

GENERIC PARTIALLY RECONFIGURED PROCESSOR SYSTEMS APPLIED

TO SOFTWARE DEFINED RADIO

Stephen Neuendorffer (Xilinx Research Labs, San Jose, CA;
stephen.neuendorffer@xilinx.com)

Chad Epifanio (Xilinx, San Jose, CA;
chad.epifanio@xilinx.com)

ABSTRACT

Partially reconfigured FPGA systems are typically
architected for a specific design, such as a Software Defined
Radio System, with application-specific interfaces and
system design. However, we notice that many of the
characteristics of such systems are common across a variety
of applications. This paper describes a generic system
platform, based around a control processor with an
operating system and partial reconfiguration that aims to
simplify the design of such systems. The platform is
implemented using a standard processor design flow
targeting the PowerPC 405 processor embedded in Xilinx
Virtex 4 FX devices. The design flow used for targeting the
user portion of the platform is very similar to the standard
(non-partial reconfiguration based) Xilinx design flow. As
a result, it is possible to quickly and easily implement a
processor-based design using this flow. An example design
based on a 2x2 MIMO OFDM system is also shown.

1. INTRODUCTION

FPGAs are a vital part of a modern software-defined radio.
In the past, their use was mostly limited to processing the
high-rate data in the physical layer. But as modern FPGAs
become ever larger and more cost-effective, they are
absorbing more of the radio system. Microprocessor cores
can be embedded in the FPGA to implement control-plane
tasks and higher-layer protocol processing. In the extreme
case, the entire radio can be implemented on a single device
[1][2], a technique which can reduce power consumption
and eliminate data transfer bottlenecks. In this paper we
present a powerful new technique which simplifies the
development of FPGA systems utilizing embedded
processors, and overcomes some common problems
associated with SDR.

One of the benefits of SDR is that the waveform application
can be changed at run-time. This is especially important for
military radios which need to run a wide range of
waveforms. Normally, the entire FPGA is reloaded with a
new image when a new waveform is to be run.

Unfortunately, this will wipe out state information in any
embedded processors and the peripheral interfaces. Implied
is the need to reboot any OS running on the processor. On
Xilinx FPGAs, partial reconfiguration techniques can be
used to eliminate these problems.

There has been much discussion in the literature on the use
of Xilinx partial reconfiguration (PR) [3,4,5,6,7]. Mostly it
revolves around dynamically swapping one functional unit
running in the FPGA fabric with an other functional unit.
However, partial reconfiguration can also be used as a form
of encapsulation, to isolate some portion of the design from
the rest. For instance, the entire processor subsystem can be
placed in one PR region, while the rest of the waveform
application can be placed in another PR region. This
achieves some notable benefits:

• The processor subsystem can be highly optimized
to run at maximum possible speed. Design changes
to the waveform application outside this region can
not disturb the carefully optimized design.

• From the user's point of view, the soft-core
processor has characteristics of a stand-alone hard-
core processor. The processor can boot up first,
and control the rest of the FPGA load process. It
also retains state information while the waveform
application is changed.

• Similarly, the processor subsystem can be fixed for
a given platform, allowing waveform developers to
focus on the waveform application instead of
embedded processor tools. This has particular
benefit for board providers who wish to reduce
tooling burden on their end users.

• The waveform application can be loaded via
peripheral interfaces not normally supported. The
first FPGA load is done via normal methods, say
by EEPROM via the Xilinx System Ace controller.
Once the processor is running, it can reload
waveform PR images delivered by any attached
peripheral, such as USB or PCI, from some remote
controller in the system.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:stephen.neuendorffer@xilinx.com

• Because the processor subsystem is fixed, it is
easier to verify for high assurance and mission-
critical systems.

It must be noted that the techniques presented in this paper
are not limited to SDR applications. They are amenable to a
wide array of designs that utilize embedded processors.

