

TECHNIQUES AND RECOMMENDATIONS TO IMPROVE WAVEFORM

PORTABILITY

Scott Macejak, David Maldonado, Jim Agniel
(L-3 Communications Nova Engineering, Cincinnati, OH, USA;

Scott.Macejak@…, David.Maldonado@…, Jim.Agniel@L-3Com.com)

ABSTRACT

With the creation of the Software Communications
Architecture (SCA) as part of the Joint Tactical Radio
Systems (JTRS) program, the government has invested
substantially to address the need for waveform portability.
However, to date, the SCA has emphasized the software
residing on a general purpose processor (GPP). The SCA
specification does not adequately address the physical layer
(PHY) waveform processing as the PHY implementation is
typically accomplished in digital signal processors (DSPs)
and field programmable gate array devices (FPGAs). A
2006 GAO assessment of the JTRS program cited
unacceptably high porting costs and long porting schedules,
indicating that the JTRS waveforms have yet to live up to
the objective of highly portable, hardware-agnostic software
applications. In this paper, however, we show through two
case studies that the portability goals of the JTRS program
are achievable. We address the importance of the waveform
software architecture and the role of a Portability Toolkit in
reducing waveform porting costs. We also identify the non-
portable techniques that currently prevail in the industry.

The recommendations presented here derive from our
experiences with the Single Channel Ground-Air Radio
System (SINCGARS) waveform, Wideband Network
Waveform (WNW) OFDM PHY, and Soldier Radio
Waveform (SRW).

1. INTRODUCTION

Past experience in both waveform development and
waveform porting has taught us an important lesson: Porting
non-portable code costs more than re-writing the code from
scratch. With this premise in mind, the continued
development of non-portable code is undermining key goals
of the JTRS programs. This conclusion is consistent with
the performance described by the GAO in its 2006 review
of the JTRS program [1]. To address these concerns, the
JTRS Network Enterprise Domain Test and Evaluation
(NED T&E) created a set of Waveform Porting Guidelines
[2]. We endorse these guidelines and encourage their
proliferation. This paper provides further recommendations

to improve waveform portability, with the intention of
reducing the overall cost of delivering SDR waveforms into
JTRS programs.

For the purposes of this paper, we define portability as
the degree to which the cost of porting a waveform is
minimized. Ideally, waveform code from the JTRS
repository should remain unchanged when utilized in
different hardware platforms, and the porting effort should
be relegated to configuring hardware devices, interfacing to
a hardware abstraction layer (HAL) and performing system
integration, test and validation. However, this is often not
the case—waveform specific code modifications that are
required because of limited portability can cause significant
unforeseen costs when porting to new platforms. To address
these cases, we present a methodology and tools that enable
a straightforward and successful porting effort.

2. SDR SOFTWARE ARCHITECTURES

SDR software architectures are typically established by
partitioning waveform control and signal processing
functions among a platform’s available hardware resources.
The software architecture takes into account the capabilities
and resources of the devices available on a given target
platform.

We characterize SDR software components as either
real time or non-real time elements. Real time functions
such as high rate and/or computationally intensive signal
processing are more appropriately partitioned to a DSP or
FPGA, while non-real time functions, such as control
signaling and low rate signal processing, are optimally
implemented in a microprocessor or DSP. FPGAs, DSPs
and GPPs are found in most SDRs, and software architects
often have a degree of flexibility when adapting waveform
software to a particular platform, depending on the
platform’s capabilities and the processing demands of the
waveform components.

As waveform software is ported to various platforms,
developers may need to modify the software architecture to
accommodate different hardware architectures. However,
herein lies a central problem: Should a given SDR
waveform implementation be expected to run on any SDR

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

hardware platform in order to be considered “portable”?
While the ideal portable waveform would run on any radio
platform, we allow that the practical answer is no. However,
the standard of waveform portability we promote in this
paper requires that waveform software be supported with
several, specific portability artifacts, which we define in the
next section. Section 5 describes two porting efforts that
were supported with Toolkit artifacts, including successful
waveform software repartitioning, at minimal cost.

