover the symbol sequence before space-
time encoding, and then apply the likelihood modulation de-
tector to each symbol.

The task of the forensics detector is not only to estimate
the correct modulation scheme as precisely as possible, but
it also gives a confidence measure to every estimation. We
define the detector’s confiden€emeasure as follows:

H(LF)
=1- —— 2
¢ 10g2 N7nod ( 6)
where W N
mod
LF — {LFY) . .,LF } 27)

St LEO
is the normalized likelihood vector of all hypotheses. From
the above analysis, wheiF () is much larger than the other

LF(s, the vectoLLF has a smaller entropyf (LF), which
means one of the modulation types is much more likely than

3. The time-domain code lengthis the smallest posi-

tive integer satisfying\/ (k. p) — 0 the others, thus we are more confident with the detection

result. The lower the entropy (LF), the more confident
SVM classifier Now we have estimated the time-domain the forensics detector is. Based on this idea, the confidence
codeword lengthp and the number of transmit antennas measureC is defined as the normalized entropy i6{LF)
for the space-time code. Given ¢, there is only a fi- asin (26).

nite number of space-time codes and every code has the

unique formulation of{ M (k, d) ﬁ:iﬂi‘f:p_l_k. Thus,
we construct a support vector machine (SVM) classifier us-

4. SIMULATION RESULT

We consider the most commonly used digital modulations,

, K =p—2,d=p—1—k : ( :
ing {M(k,d)} 25 27" calculated fromthe received  Bpsk, QPSK, and 8-PSK, as candidate modulations for

signalsr’ as the input feature.

SISO systems and space-time diagonal algebraic codes with

Once we have the space-time code, we can decode thaize2 x 2,4 x 4 and8 x 8. Without any loss of generality,
received baseband equalized signal into symbol sequenceormalized constellations are generated in the simulation
s() and perform the same likelihood-based modulation de- i-e-E[IS;(f)F]:l, thus the SNR is changed by varying the
tection as the SISO system in Section 3.1. noise power only. The pulse shape is rectangular, of unit
amplitude, and duratiof’ seconds. The symbol periddis
set to one millisecond. The channel is frequency-selective
with Rayleigh fading, and the filter length is 10.

Figure 2 shows the overall methodology of the modulation ~ Figure 3 shows the ROC curve of distinguishing MIMO
forensics detector over frequency-selective fading chtmn ~ System with SISO system when the SNR is 15 dB with
upon receiving the baseband signal, first apply the subspacd< = 100 symbols. The number of symbols used to calcu-
algorithm to determine the number of transmit antennas. If late P is 30 and another 30 symbols are used for blind

3.3. Overall Forensics Detector Scheme
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channel amplitude vector and phase distortion. The over-
all modulation forensics detector achieves very high detec

tion accuracy, which approaches 0.95 in SNE dB, in
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sults shows that the proposed space-time code identificatio
o o py— based on second-moment nonlinearity test is nearly perfect
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