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ABSTRACT 

 
 

Global positioning system (GPS)-based localization is often 
unavailable in indoor environments, in urban areas, and is 
susceptible to jamming. We evaluate cognitive geolocation, 
the use of local ambient wireless signals for the estimation 
of a receiver’s position.  Cognitive geolocation can be seen 
as localization fingerprinting, in which a database of pre-
measured spectrum vs. location is stored, and a receiver’s 
current spectrum measurement is compared to the database 
to estimate location. The database includes spectral 
measurements at different locations and times of day.  We 
present a feasibility study, in which extensive measurements 
of spectral activity are recorded across time and space in a 
campus building, in both a training and test set.  In the 
study, receiver locations are correctly identified between 80 
to 90% of the time.  Our results show the capability of 
cognitive geolocation and point to a promising area of 
localization research. 
 

1. INTRODUCTION 
 
GPS is very useful for determining an exact location, 
however, within buildings, GPS signals may be quite low 
due to shadowing caused by walls and ceilings.  In urban 
areas, position estimates can also be denied or degraded due 
to the lack of line-of-sight to GPS satellites.  In general, 
GPS is limited due to the tight link budget of satellite links.  
The emergence of frequency agile software defined radios 
enables the reception of a broader range of radio signals.  In 
general, it makes sense to rely on a range of ambient 
wireless signals for the purposes of localization.  Many such 
signals have sufficient signal strength indoors and in urban 
locations; in fact, many types of signals are more prevalent 
in urban areas and in buildings, where GPS is least 
available.  The use of complementary signals may thus 
improve the robustness of localization receivers.  
 
      One example of ambient signal localization is the use of 
analog TV signals for localization.  A technology 
commercialized by Rosum, Inc. measures the time delays of 
TV synchronization signals (ghost canceling reference) sent 

as part of the US analog broadcast television standard, 
ATSC [4].  Multiple delay measurements from different TV 
broadcast towers can then be used to estimate receiver 
position.  Similar to a differential GPS receiver, the time 
delays of the TV signals can be measured and provided to 
the receiver to aid in the location solution. 
 
      We also note the progress in indoor localization using 
ambient signals from WiFi access points.  The received 
signal strength (RSS) fingerprinting method is credited to 
Bahl and Padmanabhan [5], and has been commercialized 
by real-time location services (RTLS) providers AeroScout 
Inc. and Ekahau Inc.  In RSS fingerprinting, the RSS at a 
WiFi tag of multiple access points’ signals is measured and 
used as a ‘RSS fingerprint’.  The fingerprint is compared to 
a pre-measured database of RSS fingerprints for many 
locations within the building.  This database is either 
manually and densely measured in the environment of 
interest, or extrapolated from less dense measurements 
based on propagation models.   Reported accuracies from 
RSS fingerprint methods (5m [5], 1.7 m [6]) demonstrate 
accuracies as high, or higher than, achieved by multi-
lateration approaches, which use RSS to estimate range and 
then use range estimates to compute position. 
 
      In this paper, we study an approach to localization from 
ambient signals that does not rely on any particular radio 
standard and which extends fingerprinting beyond WLAN 
signals.  We use the ability of a spectrum-agile radio to 
measure the spectral occupancy across a wide bandwidth.  
The cognitive localization idea is that if the electromagnetic 
(EM) spectrum of ambient radio signals remains relatively 
constant and unique for any given location, then it can be 
used as a ‘fingerprint’ to identify that location.  A database 
of spectrum measurements may be created for many 
locations, and then whenever a cognitive radio is near one 
of those locations, it may measure the spectral occupancy 
and compare its current spectrum measurement to the 
database in order to determine location. Geolocation is 
commonly seen as a burden for cognitive radios – a radio 
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must determine its location in order to look up in a database 
the location’s typical spectrum usage.  In contrast, in this 
work, we look at geolocation as an opportunity for cognitive 
radios, which may be able to self-localize based on their 
wideband measurement of the spectrum. Cognitive 
geolocation may have significant applications for 
localization of people and objects in environments where 
GPS is denied.  
 