3. THE PORTABILITY TOOLKIT

The artifacts typically available to developers when
launching a porting effort are generally inadequate to enable
cost effective waveform porting. Often the primary
(sometimes the only) artifact delivered to a waveform
porting team is source code. Source code, no matter how
thoughtfully designed, is not sufficient to realize a truly
portable waveform or to port waveform software efficiently.
Source code has often been optimized for a particular
platform or device, can be hard to read and does not provide
enough information for effective debugging. In fact, source
code alone is of limited importance, and should be only one
component of a waveform’s Portability Toolkit. A
Portability Toolkit should be made available for each
waveform. Aside from well documented object-oriented
source code, L-3 Nova regularly creates a set of portability
assets to streamline the porting process. At a minimum, we
recommend that an industry standard Portability Toolkit
include the following four artifacts: 1. detailed system,
software and design documentation, 2. a non-real time, PC-
based emulator, 3. full, functional and bit-true waveform
behavioral models and simulations in MATLAB, Simulink
and/or OPNET, 4. testbenches and test vectors at both the
component level and top level.

3.1 Waveform Documentation

Our experience has led us to the conclusion that the detail
provided in waveform documentation is often insufficient to
be effective in waveform porting as the documents rarely
have the necessary detail for efficient debugging. In the case
of C++, detailed class diagrams, intended multi-threading
scheme and comprehensive unified modeling language
(UML) sequence diagrams would go a long way in painting
the overall picture that is generally missing when just
looking at source code. In the case of the VHDL, diagrams
of the clocking scheme, detailed block diagrams and RTL
documentation for each of the primary components would
be especially helpful.

3.2 Non-Real Time (NRT) Environment

When porting code to a new platform, developers require a
simple, flexible environment for testing and debugging
delivered source code independent of the hardware. For
these purposes, it is generally not critical that the simulation
environment be capable of operating the waveform in real
time. Instead, key features of the emulator should include
the ability to trace execution paths through the code, to halt
code execution arbitrarily, to inspect the internal state of
variables and to output useful information to a logging
device or screen. These features have all become common
in modern debugging applications and make a PC an
excellent choice to host the NRT Environment.
 In addition, the NRT Environment provides simulated
interfaces into the networking layer, the physical layer and
the operating environment of the platform. It also provides
high visibility into the waveform operation that is often
lacking in a hardware configuration; the emulator acts as a
pre-integration step to discover problems that are difficult to
capture in hardware. Depending upon the requirements of
the waveform, OPNET models can also be made to
encompass the NRT. L-3 Nova’s development of an NRT
Environment for the JTRS SINCGARS waveform was a
key factor in the success of the porting effort for the GMR
program.

3.3 Waveform Modeling and Simulation Code

Another important artifact in the Portability Toolkit is the
set of MATLAB/Simulink models. These models enable the
implementation to be readily and easily modified, re-
architected and recreated, if need be. Additionally, the
models provide a method of independent verification of the
implementation. These models are also far easier to read and
understand than embedded C++ or VHDL. The
MATLAB/Simulink fixed point models need to be accurate

Figure 1: The radio platform’s processing

resources may require that the waveform software
be repartitioned to meet performance specifications.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

to the degree that internal test vectors can be generated for
any point in the signal processing chain.

While the MATLAB model and NRT Environment
validate the system in a point to point environment, an
event-driven model from a tool such as OPNET enables the
waveform to be validated using networks of multiple
participants. This verification is especially critical for
networked waveforms such as WNW and SRW. The use of
OPNET models also greatly reduces the risk of field testing
as it allows testing of network scenarios that cannot be
tested in a lab, such as large networks or networks with high
mobility. For maximum effectiveness, the OPNET model
should use a large percentage of the actual waveform code,
rather than code that simply models the waveform behavior.
Since the embedded code base and the OPNET model are
highly synchronized, problems can be identified and
resolved in both a lab environment as well as in an OPNET
simulation.

3.4 Software Testbenches

Component level unit testbenches should bridge the design
and implementation, enabling verification that the
waveform implementation behaves as designed. Creating
test artifacts in MATLAB/Simulink, C++ and VHDL
provides the means to debug the design at its lowest level.
This makes it far easier to isolate and debug issues at the
component level. Designers may or may not create these
assets on a case-by-case basis, but when delivering portable
waveform software, these test assets are critical to enabling
a low-cost port to the next target platform.

