
Performance Evaluation of the Functional Description Language in a SDR Environment

Shi Zhong1, Craig Dolwin1, Klaus Strohmenger2, Bernd Steinke2

Note 1Toshiba Research Europe Limited, 32 Queen Square, Bristol, BS1 4ND, UK;
{shi.zhong, craig.dolwin}@toshiba-trel.com;

Telephone +44 117 9060700; Fax +44 117 9060701

Note 2 Nokia Research Center, Meesmannstr. 103, 44807 Bochum, Germany;
{klaus.strohmenger, bernd.steinke}@nokia.com

ABSTRACT

In this paper we present and evaluate an XML based
Functional Description Language (FDL) to communicate
configuration information for Software Defined Radio
(SDR) equipment. To demonstrate the feasibility of using
FDL, we have implemented a proof-of-concept platform
based on the Real-Time Research Platform (RTRP) and a
Nokia 770 Internet Tablet. The platform has been designed
to emulate an SDR terminal where the RTRP implements
the functionality of a future reconfigurable SoC. To emulate
the network an Open Mobile Alliance Device Mangement
(OMA DM) server has been implemented on a laptop, while
an OMA DM client operates on the Nokia 770. Both are
linked via a WiFi connection.
The proof of concept demonstrates the downloading of an
FDL document describing the IEEE 802.11a RAT and its
interpretation into a set of object codes and configurations
for a DSP, FPGA and GPP. Two FDL files have been
created to describe the IEEE 802.11a transmitter and
receiver. The overhead for parsing the 802.11a transmitter
and receiver FDL descriptions were measured. The
reconfiguration overhead for deploying the whole 802.11a
baseband RAT using the FDL language was evaluated.

1. INTRODUCTION

The gradual de-regulation of spectrum [1] encourages
spectrum to be utilised more efficiently. An increase in
spectrum efficiency can be achieved by switching to an
under used part of the spectrum and/or by altering the Radio
Access Technology (RAT) to match the environment e.g. in
an automobile a cellular system might be more appropriate
while at the home or in the office WLAN or UWB maybe
cheaper. A number of methods have been proposed to
support the re-configuration of the terminal. A high level
approach is to allow intelligent terminals, also known as
Cognitive Radios, to decide locally which communication
method is best i.e. it would determine which part of the
spectrum it would work in and which RAT to use. To
ensure that separate pieces of equipment work together

constructively and avoid interference with one another each
terminal uses a policy set down by a network based
intelligence. This policy can be updated over the air using a
policy description language. Using this approach the
operator has no direct control over configuring each
terminal. A more low level and direct approach to
managing the system is to instruct each terminal to
reconfigure to a specific technology. This is the approach
we investigate through the use of the Functional Description
Language (FDL). Clearly taking this approach could require
significantly more communications across the network than
the policy based approach so in this work we evaluate the
overhead imposed by sending a fine grained RAT
description for IEEE802.11a using FDL. In practise the
FDL description could be at a courser level of granularity
e.g. merely specifying GSM or UMTS rather than
specifying the individual processing blocks as described
here.
We initially outline the requirements for FDL and then
describe in more detail the XML schema. A brief
description of the OMA DM protocol and the platform is
given and then the IEEE802.11a RAT is described. Finally
we summarise how large the FDL files are and how long it
takes to reconfigure the hardware.

2. FUNCTIONAL DESCRIPTION LANGUAGE

FDL has been developed to allow hardware platforms from
multiple manufacturers to be efficiently reconfigured
without the decision making agents having a detailed
understanding of the underlying hardware. It is important
that FDL supports efficient reconfiguration because one of
the main limitations for the commercial use of SDR is the
increase in power consumption when reconfigurable
components, such as DSPs and Reconfigurable Logic, are
used. The FDL has been developed with the following key
objectives:

 Scalability
 Support for hard real time applications
 Platform independence
 Efficient representation

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:shi.zhong,%20craig.dolwin%7D@toshiba-trel.com
mailto:bernd.steinke%7D@nokia.com