1.1. Partial Reconfiguration Basics

Partial Reconfiguration (PR) is the ability to reconfigure
part of an FPGA (a reconfigurable region), while another
part of the FPGA (a static region) remains active and
operating. Although PR is possible to various extents in
several Xilinx FPGA families, this paper focuses on PR in
Virtex 4 FX FPGAs. This family of FPGAs is well suited
to PR, due to a combination of architectural features. In
particular, configuration frames (the minimal addressable
unit in the FPGA configuration space) are 16 CLBs tall,
enabling reconfigurable regions to be easily tiled
horizontally and vertically. Additionally, routing
configuration bits can be overwritten to identical values
without generating signal glitches. This capability is critical
to allowing static routes to cross a reconfigurable region.
Lastly, these FPGAs contain PowerPC 405 hard cores

embedded in the FPGA fabric, which are well-supported
under Linux. A processor system built around this core
using Xilinx Embedded Development Kit (EDK) forms the
basis for controlling the PR process.

In this paper, we make use of the Early Access (EA) PR
flow, based on Xilinx ISE 9.1.1. These tools support a
variety of merge-based partial reconfiguration, as described
in [1]. In the EA PR flow, the static region is implemented
first with constrained placement. The static region is
allowed to contain routes through any reconfigurable
regions, and the associated routing resources are excluded
from being used by modules targeted for reconfigurable
regions. In order to generate partial bitstreams that can be
loaded into a reconfigurable region, the static routes are
merged with the placed and routed design for the
reconfigurable regions, ensuring that static routes remain
active.

2. FPGA ARCHITECTURE

A representation of the design for the static region is shown
in Figure 1. The static design contains a relatively simple
system architecture which aims at being simple and
relatively small in FPGA area, leaving the bulk of the FPGA
area available for application-specific high speed data

Figure 1: Static System Design

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

processing. We assume that the main data-processing
pipeline is configured, controlled and debugged using the
control processor. Although low-data rate communication
is possible using a bus slave and interrupt architecture,
master access to main memory from the partially
reconfigured region (which could provide much higher
communication bandwidth) is not supported in this design.
We have made this design decision in expectation that high
data rate communications to not involve the processor and
exist entirely within the FPGA fabric.

The interface from the static region consists of one
CoreConnect OPB slave interface, enabling a single
memory mapped peripheral to placed in the reconfigurable
region. Alternatively, if multiple peripherals are required, a
bus bridge can be used to connect additional slaves, or local
masters. In total, this design requires less than 8000 LUTs
and 7 BRAM blocks. The largest individual component
(requiring over half the LUTs) in the design is the 10/100
Ethernet MAC.

3. EDK DESIGN FLOW

The static design is implemented using a combination of

EDK for system composition and synthesis and scripted
execution of ISE using GNU Make. The reconfigurable
region is abstracted at design time using an EDK pcore.
This pcore contains a VHDL component instantiation of
the reconfigurable region, along with the bus macros needed
by the EA PR flow to cross the boundary between the static
and reconfigurable portions, and a small amount of DCR-
based control logic for enabling and disabling the bus
macros during reconfiguration. This enable logic is
necessary in the design due to avoid glitches during
reconfiguration on bus signals being driven from the
reconfigurable region. Note that no hand modification of
the generated HDL code is necessary. This process is
summarized in the left side of Figure 2.

Reconfigurable modules are designed and synthesized
separately from the static region in a separate EDK project
directory, or as straight VHDL source in a separate
directory. The implementation of a reconfigurable module
is also scripted using GNU Make, and makes use of the fact
that EDK generates independent netlists for each IP core in
a design. In particular, only context logic (consisting of
Clock Managers, Clock buffers, and bus macros, and any
HDL hierarchy containing them) needs to be placed and

