

SDR SIGNAL PROCESSING DISTRIBUTIVE-DEVELOPMENT APPROACHES

Dominick Paniscotti (VP SDR Products of PrismTech Corp., Burlington, Mass.;

dominick.paniscotti@prismtech.com); Jerry Bickle (Chief Scientist SDR Products of

PrismTech Corporation

6511 Constitution Avenue, Fort Wayne, IN 46804; jerry.bickle@prismtech.com)

ABSTRACT

The implementation of Software Defined Radios (SDRs)

involves the development of software on various signal

processing environments including General Purpose

Processors (e.g., Intel® XScale™, IBM® PowerPC®),

Digital Signal Processors (DSPs) (e.g., TI™, Analog

Devices) and Field Programmable Gate Arrays (FPGAs)

(e.g., XILINX, Altera).

 JTRS Software Communications Architecture (SCA)

[1,2] based waveform components developed for GPPs

typically communicate with each other using CORBA®

middleware, generally use the C++ language in their

implementation and are layered on various POSIX®-

compliant Real-Time Operating Systems (RTOS) (e.g.,

GreensHill®, VxWorks®, LynxOS®) as described by the

SCA Application Environment Profile (AEP). However,

this approach has not historically been used when such

waveform components are targeted for DSPs.

 The paper will discuss past, current, and advanced

approaches used in the development of these waveform

components in non-GPP based applications.

1. INTRODUCTION

Past (and even some existing) SCA/SDR development

activities have decided to artificially limit SCA/SDR

component framework implementations to operate only on

General Purpose Processors (e.g., Pentium, XScale,

PowerPC) and to use Adapter design patterns [4] on GPPs to

communication with non-CORBA based DSP and FPGA

component implementations (as shown in Figure 1).

Figure 1. Adapter Illustration

However, for some time, Commercial Off The Shelf (COTS)

implementations of CORBA have existed that support a

larger array of SDR hardware processing elements

(including DSPs, and FPGAs). Such COTS CORBA

implementations obviate the need for these adapters (as

illustrated in Figure 2).

Figure 2. Standard Distributive Middleware Illustration

2. DISTRIBUTED PROCESSOR COMMUNICATION

APPROACHES

Regardless of the type of distributed communication

approach one takes, certain characteristics need to remain

constant. These characteristics are as follows:

Information Requestor

• The request is encapsulated into a message

protocol.

• The request identifies the intended recipient(s).

• The request is sent to the intended recipients (using

a communications transport of some type)

Information Recipient

• The incoming request is retrieved (from the

communications transport)

• The incoming request is identified as being for the

recipient.

• The incoming request’s message protocol is

processed.

• The contents are handed off to the intended

recipient for processing.

 Depending on the Distributed Processor

Communication approach there will also be some

differences. These include but are not limited to:

FPGA DSP GPP GPP IO

Standard Compact/Micro CORBA Middleware

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

• Synchronous communication capabilities being

offered

• Asynchronous communication capabilities being

offered

• The Quality of Service (QoS) associated with

communication path(s) and its management

• The degree of development burden placed on the

application developer when making and handling

distributed requests.

• The extent to which the communication

middleware provides isolation of the developer’s

application source code from the distributed

processing implementation

• The memory size and performance footprint of the

middleware implementation

• COTS development tool support for the

communication middleware

In addition, as SCA/SDRs take a component-based approach

additional distributed communication characteristics are

important:

• The degree to which the SCA/SDR component

framework can be implemented using the

distributed processor communication chosen

• The extent to which the choice of distributed

processor communication implementation

interoperates with components on GPPs that use

CORBA middleware, as well as the risk and

development cost associated with such choices.

• The ability to maintain architectural consistency

across disparate hardware

• The degree to which the SCA/SDR components are

able to be migrated to other hardware targets (to

support future technology insertion)

• COTS development tool support for component

development.

 As stated earlier there are two approaches for SCA/SDR

component-to-component communication: Adapter Design

Pattern or a distributed middleware technology (such as

CORBA). The following sections will consider these

approaches in detail.

3. ADAPTERS

The adapter approach is typically used where middleware

solutions are not available or not practical. During the

initial implementation of the SCA specification (circa 1999),

there were few COTS CORBA implementations available

for either DSPs or FPGAs. As such, most early developers

used Adapter-based approaches to communicate between

GPP-based SCA components and functional implementation

of waveform behavior residing on DSPs and FPGAs (see

Figure 3). Even though these early implementations chose

to use Adapters to minimize risk, the SCA specification

itself continued to depict solutions that envisioned a

common middleware solution throughout the entire radio

with the goal of achieving architectural consistency

throughout.

