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ABSTRACT 
 
With the creation of the Software Communications 
Architecture (SCA) as part of the Joint Tactical Radio 
Systems (JTRS) program, the government has invested 
substantially to address the need for waveform portability. 
However, to date, the SCA has emphasized the software 
residing on a general purpose processor (GPP). The SCA 
specification does not adequately address the physical layer 
(PHY) waveform processing as the PHY implementation is 
typically accomplished in digital signal processors (DSPs) 
and field programmable gate array devices (FPGAs). A 
2006 GAO assessment of the JTRS program cited 
unacceptably high porting costs and long porting schedules, 
indicating that the JTRS waveforms have yet to live up to 
the objective of highly portable, hardware-agnostic software 
applications. In this paper, however, we show through two 
case studies that the portability goals of the JTRS program 
are achievable. We address the importance of the waveform 
software architecture and the role of a Portability Toolkit in 
reducing waveform porting costs. We also identify the non-
portable techniques that currently prevail in the industry.  

The recommendations presented here derive from our 
experiences with the Single Channel Ground-Air Radio 
System (SINCGARS) waveform, Wideband Network 
Waveform (WNW) OFDM PHY, and Soldier Radio 
Waveform (SRW). 
 

1. INTRODUCTION 
 
Past experience in both waveform development and 
waveform porting has taught us an important lesson: Porting 
non-portable code costs more than re-writing the code from 
scratch. With this premise in mind, the continued 
development of non-portable code is undermining key goals 
of the JTRS programs. This conclusion is consistent with 
the performance described by the GAO in its 2006 review 
of the JTRS program [1]. To address these concerns, the 
JTRS Network Enterprise Domain Test and Evaluation 
(NED T&E) created a set of Waveform Porting Guidelines 
[2]. We endorse these guidelines and encourage their 
proliferation. This paper provides further recommendations 

to improve waveform portability, with the intention of 
reducing the overall cost of delivering SDR waveforms into 
JTRS programs.  

For the purposes of this paper, we define portability as 
the degree to which the cost of porting a waveform is 
minimized. Ideally, waveform code from the JTRS 
repository should remain unchanged when utilized in 
different hardware platforms, and the porting effort should 
be relegated to configuring hardware devices, interfacing to 
a hardware abstraction layer (HAL) and performing system 
integration, test and validation. However, this is often not 
the case—waveform specific code modifications that are 
required because of limited portability can cause significant 
unforeseen costs when porting to new platforms. To address 
these cases, we present a methodology and tools that enable 
a straightforward and successful porting effort. 

 
2. SDR SOFTWARE ARCHITECTURES 

 
SDR software architectures are typically established by 
partitioning waveform control and signal processing 
functions among a platform’s available hardware resources. 
The software architecture takes into account the capabilities 
and resources of the devices available on a given target 
platform.  

We characterize SDR software components as either 
real time or non-real time elements. Real time functions 
such as high rate and/or computationally intensive signal 
processing are more appropriately partitioned to a DSP or 
FPGA, while non-real time functions, such as control 
signaling and low rate signal processing, are optimally 
implemented in a microprocessor or DSP. FPGAs, DSPs 
and GPPs are found in most SDRs, and software architects 
often have a degree of flexibility when adapting waveform 
software to a particular platform, depending on the 
platform’s capabilities and the processing demands of the 
waveform components. 

As waveform software is ported to various platforms, 
developers may need to modify the software architecture to 
accommodate different hardware architectures. However, 
herein lies a central problem: Should a given SDR 
waveform implementation be expected to run on any SDR 
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hardware platform in order to be considered “portable”? 
While the ideal portable waveform would run on any radio 
platform, we allow that the practical answer is no. However, 
the standard of waveform portability we promote in this 
paper requires that waveform software be supported with 
several, specific portability artifacts, which we define in the 
next section. Section 5 describes two porting efforts that 
were supported with Toolkit artifacts, including successful 
waveform software repartitioning, at minimal cost.  