.mhs

.ngc

.ncd

.bit

static.ace

.elf

EDK Linux
design flow

Genace.tcl

EDK Platgen

PR Map/PAR

PR Bitgen

EDK Base
System Builder
+ socket pcore

.ucf

.ucf
Floorplanning

.mhs

.ngc

.ncd

.bit

merged.ace

Genace.tcl

PR Map/PAR

PR_mergedesign
+ PR Bitgen

EDK hand
design

EDK Platgen.ucf

.ucf

hand design

merge

partial.bit.c
.meta

Static design flow

objcopy
+ gcc

configure.elf

Module design flow

Figure 2: Design Flow

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

routed along with the reconfigurable region. The netlists
containing context logic are copied from the static design
into the reconfigurable module design so they can be
accessed by the place and route tools. After place and
route, the .ncd files for the static design and the
reconfigurable modules are merged in order to create
correct bitstreams. This implementation process can also be
executed automatically in Xilinx PlanAhead 9.2. This
process is summarized in the right side of Figure 2.

Although it is certainly more complex to create a partial
reconfiguration design than a design using the standard
implementation flow, the bulk of the additional effort
required (such as instantiation of bus macros, floorplanning)
is only associated with the static portion of the design. For
a given static design, the implementation of a PR module is
largely the same as the standard implementation flow.
When combined with the correct set of OS mechanisms
(such as code to interface with the ICAP device driver) and
a precompiled operating system kernel, the resulting design
process is actually significantly easier and faster than a
similar system built from scratch using EDK. Furthermore,
this system can be characterized and verified independently,
providing a guaranteed level of performance.

4. SOFTWARE INTEGRATION

Although any program could be run on the processor from
the previous section, we have focused on a platform
integrated with Linux 2.6. Using an operating system
makes it relatively easy to share the processor between any
system tasks needed for managing the platform, in addition
to user code that might be necessary for a particular
application. In addition, the operating system provides a
certain level of safety and robustness of the system:
application code is not capable of interfering with the
operation of the systems infrastructure. The Linux system
itself is built leveraging the EDK mechanisms for
generating Linux board support packages, ported to the
2.6.22 kernel series. In addition, the kernel provides a small
device driver for managing the reconfigured region
(described in the next section).

In this context a new application stack, consisting of user-
space application code, kernel-space device drivers and
FPGA circuits, can be designed and delivered without
modification of the predefined platform. In order for this to
be possible, design dependencies must be carefully
managed so that the application stack and the platform
remain consistent. Dependencies between user-space
application code are managed using familiar operating
system abstractions for managing processes and dynamic
linking. Dependencies between code running in kernel

space are managed using Linux kernel modules, which can
be loaded and unloaded without rebooting the system. At
the FPGA level, partial reconfiguration and partial
bitstreams are essentially a way to orthogonalize a large
system into pieces that can be loaded and unloaded
independently.

Figure 3 shows the entire platform (including the FPGA
design, plus the operating system components) on the left,
and a specific application design on the right, along with the
design dependencies between them. Interface dependencies
(shown as dotted lines) indicate where one component
depends on the interface of another component. For
instance, the dotted line from user application to the
libraries indicates that the user application depends on
defined interface of the library (in this case, the function
calls exported by a dynamically linked library as global
symbols). Stronger build dependencies (shown as solid
lines) indicates when one component depends on a specific
implementation of another component. For instance, the
solid line from the block labeled ‘user device drivers’ to the
block labeled ‘Linux kernel’ indicates that Linux kernel
cannot be recompiled without (possibly) needing to rebuild
all kernel modules [2]. Note that using the current Xilinx
EA partial reconfiguration flow, not only must the static
portion of the FPGA design and the reconfigured module
agree on an interface, but the reconfigured module must be
reimplemented if the static portion is reimplemented.

