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ABSTRACT 

 
Partially reconfigured FPGA systems are typically 
architected for a specific design, such as a Software Defined 
Radio System, with application-specific interfaces and 
system design.  However, we notice that many of the 
characteristics of such systems are common across a variety 
of applications.  This paper describes a generic system 
platform, based around a control processor with an 
operating system and partial reconfiguration that aims to 
simplify the design of such systems.  The platform is 
implemented using a standard processor design flow 
targeting the PowerPC 405 processor embedded in Xilinx 
Virtex 4 FX devices.  The design flow used for targeting the 
user portion of the platform is very similar to the standard 
(non-partial reconfiguration based) Xilinx design flow.  As 
a result, it is possible to quickly and easily implement a 
processor-based design using this flow.  An example design 
based on a 2x2 MIMO OFDM system is also shown. 
 

1. INTRODUCTION 
 
FPGAs are a vital part of a modern software-defined radio. 
In the past, their use was mostly limited to processing the 
high-rate data in the physical layer. But as modern FPGAs 
become ever larger and more cost-effective, they are 
absorbing more of the radio system. Microprocessor cores 
can be embedded in the FPGA to implement control-plane 
tasks and higher-layer protocol processing. In the extreme 
case, the entire radio can be implemented on a single device 
[1][2], a technique which can reduce power consumption 
and eliminate data transfer bottlenecks. In this paper we 
present a powerful new technique which simplifies the 
development of FPGA systems utilizing embedded 
processors, and overcomes some common problems 
associated with SDR. 
 
One of the benefits of SDR is that the waveform application 
can be changed at run-time. This is especially important for 
military radios which need to run a wide range of 
waveforms. Normally, the entire FPGA is reloaded with a 
new image when a new waveform is to be run. 

Unfortunately, this will wipe out state information in any 
embedded processors and the peripheral interfaces. Implied 
is the need to reboot any OS running on the processor. On 
Xilinx FPGAs, partial reconfiguration techniques can be 
used to eliminate these problems. 
 
There has been much discussion in the literature on the use 
of Xilinx partial reconfiguration (PR) [3,4,5,6,7]. Mostly it 
revolves around dynamically swapping one functional unit 
running in the FPGA fabric with an other functional unit. 
However, partial reconfiguration can also be used as a form 
of encapsulation, to isolate some portion of the design from 
the rest. For instance, the entire processor subsystem can be 
placed in one PR region, while the rest of the waveform 
application can be placed in another PR region. This 
achieves some notable benefits: 

• The processor subsystem can be highly optimized 
to run at maximum possible speed. Design changes 
to the waveform application outside this region can 
not disturb the carefully optimized design.  

• From the user's point of view, the soft-core 
processor has characteristics of a stand-alone hard-
core processor. The processor can boot up first, 
and control the rest of the FPGA load process. It 
also retains state information while the waveform 
application is changed. 

• Similarly, the processor subsystem can be fixed for 
a given platform, allowing waveform developers to 
focus on the waveform application instead of 
embedded processor tools. This has particular 
benefit for board providers who wish to reduce 
tooling burden on their end users. 

• The waveform application can be loaded via 
peripheral interfaces not normally supported. The 
first FPGA load is done via normal methods, say 
by EEPROM via the Xilinx System Ace controller. 
Once the processor is running, it can reload 
waveform PR images delivered by any attached 
peripheral, such as USB or PCI, from some remote 
controller in the system. 

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:stephen.neuendorffer@xilinx.com


• Because the processor subsystem is fixed, it is 
easier to verify for high assurance and mission-
critical systems.  

 
It must be noted that the techniques presented in this paper 
are not limited to SDR applications. They are amenable to a 
wide array of designs that utilize embedded processors.  
  
1.1. Partial Reconfiguration Basics 
 
Partial Reconfiguration (PR) is the ability to reconfigure 
part of an FPGA (a reconfigurable region), while another 
part of the FPGA (a static region) remains active and 
operating.  Although PR is possible to various extents in 
several Xilinx FPGA families, this paper focuses on PR in 
Virtex 4 FX FPGAs.  This family of FPGAs is well suited 
to PR, due to a combination of architectural features.  In 
particular, configuration frames (the minimal addressable 
unit in the FPGA configuration space) are 16 CLBs tall, 
enabling reconfigurable regions to be easily tiled 
horizontally and vertically.  Additionally, routing 
configuration bits can be overwritten to identical values 
without generating signal glitches.  This capability is critical 
to allowing static routes to cross a reconfigurable region. 
Lastly, these FPGAs contain PowerPC 405 hard cores 

embedded in the FPGA fabric, which are well-supported 
under Linux.  A processor system built around this core 
using Xilinx Embedded Development Kit (EDK) forms the 
basis for controlling the PR process. 
 