Although at first look it may seem too costly to provide
these recommended Portability Toolkit artifacts, our
experience has repeatedly demonstrated the high value of
the Portability Toolkit in reducing the cost of subsequent
waveform ports. We routinely develop each of these
artifacts during an initial waveform development, as well as
at the first port of a new waveform, and we find that the
generation of these assets typically leads to a lower overall
development and porting cost via a shortened system
integration and debug cycle. Additionally, the Portability
Toolkit can enhance (if not guarantee) interoperability
among different hardware platforms running the same
waveform. From the government’s point of view, the total
lifetime cost of the waveform is further minimized, since the
Portability Toolkit ensures minimal cost of porting
waveforms to future platforms.

4. SOFTWARE DESIGN TECHNIQUES TO AVOID

Avoiding design techniques that reduce portability is
important to minimizing waveform porting costs. Some
portability-enhancing techniques are “best practices” and
the industry standard, such as the use of classes in C++ and

generics in VHDL. We present here some software
practices that are widely used in industry because of their
promise to reduce design cycle time, but that actually have
the effect of reducing portability.

4.1 Platform-Specific Optimization

Whether code is targeted for a GPP, DSP or FPGA, a good
indicator that a non-portable design has been developed is
evident whenever a high degree of effort performing
platform-specific optimization is required to implement a
waveform. Platform-specific optimization does not refer to
good DSP design methods such as memory management
and/or object-orientated design or good FPGA design
practices such as pipelining to improve timing and folding
to reduce FPGA resource footprint.

For processors, if complex optimization settings must
be applied to achieve the required performance and correct
behavior, it will be difficult to reliably reproduce the same
results in another device. The effects of optimization can
vary between devices and compilers, making it sometimes
impossible to replicate the results of the previous platform.
This can require a code rewrite and possibly a design re-
architecture, turning a porting effort into a redesign effort
and greatly increasing the amount of time required.

For FPGAs, platform-specific optimization has several
indicators. Lack of portability is indicated if the use of
physical floorplanning or the use of non-default synthesis
and place-and-route options are required to meet timing
constraints. These optimizations do not translate well over
to other FPGA vendors’ devices and usually do not translate
well even to other families within the same FPGA vendor.

4.2 Use of Intellectual Property (IP)

Use of IP is prolific in the industry and provides for
improved time to market. However, certain types of IP
should be avoided. To be portable, designs must not utilize
IP cores specific to an FPGA vendor. This seems obvious,
yet there are a plethora of cases of this design practice being
utilized.

There are two sub-categories to this practice: IP
functions and IP resources. An IP function is defined as a
stand-alone block generally used to implement traditional
signal processing in which its source code is “hidden” from
the developer. The inner workings of the IP function is
unknown and the code itself cannot be changed beyond
parameterization. This presents a problem because the
function cannot be altered or optimized to support changes
to the waveform implementation. This is especially
problematic if the function is specific to a certain FPGA
vendor such that a new IP function must be created if
moved to another FPGA vendor’s device.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

If the complexity of the function is low, such as FIR
filters, FFTs, or AES encryption, it is easily within a
waveform developer’s capabilities to create these functions
in traditional VHDL. An exception case may be warranted
for highly complex functions such as Turbo or LDPC FECs;
however, third party developers will often have VHDL
cores available as an alternative. SRW is an example of a
waveform that uses a proprietary FPGA core to implement
critical signal processing functionality. The use of a
proprietary core is one of the reasons that SRW is not very
portable.

 The second sub-category to the IP core practice is the
use of IP resources. An IP resource is defined as a FPGA-
specific structure such as a multiplier or embedded RAM
block. It requires the waveform developer to utilize a tool
specifically developed by the FPGA vendor to create the IP
resource; the resulting resource is specific to that FPGA
vendor’s device. Therefore, porting to other FPGAs forces
the developer to re-create or replace every IP resource.