      This paper presents the results of a measurement 
campaign, which confirms the ability of cognitive 
geolocation to estimate location within the third floor of the 
Merrill Engineering Building (MEB) at the University of 
Utah. Our research relied on extensive temporal and spatial 
measurements of the spectrum at nine different locations.  
First, measurements were made over a three-day period 
during the morning and afternoon hours to be used as 
training set for a database.  Next, a set of measurements was 
taken two weeks later, one set during the day and one set at 
night. These served as a test set. We found a 91% 
probability of correct detection of location for the day set, 
and an 80% probability of correct detection for the night set, 
even though nighttime measurements were not part of the 
database. The results show the potential of using cognitive 
radio spectrum measurements of ambient radio sources in 
order to self-localize. 

2. EQUIPMENT 
 
We evaluate cognitive geolocation using the universal 
software radio peripheral (USRP) from Ettus Research [1].  
It is capable both of measuring the spectrum across a wide 
bandwidth and saving the data on a PC.  As a standard 
platform for software defined radio (SDR), it represents the 
capabilities which a typical SDR or cognitive radio might 
possess. The USRP can be programmed in software to 
switch frequency bands and to compute the power in each 
frequency band.  
 
      We use the GNU Radio software development toolkit 
[2]. GNU Radio is based on the object oriented 
programming languages of Python and C++.  Python 
programs connect the inputs and outputs of modules which 
are implemented in C++ code. By using Python, users can 
put together signal processing blocks (modules) with data 
from the USRP device as the source (input to the signal 
processing blocks) and direct the output of the signal 
processing blocks to a sink (a file to which data is written or 
a display on the screen). GNU Radio provides many Python 
modules for sampling a received radio signal and 
performing signal processing on that signal. The user may 
use these modules as they are, they may alter them to suit 
their needs, or they may write new modules if needed.  

 
      The module used to sense the spectrum in this work was 
usrp_spectrum_sense.py, a python block available 
from GNU Radio [2]. This module measures the spectrum 
power across a frequency range and directs the output to be 
written to a file. In addition, the user can specify details 
such as the band over which measurements are made, the 
number of times to measure the band, and the gain. A 
couple modifications were made to this module. The first 
modification set the number of bands measured to 89 for a 
specified bandwidth. The second modification was made to 
systematically generate the filename for purpose of data 
storage and retrieval.  
 

3. EMULAB 
 

We use the Emulab network testbed to perform our 
experimental measurements [3].  Emulab is a public facility 
at the University of Utah, maintained by the Flux Lab, 
containing many different types of nodes which are freely 
available to researchers to be programmed to emulate a 
wide variety of wireless and wired networks. The nodes 
range from software defined radio nodes (equipped with 
USRP devices) to mobile wireless nodes located on robots 
with full mobility. The nodes used for this project are 
USRP-equipped nodes. These nodes are deployed 
throughout the 3rd floor of the Merrill Engineering Building 
(MEB) at the University of Utah. To use these nodes an 
experiment is started by creating a new script (NS) file.  
Specifications are made in the file as to which nodes the 
user wishes to use and which programs they wish to run.  
By logging into many nodes at once, measurements can be 
made simultaneously at multiple locations. These 
measurements can then used to create a database. The 
USRP devices provided by the Emulab include the RFX900 
transceiver daughterboard, capable of operation across the 
frequency range from 750 to 1050 MHz.  However, the 
receiver is limited in frequency by its antenna, a “rubber 
duck” antenna with a 150 MHz bandwidth centered at 900 
MHz.  We made spectral measurements over the frequency 
band from 824 to 960 MHz. In addition, it was found by 
trial and error that a receiver gain of 50dB was best for 
receiving signals without saturating the receiver.  
 

4. METHODS 
 

In this section, we describe the experimental methodology 
for conducting a proof-of-concept test of cognitive 
geolocation.  First, we describe how power vs. frequency 
spectrum data is collected using the USRP and the Emulab 
nodes.  Then we describe the collection of the training set of 
data, which is used to fill the database.  Next, we describe 
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the collection of the test set.  Finally, we describe our 
method for estimating receiver location using the test data.   
 
A. Data Collection 
The Emulab nodes’ USRP receivers were programmed to 
take simultaneous measurements at various locations 
throughout the MEB. An NS file was created so that by 
running a command at the prompt, ten measurements would 
be taken at each node with a range of 824 – 960 MHz and a 
gain of 50dB. These measurements were organized in files 
distinguishable by the location and time of the 
measurement, which were recorded as part of the filename. 
Each measurement requires about 0.5 seconds, and the ten 
measurements are thus completed in about five seconds.  
 