5. RECONFIGURATION PROCESS

After partial bitstreams have been created they can be
loaded into the device through the Internal Configuration
Access Port (ICAP). The ICAP is accessible through Linux
drivers shipped with EDK. In addition, however,
reconfiguration must be coordinated with enabling and
disabling bus macros and with notifying the Linux kernel of
the appearance or removal of devices. These secondary
operations are coordinated through a second device driver
interface, accessed through /dev/xilinx_socket.
This device is typically written with a file containing
configuration meta-information. This meta-information is
described by a serialized version of the Linux struct
platform_device combined with a checksum. If the
file appears to contain a valid record, then bus-macros are
enabled and the structure is de-serialized and passed to the
Linux kernel. The xilinx_socket device driver also
keeps a record of the structure and in response to a new set
of meta-information (or an invalid record) will notify the
Linux kernel that the previous device is no longer available
(in order to maintain consistency), and disable the bus
macros.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Bitstream Validation
 This process leaves open the possibility for somewhat

catastrophic errors. For instance, incorrectly notifying
Linux of the presence of a device may result in kernel bus
errors and possibly the inability to unload and reload the
affected kernel modules. Even worse, reconfiguring the
reconfigured region while bus macros are enabled almost
inevitably results in a stalled processor. In order to reduce
the possibility for errors, the ICAP device and the
xilinx_socket device are treated as privileged and can
only be accessed by processes with root permissions. Our
intention is that coordination of this process would be
managed by a single daemon process executing in a
privileged process. Application processes wishing to
perform reconfiguration would interact with the daemon.

Another source of potential catastrophic errors is the
possibility of loading a bitstream which is not a partial
bitstream consistent with the executing static design. In
order to avoid such errors, we prepend each partial
bitstream with additional data containing a hash of the .ncd
file for the static design. The 32 bit signature is also stored
in the IDCODE register of the static design (and in order to
maintain consistency, in the register of partial bitstreams as
well). Before reconfiguration, the IDCODE register is read
(using the ICAP) and the value compared with the value
stored at the start of the bitstream. If these signatures fail to
match, then the reconfiguration process is halted. Although
this technique is sufficient to prevent unintended errors
(such as a designer who failed to reimplement PR modules
after reimplementing the static design), it is not sufficient to
prevent against an attack against the system. For instance,
an attacker interested in denial of service for a publicly
available computing resource could craft an inconsistent
bitstream containing the correct hash. In such cases, larger
signatures, combined with cryptographic techniques [8][9]
would be necessary.

Currently, the bitstream and meta-information are linked
into a single executable (configure.elf in Figure 3)
along with the code for interacting with the devices. This
process traps SIGINT, and in response resets the state of
the xilinx_socket device. As a result, the lifecycle of
the application in the FPGA is tied to the lifecycle of an OS
managed process. This approach is similar in spirit, but
greatly different in implementation from [5], which
performs essentially the same processes using the Linux
kernel’s ability to implement new executable formats.

6. RADIO DESIGN

In order to better understand how the platform might be

Reference FPGA Design
(.bit)

Existing
Device
Drivers

Existing Libs (.o,
.so)

2.6 Linux Kernel (.elf)

User Application
(a.out)

Board
Patches

Xilinx Libs
(.o, .so)

Design Platform

Xilinx
Device
Drivers

User FPGA Devices
(.bit)

User Device Drivers
(.ko)

User Design

Dynamic
Linking

Loadable
Modules

PR Tools

Device Discovery +
Linux Device ModelBSP Generation

Device Driver Interface

Build dependencies Interface dependencies

Device Driver Interface

Figure 3: Platform Architecture

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

used in practice, we retargeted an existing SDR design to
the platform. The original design is an open source 2x2
MIMO-OFDM design from Rice University targeting the
WARP platform containing a Xilinx Virtex-II Pro 70
FPGA. The original design utilized a control processor
running a lightweight operating system to bridge a wired
Ethernet interface over the wireless channel. The original
design used a PLB interface for packet transport with the
FPGA fabric and OPB interface for control information.

The existing design was modified to target a prototype
implementation of our reconfigurable platform by removing
the bulk of the processor subsystem, and inserting an OPB
bus and OPB-OPB bridge to connect multiple OPB core
interfaces to the OPB interface exposed by the platform.
Additionally, the design was resynthesized to target a Virtex
4 FX FPGA. As an initial design point, the packet transport
interface was interfaced the OPB bridge using an OPB-PLB
bridge and a minimal PLB bus configuration. Because this
configuration results in an additional communication
bottleneck between the processor and the wireless system,
we use this system primarily for area comparison. We
anticipate that future versions of the platform will provide
for higher bandwidth busses. The resulting system uses
30611 LUTs, 106 BRAM blocks and 170 DSP48 blocks.

