

WAVEFORM PORTABILITY AND REUSE ACROSS OPERATING

ENVIRONMENTS: AN EXPERIENCE REPORT

Jerry Bickle (Chief Scientist SDR Products of PrismTech Corporation

6511 Constitution Avenue, Fort Wayne, IN 46804; jerry.bickle@prismtech.com)

ABSTRACT

In the past, there have been many papers discussing the

proper separation or isolation of waveform implementations

across varying SDR Operating Environments (OEs) such as

the Software Communications Architecture (SCA) [1,2] OE

(Core Framework (CF) Common Object Request Broker

Architecture (CORBA®), and Portable Operating System

Interface (POSIX®) Application Environment Profile

(AEP)). Many of these papers also discuss the reuse and

portability benefits reaped by such approaches. This paper

presents an experience report on the application of such

techniques to provide portability and re-use across disparate

physical OE platforms.

 This paper describes how an SCA waveform model can

be used to produce an SCA-compliant waveform

implementation and then describes how the same waveform

source code can be compiled and deployed across multiple

processing environments with differing operating systems

and middleware implementations. The result of this

demonstration illustrates the reality that the source code is

Real-Time Operating System (RTOS) and Object Request

Broker (ORB) neutral.

 This paper also describes how the same waveform

model can also be used to create an Object Management

Group™ (OMG™) SWRadio [3] waveform implementation

and how the same waveform logic (e.g., algorithms, coders,

etc.) can be used across SCA and OMG SWRadio compliant

waveform implementation.

1. INTRODUCTION

In the SCA specification, the basic building block of a

waveform application is the Resource component as shown

in

Figure 1. A Resource component realizes or supports the

Core Framework Resource (CF::Resource) interface. This

interface provides the generic management operations for

configuration, testing, lifecycle management, connectivity

and component control. A Resource component in addition

to supporting the CF::Resource interface can support

additional interfaces (functionality) by offering services via

its “provides” ports and can use services offered by other

components via its “uses” ports.

Figure 1. Resource Component Illustration

These ports allow Resource components to be connected

into assemblies of components that provide waveform

functionality.

 The implementation of a Resource component, as

shown in Figure 2, can be viewed as having three distinct

logical partitions: a Component Container, an SCA

Component Infrastructure, and a Component

Implementation. A Resource Component Implementation is

constrained not to violate the SCA’s AEP as such, the

Resource component implementation remains portable

amongst operating systems that support the POSIX-based

AEP.

 The Component Container for the SCA offers an “entry

point” (main program or function) that handles:

• The entry point arguments,

• The middleware setup (ORB initialization, ORB

Portable Object Adapter (POA)),

• The creation and activation of a Resource

component,

• The binding of the Resource component object

reference to a CORBA Naming Service, and

• A blocking function that waits on operating system

signals to terminate the entry point.

Resource
Interface

Resource

Component

Uses Ports

Provides Port

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 The SCA Component Infrastructure itself can deal with

all SCA requirements and CORBA mechanisms associated

with the CF Resource interface:

• PropertySet – configure and query properties

• LifeCycle – initialize and release object

• TestableObject – executing specific test properties

• PortSupplier – get Uses and Provides Ports.

Figure 2. Component's Implementation Logical

Partitions

The SCA Component Infrastructure can also deal with all

the SCA requirements and CORBA mechanisms for the

CF::Port interface that each “uses” port implements. The

CF::Port interface provides the interfaces required to

connect and disconnect “provides” interfaces.

 The Component Implementation contains the

implementation of the component (its business logic such as

encode, decode, modulate, demodulate, filter, etc.). The

Component Implementation processes information coming

in from its “provides” port interfaces and after processing

the information can send the transformed information out a

“uses” port to another component for further processing.

 The following sections describe the practicality of the

reuse and portability of the Component Container, SCA

Component Infrastructure, and Component Implementation

across SCA/SDR OEs.