      The usrp_spectrum_sense.py program operates 
by sequentially operating on narrowband received signals, 
and then increasing the center frequency.  The ith received 
signal is centered at frequency fi. The receiver records a 
signal vector length 512, and then takes the FFT.  The 
output contains the frequency representation of the signal, 
with samples separated by Δf = 3 kHz.  We use the root 
mean squared (RMS) power across the first two samples 
from the frequency domain representation.  This RMS 
power near the center frequency is thus used to represent the 
narrowband signal at band i.  If P1(i) and P2(i) are the 
powers recorded at frequencies fi and fi+Δf, respectively, the 
RMS power x(i) in frequency band i is given by 
 
 2)()( 2

2

2

1 PPix +=  (1) 
 
The choice of the statistic is arbitrary – any consistently 
applied measure of power vs. frequency band could be used 
to identify the position at which the measurement was 
taken. A total of 89 distinct frequency bands from 824 to 
960 MHz, each with a bandwidth of 1.5 MHz, are measured 
in this manner.   
 
B.  Training Data 
Training data is collected in order to represent the power 
spectrum at each location, at different times of day, and on 
different days of the week.  Care is taken to ensure that an 
equal quantity of measurements is included in the training 
set for each location.  For example, a database which 
included many more measurements from one location might 
influence a location estimation algorithm to be biased 
towards that one location. We also ensure that 
measurements at different locations are nearly simultaneous 
to ensure that bias due to temporal variations is not 
introduced. For example, if the spectral map for one 
location is created using measurements taken mainly before 
noon and the spectral map for another location is created 

using measurements taken after 3pm then there could be a 
bias in the location estimation algorithm which tends to 
select measurements from the same time of day, rather than 
the same location, when comparing a current measurement 
to those in the training set. By using simultaneous and an 
equal quantity of measurements from all measurement 
locations, we avoid these potential biases.  
 
      Using the Emulab nodes and the usrp_spectrum_sense, 
the training data is recorded at nine different locations 
throughout the MEB on a Sunday, Monday, and Tuesday 
the 18th - 20th of November of 2007 during the morning and 
afternoon hours. These three days were chosen for the 
following reasons. The days in the three groups 
Monday/Wednesday/Friday (MWF), Tuesday/Thursday 
(TT), and Saturday/Sunday (SS) will yield similar patterns 
of spectral usage when compared to other days in the same 
group because of MWF or TT class scheduling scheme at 
the University of Utah.  For this reason, one day from each 
of these groups is sufficient to sample the day-of-week 
variation of spectrum measurements. Throughout these 
three days, measurements for the nine different locations 
were taken in 53 sets, and in each set ten measurements 
were taken for each location.  Thus there are 530 total 
measurements for each location in the training set. A Matlab 
program then averages the 530 measurements for each 
location and thus created nine database files for nine 
locations. 
 
C. Test Data 
The database is then tested by taking measurements at night 
on December 4, 2007 and in the morning on December 5, 
2007, from the hours of 9:30-11:15pm and 10:00am-
12:30pm.  Note that the nighttime test set is measured at a 
time which had not been incorporated into the database. 
Measurements are taken in ten different sets during each 
time period at the nine locations. Just as for the database, 
ten measurements are taken in each set for each location. A 
second Matlab program inputs the ten measurements for a 
given location in a given set and averages them. This 
average spectral measurement is then compared to the 
database to estimate the receiver location.  
 
      Location is estimated to be the location of the 
measurement in the database that matches most closely the 
current average spectral measurement.  A match is 
quantified by a distance.  The distance between two 
spectrum measurements is defined to be a distance between 
the decibel valued measurement vectors.  Let x and yk 
denote the current average spectral measurement and the 
measurement vector from location k stored in the database 
respectively. Specifically, x = [x(1), …, x(N)]T is the vector 
of averaged linear RMS received power in the spectrum in 
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all N measured bands, and yk = [yk(1), …, yk(N)]T is the 
RMS power measurement across bands in the database from 
location k. Then the distance d(x,y) is given by, 
 

d (x,y) ! "#=
i

iyix )(log)(log10 1010                (2) 

While many distance metrics are possible, the chosen metric 
accounts for the fact that changes in spectrum power are 
typically measured in decibels. In contract to the linear 
Euclidean (l2) distance metric, the l1 decibel distance takes 
into account that low amplitude signals can also play an 
important role in identifying the spectral characteristic of a 
location and should not be overwhelmed when higher power 
signals also exist. In radio propagation, losses are 
multiplicative and thus are additive in the dB scale.  The 
chosen distance metric deals with additive losses 
appropriately by increasing distance linearly for each 
additive change in the dB power.  
 