In this paper, we make use of the Early Access (EA) PR 
flow, based on Xilinx ISE 9.1.1.  These tools support a 
variety of merge-based partial reconfiguration, as described 
in [1].  In the EA PR flow, the static region is implemented 
first with constrained placement.  The static region is 
allowed to contain routes through any reconfigurable 
regions, and the associated routing resources are excluded 
from being used by modules targeted for reconfigurable 
regions.  In order to generate partial bitstreams that can be 
loaded into a reconfigurable region, the static routes are 
merged with the placed and routed design for the 
reconfigurable regions, ensuring that static routes remain 
active. 

2. FPGA ARCHITECTURE 
 

A representation of the design for the static region is shown 
in Figure 1.  The static design contains a relatively simple 
system architecture which aims at being simple and 
relatively small in FPGA area, leaving the bulk of the FPGA 
area available for application-specific high speed data 

 
 

Figure 1: Static System Design 
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processing.  We assume that the main data-processing 
pipeline is configured, controlled and debugged using the 
control processor.  Although low-data rate communication 
is possible using a bus slave and interrupt architecture, 
master access to main memory from the partially 
reconfigured region (which could provide much higher 
communication bandwidth) is not supported in this design.  
We have made this design decision in expectation that high 
data rate communications to not involve the processor and 
exist entirely within the FPGA fabric. 
 
The interface from the static region consists of one 
CoreConnect OPB slave interface, enabling a single 
memory mapped peripheral to placed in the reconfigurable 
region.  Alternatively, if multiple peripherals are required, a 
bus bridge can be used to connect additional slaves, or local 
masters.  In total, this design requires less than 8000 LUTs 
and 7 BRAM blocks.  The largest individual component 
(requiring over half the LUTs) in the design is the 10/100 
Ethernet MAC. 
 

3. EDK DESIGN FLOW 
 

The static design is implemented using a combination of 

EDK for system composition and synthesis and scripted 
execution of ISE using GNU Make.  The reconfigurable 
region is abstracted at design time using an EDK pcore.  
This pcore contains a VHDL component instantiation of 
the reconfigurable region, along with the bus macros needed 
by the EA PR flow to cross the boundary between the static 
and reconfigurable portions, and a small amount of DCR-
based control logic for enabling and disabling the bus 
macros during reconfiguration.  This enable logic is 
necessary in the design due to avoid glitches during 
reconfiguration on bus signals being driven from the 
reconfigurable region.  Note that no hand modification of 
the generated HDL code is necessary.  This process is 
summarized in the left side of Figure 2. 
 
Reconfigurable modules are designed and synthesized 
separately from the static region in a separate EDK project 
directory, or as straight VHDL source in a separate 
directory.  The implementation of a reconfigurable module 
is also scripted using GNU Make, and makes use of the fact 
that EDK generates independent netlists for each IP core in 
a design.  In particular, only context logic (consisting of 
Clock Managers, Clock buffers, and bus macros, and any 
HDL hierarchy containing them) needs to be placed and 
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Figure  2: Design Flow 
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routed along with the reconfigurable region.  The netlists 
containing context logic are copied from the static design 
into the reconfigurable module design so they can be 
accessed by the place and route tools.  After place and 
route, the .ncd files for the static design and the 
reconfigurable modules are merged in order to create 
correct bitstreams.  This implementation process can also be 
executed automatically in Xilinx PlanAhead 9.2.  This 
process is summarized in the right side of Figure 2. 
 
Although it is certainly more complex to create a partial 
reconfiguration design than a design using the standard 
implementation flow, the bulk of the additional effort 
required (such as instantiation of bus macros, floorplanning) 
is only associated with the static portion of the design.  For 
a given static design, the implementation of a PR module is 
largely the same as the standard implementation flow.  
When combined with the correct set of OS mechanisms 
(such as code to interface with the ICAP device driver) and 
a precompiled operating system kernel, the resulting design 
process is actually significantly easier and faster than a 
similar system built from scratch using EDK.  Furthermore, 
this system can be characterized and verified independently, 
providing a guaranteed level of performance. 
 