The previously referred to decision making agent (and often
called the Network Reconfiguration Manager (NRM) [2])
would typically be part of a cognitive radio network
attempting to reconfigure the network to optimise the
available resources. In a system supporting FDL the NRM
would construct an FDL file defining a configuration for a
group of terminals. The FDL file would then be distributed
to each terminal and the terminal would attempt to
reconfigure its hardware to implement the new
configuration. FDL imposes no constraint on what
functionality is being defined so the document may define a
single RAT or multiple RATs it might also define a
mechanism for scanning the spectrum for activity. A more
detailed usage scenario description is given in [3].
FDL is based on XML and is used to describe functional
configurations for reconfigurable equipment. It enables
RATs to be installed and upgraded at run-time. RATs are
defined as a hierarchical flow of signals (data and control)
between functions (termed processes in the language)
communicating via 1-to-1 or 1-to-many channels. The
channels are connected to input and output ports on the
functions. They define the input and output data types.
 In Figure 1 we show the different planes associated with an
FDL description. The Functional Plane defines logically
how processes are linked via communication channels and
ports. The Operating Plane refers to the operating
environment on each resource supporting a process. The
Communication Plane defines the environment used to
support the communication channels and can be a mixture
of device drivers for busses and services supplied by an
RTOS. The Hardware Plane encompasses the physical
resources used to implement the signal processing and
communications.

Figure 1 Software radio planes

In addition the FDL description captures precedence and
timing information. In Figure 2 we show 5 processes (P1-
P5) executing periodically with 3 communication channels
(C1-C3). In this FDL document the following timing
elements are defined:

 Tperiod, the period over which each process is
repeated

 T0, the absolute start time for the 1st period
defined in terms of a specific timebase

 deltaT, the earliest time P3 can start relative to the
start of the period.

Figure 2 Timing Diagram

An FDL document can be used to describe the fine-grained
configuration of a signal processing chain. The deploy tag
specifies the rat deployment operations. In the deployment
operation, a signal processing chain can be represented by
an Alg_Algorithm XML element. It contains a unique id, a
type description, and a execution mode for the algorithm.
The AlgDescSchema.xsd XML schema defines a set of
rules, data type validation for an algorithm. The signal
processing chain (Alg_Algorithm) is broken down into
sub-components. The main components are subProcesses
and subChannels. A channel and process are linked via
inputPort or an outputPort. To support a level of hierarchy
processes can be associated with one or more sub-processes.
A process is equivalent to a functional block such as a
channel codec or speech codec. The channels are logical
communication links between processes and could
eventually, depending on the platform, be mapped to a
DMA channel on a shared data bus.

hardware
plane

communication
plane

operating
plane

functional
plane

F
1

F
2

T
1

T
2

T
WRITE

T
READ

Channel
1

Pipe
1

CommsDevice
1P

1
P

2

Pipe
2

Link
1

P
3

The required elements for defining a signal processing chain
are listed in the following:

o Alg_Algorithm. An algorithm description represents a

signal processing chain. It contains three attributes.
o componentID. Unique component ID for

current algorithm.
o type. The type of the algorithm.
o executionMode. Specifies the execution mode

of an algorithm. It can be continuous – (an
infinite loop execution mode), or once
(execute once then exit).

o subProcess. A functional block used in the
processing chain.

o subChannel. The channel is logic link
between processes.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

A simplified sample of deploying 80211a baseband receiver
chain using FDL is illustrated in the following:

The attributes and optional elements of a subProcess are:

o subProcess. A functional block used in the processing

chain.
o componentID. Unique component ID for the

functional block.
o type. The type of the functional block.
o executionMode. Specifies the execution mode of the

functional block.
o version. Version of current process.
o processPara. Parameters for the functional block.
o earliestStart. The earliest start time of the functional

block.
o timeBase. Timing base for functional block, it could be

us, ms, ns, or other defined by user.
o deadline. Deadline for finishing current functional

block execution.
o processDepe. The current process depends on another

process.
o input. Input port for the functional block.
o output. Output port for the functional block.