Using this distance metric, the database algorithm is as 
follows: for a new measurement x, the location k associated 
with measurement yk with the lowest distance d(x,yk) is 
estimated to be the radio’s current location: 

 
 

k

k minargˆ =  d(x,yk) (3) 

This estimate k̂ can then be compared with the actual 
location to determine the correctness of the estimate. 

5. RESULTS 

 
With this method, it was found that the correct location 
could be determined about 80% of the time at night and 
91% of the time during the day. Note that the database was 
created using only daytime measurements. It was also 
observed that whenever location was determined 
incorrectly, the correct location had the second smallest 
distance d(x,yk) and was not much larger then the distance 
of the incorrectly determined location.  Thus the high 
correct detection rate indicates that the spatial differences in 
spectrum are very significant compared to the temporal 
changes (over the course of the two weeks between the 
recording of the training set and recording of the test set). 
 
      Additional observations of spectral measurements led to 
the following conclusions. It was noticed that measurements 
taken at night lacked significant signal activity recorded 
during the day. For example, the large spike at 930 MHz 
that is present in Figure 1 and almost always present during 
daytime measurements was seldom present in 
measurements taken at night. Big differences in the 
spectrum such as this lead to the conclusion that having 

separate spectral maps for day and night would result in 
greater localization accuracy. Furthermore, from this 
conclusion it is likely safe to say that further refinement of a 
database by creation of separate spectral maps for different 
hours of the day, different days of the week, and different 
times of the year would be beneficial for determining 
location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 

 
 

 
 

 
6. FUTURE RESEARCH 

 
The experiment presented in this paper provides a proof of 
concept for the concept of using spectral occupancy as a 
means for location identification.  There are opportunities 
for performance improvement for cognitive localization as 
well as opportunities for more extensive and realistic 
experimental tests.  

Figure 1:  Spectrum measurement comparisons 
where test measurement is compared to a 
database measurement recorded (a) at a 
different location, and (b) at the same location. 
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      In particular, solely using power in the spectrum is 
likely not the solution which achieves best localization 
performance.  In particular, we do not distinguish between 
transmitters when measuring the power in spectrum, 
because many transmitters may be sharing individual 
channels.  Future work should identify the transmitter, for 
example by MAC address or other identifying number, so 
that the power in a band can be further isolated by source.  
This would truly be the extension of WiFi RSS fingerprint-
based localization systems to a wider range of sources.  
 
      Furthermore, the l1 distance calculated on decibel power 
in (2) is likely not the optimal choice for distance.  For best 
performance, we should weight the bands and the sources 
that are most reliable for purposes of localization.  Certain 
sources may be only infrequently active, and thus may 
confuse the algorithm more often than they help. In 
addition, some bands are completely inactive and contribute 
only additive noise, which does not contribute any useful 
information in determining location. It would therefore be 
best to ignore such bands when determining location.  
 
      Future research could also involve speeding up database 
searches.  When large-scale systems are deployed, the large 
quantity of measurements may require better search 
algorithms to speed up database lookup.  Characteristics of 
the spectrum, unique to each smaller area, could be used to 
determine the general area in which the receiver is located, 
and then more quickly determine the position within that 
area.  If such imprints can be made for a general area then 
the process of determining exact location could be sped up 
dramatically.  
 
      We also note that more extensive measurement 
campaigns could be conducted.  The ability to make 
simultaneous measurements is a benefit of the Emulab 
network; but a rigorous test of cognitive geolocation could 
be done with a measurement campaign which measured 
spectral content with a very high density, for example, a few 
measurements per room in the building.  Such a dense map 
would allow the study of the characteristics of spectral 
occupancy as a spatial random field.  It could also be used 
in a real-time deployment system which tested cognitive 
geolocation over a long period of time, for example, months 
of operation.  We note that the same USRP device in one 
location which made the training measurement also was the 
device which made the test measurement.  Thus it is 
impossible to separate the device characteristic from the 
location characteristic in our test.  A rigorous test 
experiment would use different devices for training and test. 
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