 
3. THE PORTABILITY TOOLKIT 

 
The artifacts typically available to developers when 
launching a porting effort are generally inadequate to enable 
cost effective waveform porting. Often the primary 
(sometimes the only) artifact delivered to a waveform 
porting team is source code. Source code, no matter how 
thoughtfully designed, is not sufficient to realize a truly 
portable waveform or to port waveform software efficiently. 
Source code has often been optimized for a particular 
platform or device, can be hard to read and does not provide 
enough information for effective debugging. In fact, source 
code alone is of limited importance, and should be only one 
component of a waveform’s Portability Toolkit. A 
Portability Toolkit should be made available for each 
waveform. Aside from well documented object-oriented 
source code, L-3 Nova regularly creates a set of portability 
assets to streamline the porting process. At a minimum, we 
recommend that an industry standard Portability Toolkit 
include the following four artifacts: 1. detailed system, 
software and design documentation, 2. a non-real time, PC-
based emulator, 3. full, functional and bit-true waveform 
behavioral models and simulations in MATLAB, Simulink 
and/or OPNET, 4. testbenches and test vectors at both the 
component level and top level.  

 
3.1 Waveform Documentation 

 
Our experience has led us to the conclusion that the detail 
provided in waveform documentation is often insufficient to 
be effective in waveform porting as the documents rarely 
have the necessary detail for efficient debugging. In the case 
of C++, detailed class diagrams, intended multi-threading 
scheme and comprehensive unified modeling language 
(UML) sequence diagrams would go a long way in painting 
the overall picture that is generally missing when just 
looking at source code. In the case of the VHDL, diagrams 
of the clocking scheme, detailed block diagrams and RTL 
documentation for each of the primary components would 
be especially helpful. 
 
3.2 Non-Real Time (NRT) Environment 

 
When porting code to a new platform, developers require a 
simple, flexible environment for testing and debugging 
delivered source code independent of the hardware. For 
these purposes, it is generally not critical that the simulation 
environment be capable of operating the waveform in real 
time. Instead, key features of the emulator should include 
the ability to trace execution paths through the code, to halt 
code execution arbitrarily, to inspect the internal state of 
variables and to output useful information to a logging 
device or screen. These features have all become common 
in modern debugging applications and make a PC an 
excellent choice to host the NRT Environment. 
 In addition, the NRT Environment provides simulated 
interfaces into the networking layer, the physical layer and 
the operating environment of the platform. It also provides 
high visibility into the waveform operation that is often 
lacking in a hardware configuration; the emulator acts as a 
pre-integration step to discover problems that are difficult to 
capture in hardware. Depending upon the requirements of 
the waveform, OPNET models can also be made to 
encompass the NRT. L-3 Nova’s development of an NRT 
Environment for the JTRS SINCGARS waveform was a 
key factor in the success of the porting effort for the GMR 
program. 
 
3.3 Waveform Modeling and Simulation Code 

 
Another important artifact in the Portability Toolkit is the 
set of MATLAB/Simulink models. These models enable the 
implementation to be readily and easily modified, re-
architected and recreated, if need be. Additionally, the 
models provide a method of independent verification of the 
implementation. These models are also far easier to read and 
understand than embedded C++ or VHDL. The 
MATLAB/Simulink fixed point models need to be accurate 

  
Figure 1: The radio platform’s processing  

resources may require that the waveform software  
be repartitioned to meet performance specifications. 
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to the degree that internal test vectors can be generated for 
any point in the signal processing chain. 

While the MATLAB model and NRT Environment 
validate the system in a point to point environment, an 
event-driven model from a tool such as OPNET enables the 
waveform to be validated using networks of multiple 
participants. This verification is especially critical for 
networked waveforms such as WNW and SRW. The use of 
OPNET models also greatly reduces the risk of field testing 
as it allows testing of network scenarios that cannot be 
tested in a lab, such as large networks or networks with high 
mobility. For maximum effectiveness, the OPNET model 
should use a large percentage of the actual waveform code, 
rather than code that simply models the waveform behavior. 
Since the embedded code base and the OPNET model are 
highly synchronized, problems can be identified and 
resolved in both a lab environment as well as in an OPNET 
simulation. 

 
3.4 Software Testbenches 

 
Component level unit testbenches should bridge the design 
and implementation, enabling verification that the 
waveform implementation behaves as designed. Creating 
test artifacts in MATLAB/Simulink, C++ and VHDL 
provides the means to debug the design at its lowest level. 
This makes it far easier to isolate and debug issues at the 
component level. Designers may or may not create these 
assets on a case-by-case basis, but when delivering portable 
waveform software, these test assets are critical to enabling 
a low-cost port to the next target platform. 