Figure 3. Adapters Commonality Illustration

3.1 HAL ADAPTER

 The SCA does specify a particular abstraction called a

“Device” where the use of the adapter pattern is warranted.

These Device abstractions are used to provide isolation

between SCA waveform components and the hardware

facilities (e.g., serial, audio, digital if, antenna, crypto, gps,

etc.) they depend on. This is typically referred to as a

Hardware Abstraction Layer (HAL). These HALs isolate

the particular physical hardware implementation from the

abstract functionality that hardware offers. As such,

physical hardware elements can be replaced with differing

hardware offering the same functionality without affecting

the waveform components that depend on that functionality.

These SCA Devices perform functions such as:

• Receiving CORBA requests from GPP SCA

Waveform Resource Components, and sending

them on to behavior found in physical hardware

elements

• Receiving requests from the physical hardware and

sending a CORBA request to a GPP SCA

Waveform Resource Component in response to

that.

• Loading and executing waveform component

software on a physical device (GPP, DSP, or

FPGA)

Note that the implementation of these Devices were

mandated by the specification to be reusable. Its goal is to

isolate the waveform components from the physical

hardware thereby allowing their portability/reuse.

3.2 COMPONENT ADAPTER

The Component Adapter approach involves a CORBA-

based SCA waveform component communicating with a

non-CORBA, non-SCA based “component” using an

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Adapter. The non-SCA based “component” is not truly a

component at all as it does not adhere to the SCA definition

of a waveform component. It’s simply a software or

firmware (in the case of FPGAs) function running on some

processor in the radio to which an SCA-based waveform

component needs to communicate.

SCA Device’s are often used to facilitate building these

kinds of Adapters. The Component Adapter approach

extends the behavior of the Device to support SCA

component to non-SCA component communication. As

such, the SCA Device no longer serves as a Device HAL (as

described previously) but rather becomes part of the

waveform application itself. In doing so, it breaks the

waveform application portability tenets of the SCA. This

Component Adapter approach can be implemented as a

Component Level Adapter or as a Proxy Component Level

Adapter.

3.2.1 COMPONENT LEVEL ADAPTER

With Component Level Adapters, the waveform component

developer is saddled with the burden and responsibility of

message formatting and processing for all component types

(CORBA and non-CORBA) as shown in Figure 4. The

Component Level Adapters are often mislabeled as HALs in

industry.

 The JTRS Modem HAL (MHAL) [5] is a classic

example of a Component Level Adapter. Although its name

would imply that it provides the abstraction of a radio

MODEM, in actuality it acts to facilitate the communication

between SCA waveform components and non-SCA

waveform components. Its implementation needs to format

messages that are to be sent from SCA-based components

using CORBA mechanisms to non-SCA based components

that typically use proprietary communications standards.

The message formats are typically waveform specific with

the Component Level Adapter acting as the conduit which

encapsulates and routes the messages to their destination

non-SCA waveform functions. To further complicate

matters, the waveform application itself is responsible for

tagging the data being sent so that it arrives at the proper

non-SCA waveform function.

Figure 4. Component Level Adapter Illustration

As no standards exist to guide the development of these

Component Level Adapters, synchronization behavior

between the Adapter and the non-SCA waveform functions

is generally ill-defined (which leads to further portability

concerns). Lastly, as the non-SCA functions are not guided

by the rules of the SCA, developers themselves are free to

choose the degree of isolation they wish to apply between

message communication function and waveform logic

functions (as no communication middleware enforces this

isolation). The impact is that this non-SCA based software

may actually stifle future bus and transport choices, thereby

hampering technology insertion.

3.2.2 PROXY COMPONENT LEVEL ADAPTER

In contrast to the Component Level Adapter, a Proxy

Component Level Adapter dynamically launches new

Component Level Adapters as appropriate to support

communication between SCA-based components and non-

SCA based software (as illustrated in Figure 5). In this

approach, the message formatting and processing is not the

responsibility of the waveform component developer but

rather falls to the developer of the Proxy Component Level

Adapter implementer. Proxy Component Level Adapters

are usually implemented using the SCA ExecutableDevice

abstraction. Their implementation typically has apriori

knowledge of the waveform application being executed and

as such launch the appropriate Component Level Adapters

to support communication between a particular set of SCA

waveform components and their associated non-SCA

functions.

 Regardless of the Adapter approach chosen, many

similarities are found between them.

• The data is transferred over a local transport, such

as a system bus, to a transport interface on a non-

CORBA processor. The transport interface

performs address decode and passes the data to the

desired waveform function.

• The non-CORBA processor handles requests and

sends requests.

• Neither Adapter approach is reusable or portable to

different processor/transport technologies.

• The use of these Adapters involve extra layers of

communication that impact performance.