Each subProcess contains one to many input and output
ports. The required elements of an input port are:

o input. Input port of a subProcess.

o componentID. Unique component ID for the
input port.

o type. The type of the input port.
o portDataType. Data type of the port
o inputConnection. The reference to a channel, which

connects the input port.
o refType. Type of the channel
o ref. Name of the channel

The required elements of an output port are:
o output. Output port of a subProcess.

o componentID. Unique component ID for the
output port.

o type. The type of the output port.

o portDataType. Data type of the port
o outputConnection. The reference to a channel, which

connects the output port.
o refType. Type of the channel

<deploy>
<Alg_Algorithm componentID="Baseband80211aRx"
type="Baseband80211aRx" executionMode="continuous"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AlgDescSchema.xsd">
<subProcess>
</subProcess>
<subChannel>
</subChannel>
< /Alg_Algorithm>

</deploy>

o ref. Name of the channel

A channel connects two processes (as shown in Figure 3),
and the latency, bandwidth, input, and output ports are
defined in a channel.
o subChannel. A channel connects two processes.
o latency. Latency of current channel.
o peakBandwidth. Peak band width should be allocated

to current channel.
o writer. A reference to the output port.
o reader. A reference to the input port.

Access Point Mobile Terminal

RAT deployment using
FDL

ACK

Installation

Figure 3: RAT deployment procedure.

Part of the 802.11a baseband receiver processing chain is
shown in Figure 4.

Figure 4: A snapshot of signal processing chain block

diagram.

3. REMOTE DEVICE MANAGEMENT

The purpose of remote device management is to deliver
configurations and client applications to mobile terminals
via device management (OMA_DM) servers [4]. The Open
Mobile Alliance (OMA) specification enables the device
management features in a vendor independent way. The DM

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

architecture consists of one or more servers and a client in
the mobile device. The server and the client communicate
with each other using the OMA DM Protocol, which is
based on the SyncML Representation Protocol. The OMA
DM also defines a protocol for data synchronisation, named
“SyncML Data Sync Protocol”.

Figure 6 Initialisation of the Communication between

OMA DM Server and Client

The OMA DM in a device is represented by a management
tree consisting of at least one root node and typically several
further nodes. The management tree contains and organises
all available management objects. Nodes are entities that are
manipulated through the OMA DM protocol. Within the
management tree, an interior node can have an unlimited
number of child nodes, while a leaf node must contain a
value, including null. Each node has a set of run-time

properties associated with it, such as Name, Size, etc. The
manipulation includes adding a child node, getting the
node's properties, replacing this node, or deleting this node.
Every node can be accessed directly through a unique
Uniform Resource Identifier (URI).
The relation of the node to the device management can be
incarnated in two distinct ways: (1) A node might reflect a
set of configuration parameters for a device. Actions that
can be taken against this node might include reading and
setting parameter keys and values. (2) Another node might
be the run-time environment for software applications on a
device. Actions that can be taken against this type of node
might include installing, upgrading, or uninstalling software
elements. These actions can be executed on the nodes using
the OMA DM protocol management commands [5].
In the device management as applied in the case presented
in this paper the OMA DM client is part of the
“Configuration Downloads” (CMM_Dwnld) module of the
device management framework. The CMM_Dwnld module
in general provides the capability to perform downloads of
different device management components for the
reconfiguration process. It undertakes the management of
the downloading procedure. During the initialization of the
communication between the OMA DM server and client on
the client side the only involved components are
CMM_Dwnld and CMM_MD (Monitoring and Discovery)
module for monitoring purposes (Figure 6). For the
implementation of the test platform, the logical components
as indicated in the top row of this figure have been mapped
to physical devices as indicated by the shaded background
boxes. More information on the implementation is provided
in the subsequent section “Proof of Concept Platform”.
The device management activities that happen during the
transport of the actual configurations, i.e. the delivery of
FDL and SPM (Signal Processing Module) files, are