4. SOFTWARE INTEGRATION 
 

Although any program could be run on the processor from 
the previous section, we have focused on a platform 
integrated with Linux 2.6.  Using an operating system 
makes it relatively easy to share the processor between any 
system tasks needed for managing the platform, in addition 
to user code that might be necessary for a particular 
application.  In addition, the operating system provides a 
certain level of safety and robustness of the system: 
application code is not capable of interfering with the 
operation of the systems infrastructure.  The Linux system 
itself is built leveraging the EDK mechanisms for 
generating Linux board support packages, ported to the 
2.6.22 kernel series.  In addition, the kernel provides a small 
device driver for managing the reconfigured region 
(described in the next section). 
 
In this context a new application stack, consisting of user-
space application code, kernel-space device drivers and 
FPGA circuits, can be designed and delivered without 
modification of the predefined platform.  In order for this to 
be possible, design dependencies must be carefully 
managed so that the application stack and the platform 
remain consistent.  Dependencies between user-space 
application code are managed using familiar operating 
system abstractions for managing processes and dynamic 
linking.  Dependencies between code running in kernel 

space are managed using Linux kernel modules, which can 
be loaded and unloaded without rebooting the system.  At 
the FPGA level, partial reconfiguration and partial 
bitstreams are essentially a way to orthogonalize a large 
system into pieces that can be loaded and unloaded 
independently. 
 
Figure 3 shows the entire platform (including the FPGA 
design, plus the operating system components) on the left, 
and a specific application design on the right, along with the 
design dependencies between them.  Interface dependencies 
(shown as dotted lines) indicate where one component 
depends on the interface of another component.  For 
instance, the dotted line from user application to the 
libraries indicates that the user application depends on 
defined interface of the library (in this case, the function 
calls exported by a dynamically linked library as global 
symbols).  Stronger build dependencies (shown as solid 
lines) indicates when one component depends on a specific 
implementation of another component.  For instance, the 
solid line from the block labeled ‘user device drivers’ to the 
block labeled ‘Linux kernel’ indicates that Linux kernel 
cannot be recompiled without (possibly) needing to rebuild 
all kernel modules [2].  Note that using the current Xilinx 
EA partial reconfiguration flow, not only must the static 
portion of the FPGA design and the reconfigured module 
agree on an interface, but the reconfigured module must be 
reimplemented if the static portion is reimplemented.  
  

5. RECONFIGURATION PROCESS 
 

After partial bitstreams have been created they can be 
loaded into the device through the Internal Configuration 
Access Port (ICAP).  The ICAP is accessible through Linux 
drivers shipped with EDK.  In addition, however, 
reconfiguration must be coordinated with enabling and 
disabling bus macros and with notifying the Linux kernel of 
the appearance or removal of devices.  These secondary 
operations are coordinated through a second device driver 
interface, accessed through /dev/xilinx_socket.  
This device is typically written with a file containing 
configuration meta-information.  This meta-information is 
described by a serialized version of the Linux struct 
platform_device combined with a checksum.  If the 
file appears to contain a valid record, then bus-macros are 
enabled and the structure is de-serialized and passed to the 
Linux kernel.  The xilinx_socket device driver also 
keeps a record of the structure and in response to a new set 
of meta-information (or an invalid record) will notify the 
Linux kernel that the previous device is no longer available 
(in order to maintain consistency), and disable the bus 
macros. 
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Bitstream Validation  
 This process leaves open the possibility for somewhat 

catastrophic errors.  For instance, incorrectly notifying 
Linux of the presence of a device may result in kernel bus 
errors and possibly the inability to unload and reload the 
affected kernel modules.  Even worse, reconfiguring the 
reconfigured region while bus macros are enabled almost 
inevitably results in a stalled processor.  In order to reduce 
the possibility for errors, the ICAP device and the 
xilinx_socket device are treated as privileged and can 
only be accessed by processes with root permissions.  Our 
intention is that coordination of this process would be 
managed by a single daemon process executing in a 
privileged process.  Application processes wishing to 
perform reconfiguration would interact with the daemon.   