2. SOFTWARE REUSE

Software reuse is the use of previously existing software

artifacts to build new artifacts software. Software that is

reusable typical has the following traits: modularity, loose

coupling, high cohesion, information hiding, and separation

of concerns. These traits allow the software artifact to be

isolated and repackaged in future software development

activities. Component Implementations must strive to

achieve these features if they are expected to be reused in

future waveform component assemblies. Using modern

Model Driven Development™ (MDD™) tools it is possible

to generate a Platform Specific Model (PSM) from a

Resource Component Platform Independent Model (PIM)

that binds to needed technologies such as the C or C++

language [4]. The PSMs produced from a MDD tool will

vary and some of the outcomes are as follows:

• A Resource Component Implementation is coupled

and unique to an OE as depicted in Figure 3 by

being coupled to CF and/or ORB unique features,

therefore providing no reuse. A Resource

Component Implementation is tied to CF

implementation by using features other than

standard CF files or usage of non-standard ORB

features (e.g., Vendor’s exception macros).

Figure 3. Component to OE PSM Illustration

Figure 4. Reusable Component Implementation Across

OEs Illustration

SCA

Component

Infrastructure

Resource

Interface

Component

Container

SCA

Component

Infrastructure

Resource

Interface

Component

Container

SCA

Component

Infrastructure

Resource

Interface

Component

Implementation

Component

Container

Resource

Component

PIM

OE PSM

Component

Implementation

Component

Implementation

Resource

Interface

SCA

Component

Infrastructure

Resource

Interface

Component

Container

SCA

Component

Infrastructure

Resource

Interface

Component

Container

SCA

Component

Infrastructure

Resource

Interface

Component

Implementation

Component

Container

Resource

Component

PIM

OE PSM

Component

Implementation

Component

Implementation

Resource

Interface

Component Container

SCA Component Infrastructure

Component Implementation

Resource Interface

Uses Port

Provides Port

SCA OE (CF, POSIX AEP, CORBA ORB)

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

• A Component Implementation is decoupled from

the OE and SCA Component Infrastructure as

shown Figure 4 above. The SCA Component

Infrastructure and Component Container in this

case are specific to the OE (e.g., ORB, CF). By

having the Component Implementation separate

from an OE, this allows the Component

Implementation to seamlessly evolve with the SCA

CF or OMG SWRadio CF as shown in Figure 5.

The benefit here is the developer only has to

understand the design of one Resource Component

PSM that is applicable across compatible OEs.

Figure 5. Component Implementation across Component

Frameworks.

Other considerations for a component’s reusability are:

• Adherence to Language Standards (C/C++/HDL)

and elimination of Non-Portable C/C++ Language

Features

• The processor, language, compiler and ORB

commands and flags used to compile and link the

component implementation for a specific

processing environment.

3. SOFTWARE PORTABILITY

Software Portability is the ease with which one system or

component can be transferred from one hardware or

software environment to another [4]. In the case of an SCA-

based SDR, porting may refer to the porting of a waveform

application onto an SCA/SDR platform or the porting of a

Resource Component onto another SCA/SDR OE. The goal

of some of the SCA/SDR standards [1,2,3] are to provide

open system specifications. An open system [6] is a system

that implements sufficient open specifications for interfaces,

services and supporting formats to enable properly

engineered applications software:

• to be ported across a wide range of systems (with

minimal changes)

• to interoperate with other applications on local or

remote systems

• to interact with users in a style which facilitates

user portability .

 The goal of application or component portability is to

minimize the cost and effort that are known and

economically reasonable to port an application or

component onto another platform. Ideally one would simply

prefer to recompile an application for a new platform but

this is usually not the case for various reasons (e.g. the

referenced architecture has different hardware processing

elements). As shown in Figure 6 the same component PSM

can be portable across multiple OEs. Portability does not

require significant re-engineering of the application. There

are several dimensions to application portability [6]:

• Program Portability: Will the code run successfully

on all intended platforms?

• Data Portability: Are the data structures or files

used in the application portable or available on all

platforms?