Figure 5 FDL and Signalling Processing Modules (SPM) Download and Deployment Through OMA DM Server

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

depicted in Figure 5. During Retrieve FDL file an FDL file
is delivered to the OMA DM client using the ADD
command of the OMA DM protocol. The OMA DM client
provides the file for further processing to the Configuration
Control Module (CCM) components of the device
management framework. After the FDL file has been parsed
and interpreted it may happen that further downloads are
required to implement the device configuration as requested
within the FDL file. In this case a request Binaries message
is sent by the client to the server. The server responds to
that by providing the missing SPM files, again using the
ADD command. When the OMA DM client has received
the SPF files it transfers them to the CCM Service Manager
for further processing.

4. PROOF OF CONCEPT PLATFORM

As we have reported in previous papers [6] we have
developed a Proof of Concept platform (Figure 7) to
investigate and demonstrate the process of reconfiguring a
terminal after receiving an FDL document. The platform is
comprised of:
1. Laptop containing an OMA Database Manager (DM)

server, this is used to store the FDL document and a set
of object codes known as Signal Processing Modules
(SPM). The laptop represents the NRM.

2. Nokia 770 Internet Tablet containing the Configuration
Management Module (CMM) and the OMA DM client.
The Nokia 770 is connected to the OMA DM server
using its WiFi link and connected to the RTRP using a
USB link.

3. Real Time Research Platform (RTRP), this is used to
emulate a reconfigurable baseband SoC and contains
one or more DSP/FPGA and a PC. It also contains the
Configuration Control Module (CCM) this is used to
interpret the FDL documents and supports the protocol
to request object code from the OMA DM server and
install the code on the hardware.

Figure 7 Proof of Concept Diagram

To test the system and evaluate the overhead imposed using
FDL we developed a set of SPMs for an FPGA (Xilinx
Virtex II Pro) , DSP (TI C6203) and GPP (Intel Xeon) to
implement the physical layer for an IEEE802.11a WLAN
transceiver. We then created an FDL document to describe
the complete IEEE802.11a transceiver see Figure 8. The
FDL document is compressed using the GZIP [7] utility
before transmission, see Table 1.

Parsing time (s) 802.11a XML

Size
(Kbytes)

Zipped
Size

(Kbytes)
Win Linux 770

Receiver 18.3 1.8

Transmitter 17.6 1.9
0.12 0.11 0.31

Table 1 IEEE802.11a FDL file statistics

 We also measured the time taken to parse both the transmit
and receiver documents on three platforms i.e. Windows
(Windows® XP, Xeon 2.0Ghz), Linux (Ubuntu Linux,
Pentium IV 3.2Ghz) and Nokia 770 (Debian Linux, TI
OMAP 252Mhz). Once the FDL code is parsed the
appropriate SPM are downloaded from the OMA database.
To estimate how much time the downloading would take in
a practical system we used typical data rates for three
cellular systems (HSDPA, EDGE and GPRS). The zipped
SPM sizes were based on a mixture of TI DSP and FPGA as
shown in Figure 8. Once the SPM have been downloaded
they are un-zipped and installed in the target DSP and
FPGA. In Table 2 we summarise the time taken to install all
the SPMs onto the hardware. It is clear from these figures
that the time taken to install the object code is substantially
greater than the time taken download and interpret a FDL
file.

Projected Download Times (s) SPM

SizeNote 2
(Kbytes)

Install
Time

(s)
400KB/s
(hsdpa)

29.6KB/s
(edge)

10KB/s
(gprs)

RX 109 0.27 3.7 10

TX 111
24Note 1

0.28 3.8 10

Table 2 SPM download and Install times

Configuration Control Module (PCC engine)

RTRP Hardware Abstraction Layer

FPGATI DSP
GPP

Pentium
IV

RTRP

Configuration Management Module (OMA DM Client)

Emulation of SDR mobile device

FDL for
802.11a

Tx

FDL for
802.11a

Rx

SPM
802.11a
Ch Dec
FPGA

SPM
802.11a

FFT
FPGA

SPM
802.11a
Ch Dec

GPP

...