Figure 5. Generic Component Proxy Illustration

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

4. NEXT GENERATION CORBA

CORBA provides a standard facility for communications

between heterogeneous platforms where the requestor is

unaware of the recipient location and the requestor is

isolated from the communication middleware details as

shown in Figure 6. The recipient’s Interface Definition

Language (IDL™) files define the recipient’s interfaces.

The IDL is compiled by a CORBA IDL compiler to define

the client side interface ORB behavior and the recipient’s

ORB server side behavior. The generated client and server

side interface performs the ORB messaging behavior

marshalling/un-marshalling of General Inter-ORB Protocol

(GIOP) requests at the ORB level. GIOP message types are

communicated over any connection-oriented transport. This

combination of GIOP and the underlying transport provides

the fundamental vehicle for the CORBA communications

infrastructure. Most notably, the CORBA Inter-ORB

Protocol (IIOP) specifies how GIOP is implemented over

TCP/IP - all ORBs claiming conformance must implement at

least IIOP. For resource embedded constrained

environments IIOP is not the ideal choice due to size and

performance. GIOP uses a simple and efficient Common

Data Representation (CDR) to represent the binary layout

for IDL types assembled for transmission. The CORBA

CDR provides an encoding enforced by the IDL definitions

used, aligns primitive types to natural boundaries, and

supports byte ordering.

Figure 6. Standard Software Bus Illustration

The component’s communication paths could be on the

same processor or not. The communication is direct, with no

additional mechanisms required (as are found in Adapters).

 New CORBA specifications have emerged over recent

years targeted at the real-time and embedded domain

(RT/E). These include:

• CORBA/e - introduced to address the most

demanding requirements of size and performance-

contrained embedded applications without

forfeiting the interoperability, portability and

platform independence which SDRs benefit from

the use of CORBA.

• The Real-time CORBA specification - an optional

extension that provides facilities that support

deterministic behavior by promoting end-to-end

predictability in distributed systems. The Real-time

specification is part of the CORBA/e profiles.

• Another key technology utilized is the CORBA

Extensible Transport Framework (ETF). This

framework allows the development of standard and

efficient protocols to support optimized

communication between ORBs. The ETF allows

the flexibility to implement protocols other than

TCP/IP (the CORBA default) for real-time systems,

including highly optimized shared memory

performance transports with zero copy behavior

over RapidIO and compactPCI. PrismTech’s

family of embedded ORBs, including ICO™,

supports ETF.

 New disruptive technologies are often met with

skepticism and reluctance to adopt them. Technologies such

as higher-order languages and compilers were initially

scoffed at as were operating systems for the embedded

domain by software practitioners who were concerned by the

overhead they introduced. Time (and a combination of

Moore’s Law [6]) has proven these technologies to reap far

more benefit than the performance impact they introduced.

Similar arguments are made by SDR developers when the

use of COTS middleware is proposed to solve the issues

discussed in section 3.2. In fact many of these same

concerns were raised when CORBA was chosen as the

middleware technology choice for the JTRS SCA.

4.1 DSP ORBS

The principal challenges arising from the adoption of

standards-based solutions on such platforms relate entirely

to the limited resources that are typically available in the

application domain where such devices are used. These

problems have been largely offset by the various initiatives

that have developed in the CORBA space, including low-

footprint CORBA profiles, real-time, and the capability to

externally adapt the ORB core to support native data

transports. In addition, ORBs supporting the IDL to C

language mapping provide a particularly fit-for-purpose

technical solution in a domain where the use of object

oriented languages (C++) is scarce, and tool-chain support is

limited. CORBA ORBs are available for C and C++

implementations, and have been highly optimized for

embedded environments such as DSPs. In fact DSP ORBs

have been used to support SDR implementations going back

to early in the year 2000 on the Digital Modular Radio

(DMR) program.

 For PrismTech’s OpenFusion™ C e*ORB™ [7] for a

compact profile has basically 63K for the client ORB and

87K for the server ORB. A micro profile C e*ORB would

be smaller yet. A C++ ORB would be about 4 times larger

than this.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

4.2 HARDWARE ORBS

Hardware based ORBs are also now emerging (such as

PrismTech’s Integrated Circuit ORB (ICO™)) [7].

Hardware elements of a radio system may now be made

CORBA compliant and reap the benefits of software

portability. This brings the portability of the Software

Communications Architecture (SCA) onto FPGAs and

ASICs.

 While CORBA can be hosted on an FPGA using a soft

processor core and a conventional software ORB, greatly

improved performance can be achieved using a hardware

ORB. A hardware ORB is a CORBA ORB written in Very

High Speed Integrated Circuit Hardware Description

Language (VHDL) and designed specifically for FPGAs.