The additional danger of using IP resources is that
equivalent structures must exist in the other FPGA devices.
For example, the asynchronous RAM block utilized in the
Ground Mobile Radios (GMR) Modem HAL (MHAL) has
no analogue in Xilinx FPGAs. When we ported the MHAL
to the JTRS Surrogate Radio, there was not an
asynchronous RAM IP resource in the device. Since the
MHAL functionality depended on the availability of this
particular resource, the MHAL had to be significantly re-
designed to work with synchronous RAM blocks instead.

Inferring IP resources has added advantages in being
able to optimize for a platform’s resources. For example,
consider a platform with limited memory resources. Read-
only memories (ROMs) are often generated to store
trigonometric look-up tables. Using standard IEEE
packages, it is simple to create a user-defined sine/cosine
ROM that has generically configurable addresses and data
widths in portable VHDL. Therefore, if necessary to

accommodate a platform with limited memory resources,
the design can be made smaller by changing one or two
generics.

Today’s synthesis tools have the capability to infer IP
resources. Code written in generic VHDL is automatically
targeted to the device’s specialized IP resources. The
Synplify synthesis tool is convenient in that it supports
resource inference for several vendors’ FPGAs, although
other tools such as Altera’s Quartus and Xilinx’s ISE
support inference as well. A simple test that L-3 Nova
performs to validate portability is to use the Synplify tool to
synthesize a waveform implementation to several device
families of both Altera and Xilinx products.

4.3 Multiple Clock Domains

It has long been good design practice to produce FPGA
designs with as few clock domains as possible. In designs
targeted for low power operation clocking the logic at the
lowest possible rate does reduce the power consumption.
However, this approach can negatively impact portability.

SRW is an instance of a waveform developed for low
power operation which utilizes multiple clock domains
within the modem. Their use becomes a problem when
hosted on a platform that is unable to generate the required
number of clocks. While not always feasible, the practice of
using more than one or two clock domains should be
avoided.

5. WAVEFORM PORTABILITY CASE STUDIES

Two JTRS waveform porting case studies, shown in Figures
2 and 3 above, illustrate the importance of the Portability
Toolkit and substantiate our recommendations for portable
software techniques.

Figure 2: Two examples of L-3 Nova’s

JTRS SINCGARS waveform partitioning.
Figure 3: The WNW-OFDM waveform partitioning has

evolved to accommodate different hardware architectures.
Port numbers reflect the numbering scheme in Table 2.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5.1 Case Study 1: JTRS SINCGARS

This case study is based on two ports of the

SINCGARS waveform: an initial port to the GMR platform
and a subsequent port to a COTS GMR surrogate platform.
Both ports included single channel and frequency hopping
SDM SINCGARS modes, including both voice and 16K
data. Crypto support, RF integration and EDM mode are not
considered in this case study. Figure 4 outlines the porting
processes and identifies maturing artifacts that resulted.

The original JTRS SINCGARS waveform
development, the output of which served as the baseline for
the JTRS GMR SINCGARS port, resulted in a GPP-only
implementation. The real time aspects of the waveform
made this software architecture unworkable for the GMR
platform. To make matters worse, no Portability Toolkit
assets beyond source code and limited documentation were
available.

When ported to GMR, the waveform was re-architected
to partition its real time components from the GPP to a
DSP. This implementation ultimately succeeded in meeting
performance specifications, but required device-specific
timing management on the DSP to satisfy the waveform’s
stringent control timing requirements. As a result, the GMR
SINCGARS porting effort had higher than anticipated
porting costs.
 Contrast this first port with a subsequent repartitioning
of the waveform. For the first time, bit-true, fixed point
models of the SINCGARS waveform real-time functions
were created. The waveform was documented thoroughly,
complete test vectors were created, and, most importantly,
the waveform was repartitioned to eliminate the DSP
device-specific code that was previously used to mitigate
the DSP’s nondeterministic timing. The two different

architectures are illustrated in Figure 2. With a complete
Portability Toolkit in place, as shown in Figure 4, the
software architecture was modified to move the real time
signal processing to an FPGA. In fact, the latest waveform
port does not require the use of a DSP, consisting entirely of
universally-portable, non-hardware specific GPP and FPGA
code (making it ideal for platforms without a DSP, such as
JTRS HMS). The resource utilization of the repartitioned
SINCGARS modem in several different FPGAs is shown in
Table 1.