7. CONCLUSION

The processor encapsulation techniques presented in this
paper may appear at first glace to be overly complex.
However, one must look at this technique in the context of
design reuse. The digital systems engineer expends a bit
more effort constructing this processor object (alluding to
object-oriented software techniques) so that the digital
application engineers can limit their scope to just the
application (the waveform in this case). The encapsulated
processor object will remain stable, regardless of the work
of the applications engineers. The use of the EDK tool is
primarily limited to the digital systems engineer. The
applications engineer may not need to use EDK at all,
removing one tool from a seemingly growing list of tools
they need to accomplish their job. This may have particular
attraction for board vendors, as encapsulation of the
processor subsystem makes their product easier to work
with. In some sense, the processor subsystem gets absorbed
into the board support package, allowing the user to
concentrate on the application.

The software framework presented here is the first steps
towards exploring the interaction between software and the
now-dynamic hardware that partial reconfiguration allows.
We describe how new hardware functional units can be
dynamically loaded into the FPGA via partial
reconfiguration, and any necessary drivers incorporated into

the operating system, without requiring a recompilation of
the core software stack. Also described are methods to
reduce common system errors that can occur during partial
reconfiguration, making the entire system more robust.
Taken together, the hardware and software encapsulation
techniques presented here offer FPGA system-on-a-chip
developers a means to create more robust, easier-to-use
systems that will reduce development time/money in the
long run.

[1] "JTRS SDR Kit." Xilinx. Retrieved 24 Sept. 2007.

<http://www.xilinx.com/dsp/defense/jtrs_sdr_lounge.htm>
[2] "Rice University WARP: Wireless Open-Access Research

Platform." Rice University. Retrieved 24 Sept. 2007.
<http://warp.rice.edu/trac/wiki>

[3] P. Sedcole, B. Blodget, T. Becker, J. Anderson and P.
Lysaght, "Modular dynamic reconfiguration in Virtex
FPGAs", IEE Proceedings Computers & Digital Techniques,
Vol. 153, No. 3, pp 157-164, May 2006.

[4] J. Corbett, A. Rubini, and G. Kroah-Hartman, Linux Device
Drivers (3rd Ed.), O’Reilly Press, Sebastapol, CA, USA,
2005.

[5] Brandon Blodget, Philip James-Roxby, Eric Keller, Scott
McMillan, Prasanna Sundararajaran. A Self-Reconfiguring
Platform. 13th International Field Programmable Logic and
Applications Conference (FPL). Lisbon, Portugal, September
1-3, 2003. Lecture Notes in Computer Science 2778.

[6] J. Williams and N. Bergmann, Embedded Linux as a platform
for dynamically self-reconfiguring systems-on-chip, In
Proceeedings of the 2004 International MultiConference in
Computer Science & Computer Engineering (ERSA)
Las Vegas, Nevada, June 21-24, 2004.

[7] Hayden Kwok-Hay So, Robert W. Brodersen, "Improving
Usability of FPGA-Based Reconfigurable Computers through
Operating System Support" In Proceedings of 16th
International Conference on Field Programmable Logic and
Applications (FPL '06).

[8] J. Castillo, P. Huerta, V. Lopez, J. Martinez, A secure self-
reconfiguring architecture based on open-source hardware
International Conference on Reconfigurable Computing and
FPGAs (ReConFig), September. 2005.

[9] R. Fong, S. Harper, and P. Athanas, "A Versatile Framework
for FPGA Field Updates: An Application of Partial Self-
Reconfiguration", Proceedings of the 14th IEEE International
Workshop on Rapid System Prototyping, San Diego, CA, Jun
2003.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Author
	Search by Session