Implementations such as PrismTech's patent-pending

OpenFusion Integrated Circuit ORB (ICO) provide a subset

of CORBA functions required to support the most

commonly used communication patterns. While specifically

targeted for use in high performance SDR applications and

can be used to help ensure compatibility with the Software

Communications Architecture (SCA), it is primarily a

CORBA IP core and can also be used in applications with

no SCA requirements.

 Operating at hardware data rates and without the

unnecessary overhead of a GPP proxy object to

communicate with an FPGA, a hardware ORB can provide

significantly better performance than a software ORB. A

hardware ORB can process a message in a few hundred

nanoseconds, hundreds of times faster than a conventional

software ORB. In sustained tests, a hardware ORB can

typically process well over a million CORBA messages per

second.

5. TOOLS

Developing these CORBA-based SCA components can be

quite a difficult task. Tools have emerged over the past

several years that automate the development of these

components using Model Based approaches. The initial

focus of these tools was to develop SCA/SDR components

for GPPs using C++. Recently, support has begun to emerge

for the C language and VHDL (to support DSPs and

FPGAs) As an example, PrismTech’s Spectra development

tool suite for Software Defined Radio (SDR) offers support

for C++, C and VHDL and supports several RTOSs

including WindRiver VxWorks, GreeHills Integrity,

LynuxWorks LynxOS and several Linux distributions.

These types of tools bring the portability aspects of the

Software Communications Architecture (SCA) to DSP and

silicon devices (such as FPGAs). Using PrismTech’s

Spectra SDR Power Tools [8] a component developer can

model a waveform application and transform those models

into C++, C, and/or VHDL.

6. CONCLUSION

Technology now exists that provides the realization of the

SCA/SDR throughout the radio. ORB technology such as

PrismTech’s OpenFusion e*ORB for GPPs and DSPs and

PrismTech’s OpenFusion ICO for FPGAs/ASICs. These

types of technologies provide greater flexibility in selecting

processor architectures for SCA/SDR implementations. A

GPP is no longer required since CORBA is available on

other processor types. Finally, in modern multi-processor

systems composed of GPPs, DSPs and FPGAs the overall

throughput of the system can be improved by using DSP

ORBs and hardware ORBs (on FPGAs) as they obviate the

need to add Adapters and their associated proprietary

transport mechanisms.

6. TRADEMARKS

• CORBA®, IIOP™, OMG Interface Definition

Language (IDL)™, OMG Systems Modeling

Language™, Model Driven Development™,

MDD™, OMG™, Object Management Group™,

Unified Modeling Language™, UML®, XMI® and

the OMG logo® are either registered trademarks or

trademarks of Object Management Group, Inc. in

the United States and/or other countries.

• IBM® and PowerPC® are registered trademarks of

International Business Machines Corp

• INTEGRITY® and Green Hills® are the registered

trademark of Green Hills Software, Inc.

• Intel® and XScale™ are registered trademarks of

Intel Corporation

• Linux® is the registered trademark of Linus

Torvalds in the U.S. and other countries

• LynxOS® is the registered trademarks of

LynuxWorks, Inc.

• Linux® is the registered trademark of Linus

Torvalds in the U.S. and other countries

• POSIX® is a registered trademark of IEEE.

• e*ORB, Spectra, Spectra SDR, Spectra Power

Tools, ICO, and OpenFusion are trademarks or

registered trademarks of PrismTech in the United

Kingdom, United States and/or other countries

• TI™ is a trademark of Texas Instruments

Incorporated

• VxWorks® are registered trademarks of Wind

River Systems, Inc.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

7. REFERENCES

[1] Software Communications Architecture 2.2,

http://sca.jpeojtrs.mil/downloads.asp
[2] Software Communications Architecture 2.2.2,

http://sca.jpeojtrs.mil/
[3] Platform Independent Model (PIM) & Platform Specific

Model (PSM) for Software Radio Components (also referred
to as UML Profile for Software Radio) v1.0, OMG
formal/2007-03-01,
http://www.omg.org/technology/documents/formal/swradio.ht
m

[4] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
“Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley Professional Computing Series

 [5] Software Communications Architecture (SCA) and JTRS
Application Program Interfaces (APIs),
http://sca.jpeojtrs.mil/

[6] Moore’s law, http://www.intel.com/technology/mooreslaw/
[7] PrismTech OpenFusion CORBA Products,

http://www.prismtech.com/section-
item.asp?id=570&sid=18&sid2=10&sid3=251

[8] PrismTech Spectra SDR Power Tools,
http://www.prismtech.com/section-
item.asp?id=305&sid=18&sid2=54

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