Figure 6. Portable Component PSM

SCA

Component

Infrastructure

Same Component

Implementation

across different

Component

Infrastructures

Resource
Interface

Component
Container

SWRadio/SCA X

Component

Infrastructure

Resource
Interface

Component
Container

OE OE OE

SCA

Component

Infrastructure

Resource

Interface

Component
Implementation

Component

Container

Component PSM

Resource

Component

PIM

Resource
Interface

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

• End-User Portability: Since re-training of users can

be a relatively expensive exercise, it is often

required that an application will need to have the

same look and feel across several platforms.

• Developer Portability: The use of a standard set of

interfaces and services across the entire target

platforms minimizes the re-training of developers.

• Documentation Portability: Users of applications

on different platforms often have different

expectations regarding the type of documentation

they receive especially in the context of on-line

help facilities. Here we will mainly concern

ourselves with the first of the above considerations.

However, there will frequently be significant

overlap with the other aspects.

3.1 Program Portability

Program Portability for a Resource Component‘s

implementation may be impacted at the Component

Container level. Potential impacts on the Component

Container related to RTOS POSIX and ORB compliancy

include:

• The entry point name is usually “main” for POSIX

compliant RTOSes but for flat address space

RTOSes the entry point may be a different function

name. This issue can be handled using compile

time directives for specifying the entry point name.

This allows the same source code to be used for

POSIX and non-POSIX RTOSes.

• Entry Point arguments may not conform to

“argc/argv” format without special processing.

• Setting up of the ORB transports plug-ins used

(e.g., shared memory) between processors or within

a processor.

The Component Infrastructure and Component

Implementation should be portable across platforms for the

same language (such as C or C++). Other considerations for

a component’s portability include (by no means a complete

list):

• Adhere to coding language standards and the

elimination of non-portable or compiler vendor

specific language features. For example, avoid

“pragmas”, use of bit-fields, use of native types,

etc.

• Avoid CORBA ORB vendor specific functions.

• Strive for commonality between similar languages.

For example, strive to make header files compatible

with both C and C++ whenever possible.

• Use common operating systems libraries across

languages. This makes porting code from more

resource constrained environments (DSP) to less

resource constrained environments (GPP) feasible

(see Figure 7).

Figure 7. Different Constraining but Compatible OEs

Illustration

3.2 Developer Portability

Developer Portability (also known as Platform Portability)

has two aspects:

1) Common platform service components that abstract

common radio functionality promote waveform

application portability. These common services

can be standardized and offered across radio

platforms developed my differing vendors thereby

increasing the reuse and portability of waveform

applications.

2) Platform capability that is offered by the OE and

the physical communication channels of the radio

hardware.

Currently, industry standardized SDR platform service

components are severely lacking. Some interfaces and

service component definitions defined and offered to

SCA

Component

Infrastructure

Resource

Interface

Component
Implementation

Component

Container

Component PSM

Resource

Component

PIM

Resource
Interface

More

Constraining

OE (DSP)

Less

Constraining

OE

Less

Constraining

OE

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

industry by the US DoD’s Joint Tactical Radio System

(JTRS) program [7] while some others are in the process of

being standardized by the Software Defined Radio Forum

and the Object Management Group (such as smart antenna

[8] and digital IF interfaces [9]). Although this handful of

common platform service definitions goes a long way to

increase waveform application portability additional

standardization in this area is sorely needed.

 The degree to which a waveform application is portable

to a particular radio platform is determined by the evaluation

of waveform application PIM against the platform service

components offered as well as the mapping of waveform

component implementations onto the radio OE and physical

radio platform.

 In addition to basic software portability, a waveform

application must also be able to reproduce its intended

behavior on the radio platform to which it is being ported.

In order to do this a waveform application must capture as

part of its deployment properties:

1) The QoS requirements between the waveform

application’s components

2) The QoS requirements between the waveform

application components and platform service

components, and

3) The components processing requirements.