 Key improvements were made to the black side portion
of the waveform where the modem resides. The software
executes the same waveform modes and features and the
signal processing techniques are identical. State machines
were also added to improve the robustness of the waveform
controller. The waveform functional partitioning was also
designed to support porting spirals. For example,
SINCGARS single channel modes can be demonstrated on a
new platform very quickly as part of risk mitigation
activities, while frequency hopping modes can be spiraled in
later. In all cases, the SDR implementation was verified by
demonstrating RF interoperability with legacy SINCGARS
radios in all ported operating modes.

The net impact of the successively improved porting
process was a SINCGARS waveform architecture, codebase
and Portability Toolkit that provides an estimated 15x
reduction of required waveform porting effort over the
original waveform implementation. These waveform
components will ultimately be portable to a stable SDR
platform in fewer than 24 man-weeks.

5.2 Case Study 2: JTRS WNW OFDM

L-3 Nova licensed its WNW OFDM PHY to the JTRS
GMR program and was responsible for integrating the
waveform on the GMR platform. Since 2004, Nova has
ported its OFDM PHY to 11 different platforms in seven
different hardware configurations, as shown in Table 2. Our
experiences porting the waveform led to the creation of the
WNW OFDM Portability Toolkit. The average time to
complete a port and perform an RF demonstration is
now typically 12 weeks. Two realizations of the waveform
partitioning are shown in Figure 3.

Figure 4: The JTRS SINCGARS Waveform porting process

improved as Portability Toolkit artifacts were created.

Table 1: Utilization of L-3 Nova’s
JTRS SINCGARS modem core

Number % Number % Number %
Altera Stratix II
EP2S60 7,431 12.3 58,742 2.3 25 17.4

Altera Cyclone II
EP2C50

8,063 16.0 58,736 9.9 23 26.7

Xilinx Virtex-4
XC4VLX60 5,165 19.4 15 9.4 9 14.1

Xilinx Spartan-3
XC3S4000 5,174 18.7 15 15.6 9 9.4

Device
LEs/Slices Mem Bits/RAMS Multipliers/DSP48s

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 In 10 of the 11 platform ports, the modem code did not
require any modifications as it was ported to the target
platform. In other words, the ideal definition of portability
was attained in those porting efforts. In the remaining case,
in which the code did require modification (Port 6), the
software architecture was repartitioned to target a small
form factor radio with limited DSP capabilities. Using the
Portability Toolkit resources, the DSP signal processing
blocks were retargeted to the FPGA. Since the Portability
Toolkit provided the blueprint for the waveform, the
recoding efforts and system validation costs were minimal.

7. CONCLUSION

The first iteration of waveform development efforts has
fallen short of the community’s expectations of waveform
portability, and continues to pose a challenge to waveform
porting schedules and costs. However, we’ve described
recommended practices that, when coupled with the JTRS
Portability Guidelines, have the promise to make true
waveform portability achievable. Our recommendations for
a waveform Portability Toolkit are supported with anecdotal
evidence from multiple, successful ports of multiple
waveforms.

8. REFERENCES

[1] “Restructured JTRS Program Reduces Risk, but Significant

Challenges Remain”, GAO Report to Congressional
Committees, GAO-06-955, available from
http://www.gao.gov/cgi-bin/getrpt?GAO-06-955.

[2] JTRS NED T&E Waveform Portability Guidelines v. 1.0,
JTRS Network Enterprise Domain, April 13, 2007.

Table 2: Device configurations for the
various WNW OFDM porting efforts

Platform Config DSP FPGA
TI Xilinx Virtex-II

C6416 XC2V6000
TI Altera Stratix

C6416 EP1S80
TI Xilinx Virtex-II

C6416 XC2V3000
TI Altera Stratix II

C6416 EP2S60
TI Altera Cyclone II

C6416 EP2C70
TI Xilinx Virtex-4

C55x (OMAP) XC4VLX60
TI Xilinx Virtex-4

C6416 XC4VLX60

1

7

6

3

2

5

4

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