Another source of potential catastrophic errors is the 
possibility of loading a bitstream which is not a partial 
bitstream consistent with the executing static design.  In 
order to avoid such errors, we prepend each partial 
bitstream with additional data containing a hash of the .ncd 
file for the static design.  The 32 bit signature is also stored 
in the IDCODE register of the static design (and in order to 
maintain consistency, in the register of partial bitstreams as 
well).  Before reconfiguration, the IDCODE register is read 
(using the ICAP) and the value compared with the value 
stored at the start of the bitstream.  If these signatures fail to 
match, then the reconfiguration process is halted.   Although 
this technique is sufficient to prevent unintended errors 
(such as a designer who failed to reimplement PR modules 
after reimplementing the static design), it is not sufficient to 
prevent against an attack against the system.  For instance, 
an attacker interested in denial of service for a publicly 
available computing resource could craft an inconsistent 
bitstream containing the correct hash.  In such cases, larger 
signatures, combined with cryptographic techniques [8][9] 
would be necessary. 

 
Currently, the bitstream and meta-information are linked 
into a single executable (configure.elf in Figure 3) 
along with the code for interacting with the devices.  This 
process traps SIGINT, and in response resets the state of 
the xilinx_socket device.  As a result, the lifecycle of 
the application in the FPGA is tied to the lifecycle of an OS 
managed process. This approach is similar in spirit, but 
greatly different in implementation from [5], which 
performs essentially the same processes using the Linux 
kernel’s ability to implement new executable formats. 

 
6. RADIO DESIGN 

 
In order to better understand how the platform might be   
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Figure  3: Platform Architecture 
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used in practice, we retargeted an existing SDR design to 
the platform.  The original design is an open source 2x2 
MIMO-OFDM design from Rice University targeting the 
WARP platform containing a Xilinx Virtex-II Pro 70 
FPGA.  The original design utilized a control processor 
running a lightweight operating system to bridge a wired 
Ethernet interface over the wireless channel.  The original 
design used a PLB interface for packet transport with the 
FPGA fabric and OPB interface for control information. 
 
The existing design was modified to target a prototype 
implementation of our reconfigurable platform by removing 
the bulk of the processor subsystem, and inserting an OPB 
bus and OPB-OPB bridge to connect multiple OPB core 
interfaces to the OPB interface exposed by the platform.  
Additionally, the design was resynthesized to target a Virtex 
4 FX FPGA. As an initial design point, the packet transport 
interface was interfaced the OPB bridge using an OPB-PLB 
bridge and a minimal PLB bus configuration.   Because this 
configuration results in an additional communication 
bottleneck between the processor and the wireless system, 
we use this system primarily for area comparison.  We 
anticipate that future versions of the platform will provide 
for higher bandwidth busses.  The resulting system uses 
30611 LUTs, 106 BRAM blocks and 170 DSP48 blocks. 
 

7. CONCLUSION 
 
The processor encapsulation techniques presented in this 
paper may appear at first glace to be overly complex. 
However, one must look at this technique in the context of 
design reuse. The digital systems engineer expends a bit 
more effort constructing this processor object (alluding to 
object-oriented software techniques) so that the digital 
application engineers can limit their scope to just the 
application (the waveform in this case). The encapsulated 
processor object will remain stable, regardless of the work 
of the applications engineers. The use of the EDK tool is 
primarily limited to the digital systems engineer. The 
applications engineer may not need to use EDK at all, 
removing one tool from a seemingly growing list of tools 
they need to accomplish their job. This may have particular 
attraction for board vendors, as encapsulation of the 
processor subsystem makes their product easier to work 
with. In some sense, the processor subsystem gets absorbed 
into the board support package, allowing the user to 
concentrate on the application.  
 
The software framework presented here is the first steps 
towards exploring the interaction between software and the 
now-dynamic hardware that partial reconfiguration allows. 
We describe how new hardware functional units can be 
dynamically loaded into the FPGA via partial 
reconfiguration, and any necessary drivers incorporated into 

the operating system, without requiring a recompilation of 
the core software stack. Also described are methods to 
reduce common system errors that can occur during partial 
reconfiguration, making the entire system more robust. 
Taken together, the hardware and software encapsulation 
techniques presented here offer FPGA system-on-a-chip 
developers a means to create more robust, easier-to-use 
systems that will reduce development time/money in the 
long run. 
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