4. EXPERIENCE REPORT

As shown in Figure 6, common Resource Component

implementations for Component Container, Component

Infrastructure, and Component Implementation can currently

be automatically generated using industry standard MDD

tools. The PrismTech Spectra SDR Power Tools [10],

currently used on numerous SDR programs, is an example of

such a MDD tool. Also shown in Figure 7, tools such as

PrismTech’s Spectra SDR Power Tools provide the ability

to generate optimized Resource Component

implementations written in C instead of C++. This can

provide significant reduction in memory footprint for

resource constrained environments (such as those running on

DSPs). Figure 8 illustrates these two concepts in

PrismTech’s Spectra tool where an Application PIM is

transformed into multiple languages (C, C++, VHDL). That

same source code is then used to create multiple target

PSMs (in the case of the illustration Fedora Linux®,

VxWorks®, and TI™ DSP).

 The PrismTech SDR Power Tools also support

seamless Component Implementation integration as shown

in Figure 5 (including differing versions of the JTRS SCA or

OMG SWRadio Resource Component definitions).

Additionally, PrismTech SDR Power Tools apply the same

techniques for creating reusable and portable platform

service components (Even though the SCA does not dictate

reuse and portability for platform service components).

5. CONCLUSION

In summary, with modern MDD techniques and existing

tools, such as PrismTech’s Spectra Power Tools, it is

currently possible to generate one reusable and portable

component implementation that is RTOS and ORB neutral.

This allows the implementation to be used across a wide

range of platform OEs. The only exception to this is the

component implementation’s Component Container code

since this is the only piece of code that may not be totally

reusable for different ORBs since the ORB transport plug-

ins are ORB-specific at this time.

Figure 8. PrismTech Spectra SDR Power Tools

Illustration

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

6. TRADEMARKS

• CORBA®, IIOP™, OMG Interface Definition

Language (IDL)™, OMG Systems Modeling

Language™, Model Driven Development™,

MDD™, OMG™, Object Management Group™,

Unified Modeling Language™, UML®, XMI® and

the OMG logo® are either registered trademarks or

trademarks of Object Management Group, Inc. in

the United States and/or other countries.

• Linux® is the registered trademark of Linus

Torvalds in the U.S. and other countries

• POSIX® is a registered trademark of IEEE.

• Spectra, Spectra SDR, Spectra Power Tools are are

trademarks or registered trademarks of PrismTech

in the United Kingdom, United States and/or other

countries

• TI™ is a trademark of Texas Instruments

Incorporated

• VxWorks® are registered trademarks of Wind

River Systems, Inc.

7. REFERENCES

[1] Software Communications Architecture 2.2,

http://sca.jpeojtrs.mil/downloads.asp
[2] Software Communications Architecture 2.2.2,

http://sca.jpeojtrs.mil/
[3] Platform Independent Model (PIM) & Platform Specific

Model (PSM) for Software Radio Components (also referred
to as UML Profile for Software Radio) v1.0, OMG
formal/2007-03-01,
http://www.omg.org/technology/documents/formal/swradio.ht
m

[4] MDA Presentations and Papers,
http://www.omg.org/mda/presentations.htm

[5] Institute of Electrical and Electronics Engineers. IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[6] ISO/IEC 14252:1996 [IEEE Std 1003.0-1995] Guide to the
POSIX® Open Systems Environment

[7] Software Communications Architecture (SCA) and JTRS
Application Program Interfaces (APIs),
http://sca.jpeojtrs.mil/

[8] PIM and PSM for Smart Antenna RFP, sbc/06-12-10,
http://www.omg.org/cgi-bin/doc?sbc/2006-12-10

[9] PIM and PSM for Digital Intermediate Frequency Interface
RFP, OMG sbc/04-08-15, http://www.omg.org/cgi-
bin/doc?sbc/2004-8-15

[10] PrismTech Spectra SDR Power Tools,
http://www.prismtech.com/section-
item.asp?id=305&sid=18&sid2=54

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