OMA DM Server

FIFOFIFO

Nokia 770

Laptop

Note 1: Decompression and Installation time. TI object code:
4 s, FPGA: 20 s.
Note 2: Size after being compressed using GZIP

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 8 IEEE 802.11a processing chain

5. CONCLUSIONS AND FUTURE WORK

In this paper we have described the practical
implementation of FDL for the IEEE802.11a WLAN RAT.
We have also evaluated the overhead associated with
communicating and interpreting FDL documents and shown
that even with a relatively complicated configuration the
overhead is quite small when compared to the Over The Air
(OTA) downloading of object code and its installation onto
the hardware. The work so far has assumed relatively
simple mapping between processes and resources and this
has allowed us to use a rather trivial temporal and spatial
scheduling scheme. Future work could focus on more
complicated RATs e.g. cellular and further investigate the
problem of power sensitive dynamically scheduling on a
resource limited platform.
Another improvement is planned on the security of the
OMA DM client. The current implementation runs on a
Linux distribution with normal access control. Future
implementation will use the Security Enhanced Linux
(SELinux) offering Role Based Access Control (RBAC)
and Type Enforcement (TE) as mechanisms to decide about
access requests. The impact of the increased security on the
performance has to be investigated.

6. ACKNOWLEDGEMENT

This work was performed in project E2R II which has
received research funding from the Community's Sixth
Framework programme. This paper reflects only the
authors' views and the Community is not liable for any use
that may be made of the information contained therein. The

contributions of colleagues from E2R II consortium are
hereby acknowledged.

scram bler

Convolutional encoder

Puncturer

Interleaver

M apper

IFFT

Cyclic Prefix Addition

Pream ble
header

W LAN 80211a TR ANSM IT CHAIN

Coarse Tim ing &
CFO Correction

Fine Tim ing

FFT

CPE Correction

Equaliser

CSI
Estim ation

Dem apper

DeInterleaver

Depuncturer

DeScram bler

Viterbi Decoder

RF RF

Cyclic Prefix Rem oval

Input B its

W LAN 80211a RECEIVE CHAIN

O utput B itsC im plem entation for
GPP and D SP

C and FPGA
im plem entation

N ot Im plem ented
7. REFERENCES

[1] Ofcom, “Business Radio Trading & Liberalisation, a

consultation on proposals to liberalise and simplify business
radio licensing (including measures to extend spectrum
trading”, 6 July 2006

[2] Holland, Oliver, Muck, Markus, et.al "Development of a
Radio Enabler for Reconfiguration Management within the
IEEE P1900.4 Working Group," New Frontiers in Dynamic
Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE
International Symposium on , vol., no., pp.232-239, 17-20
April 2007

[3] R. Burgess, S. Mende. The Role of Configuration Data and a
Configuration Control Module in an End-to-End (E2R)
Software Radio System. 14th IST Mobile & Wireless
Communications Summit: Dresden, 19th - 23rd June 2005

[4] S. Lin, S. Jiang, H. Lin, J. Liu: An introduction to OMA
Device Management, http://www-
128.ibm.com/developerworks/wireless/library/wi-oma/

[5] OMA Device Management Protocol. Candidate Version 1.2 –
28 Jun 2005

[6] Shi Zhong, Craig Dolwin, Rollo Burgess, “A Software
Defined Radio Proof-of-Concept Demonstration Platform”,
SDR forum technical conference, November, 2006.

[7] GZIP home page, www.gzip.org.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

http://www-128.ibm.com/developerworks/wireless/library/wi-oma/
http://www-128.ibm.com/developerworks/wireless/library/wi-oma/
http://www.gzip.org/

	Home
	Search by Session
	Search by Author