Although at first look it may seem too costly to provide 
these recommended Portability Toolkit artifacts, our 
experience has repeatedly demonstrated the high value of 
the Portability Toolkit in reducing the cost of subsequent 
waveform ports. We routinely develop each of these 
artifacts during an initial waveform development, as well as 
at the first port of a new waveform, and we find that the 
generation of these assets typically leads to a lower overall 
development and porting cost via a shortened system 
integration and debug cycle. Additionally, the Portability 
Toolkit can enhance (if not guarantee) interoperability 
among different hardware platforms running the same 
waveform. From the government’s point of view, the total 
lifetime cost of the waveform is further minimized, since the 
Portability Toolkit ensures minimal cost of porting 
waveforms to future platforms. 

 
4. SOFTWARE DESIGN TECHNIQUES TO AVOID 

 
Avoiding design techniques that reduce portability is 
important to minimizing waveform porting costs. Some 
portability-enhancing techniques are “best practices” and 
the industry standard, such as the use of classes in C++ and 

generics in VHDL. We present here some software 
practices that are widely used in industry because of their 
promise to reduce design cycle time, but that actually have 
the effect of reducing portability. 
 
4.1 Platform-Specific Optimization 
 
Whether code is targeted for a GPP, DSP or FPGA, a good 
indicator that a non-portable design has been developed is 
evident whenever a high degree of effort performing 
platform-specific optimization is required to implement a 
waveform. Platform-specific optimization does not refer to 
good DSP design methods such as memory management 
and/or object-orientated design or good FPGA design 
practices such as pipelining to improve timing and folding 
to reduce FPGA resource footprint. 

For processors, if complex optimization settings must 
be applied to achieve the required performance and correct 
behavior, it will be difficult to reliably reproduce the same 
results in another device. The effects of optimization can 
vary between devices and compilers, making it sometimes 
impossible to replicate the results of the previous platform. 
This can require a code rewrite and possibly a design re-
architecture, turning a porting effort into a redesign effort 
and greatly increasing the amount of time required. 

For FPGAs, platform-specific optimization has several 
indicators. Lack of portability is indicated if the use of 
physical floorplanning or the use of non-default synthesis 
and place-and-route options are required to meet timing 
constraints. These optimizations do not translate well over 
to other FPGA vendors’ devices and usually do not translate 
well even to other families within the same FPGA vendor. 
 
4.2 Use of Intellectual Property (IP) 
 
Use of IP is prolific in the industry and provides for 
improved time to market. However, certain types of IP 
should be avoided. To be portable, designs must not utilize 
IP cores specific to an FPGA vendor. This seems obvious, 
yet there are a plethora of cases of this design practice being 
utilized. 

There are two sub-categories to this practice: IP 
functions and IP resources. An IP function is defined as a 
stand-alone block generally used to implement traditional 
signal processing in which its source code is “hidden” from 
the developer. The inner workings of the IP function is 
unknown and the code itself cannot be changed beyond 
parameterization. This presents a problem because the 
function cannot be altered or optimized to support changes 
to the waveform implementation. This is especially 
problematic if the function is specific to a certain FPGA 
vendor such that a new IP function must be created if 
moved to another FPGA vendor’s device. 
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If the complexity of the function is low, such as FIR 
filters, FFTs, or AES encryption, it is easily within a 
waveform developer’s capabilities to create these functions 
in traditional VHDL. An exception case may be warranted 
for highly complex functions such as Turbo or LDPC FECs; 
however, third party developers will often have VHDL 
cores available as an alternative. SRW is an example of a 
waveform that uses a proprietary FPGA core to implement 
critical signal processing functionality. The use of a 
proprietary core is one of the reasons that SRW is not very 
portable. 

 The second sub-category to the IP core practice is the 
use of IP resources. An IP resource is defined as a FPGA-
specific structure such as a multiplier or embedded RAM 
block. It requires the waveform developer to utilize a tool 
specifically developed by the FPGA vendor to create the IP 
resource; the resulting resource is specific to that FPGA 
vendor’s device. Therefore, porting to other FPGAs forces 
the developer to re-create or replace every IP resource.  

The additional danger of using IP resources is that 
equivalent structures must exist in the other FPGA devices. 
For example, the asynchronous RAM block utilized in the 
Ground Mobile Radios (GMR) Modem HAL (MHAL) has 
no analogue in Xilinx FPGAs. When we ported the MHAL 
to the JTRS Surrogate Radio, there was not an 
asynchronous RAM IP resource in the device. Since the 
MHAL functionality depended on the availability of this 
particular resource, the MHAL had to be significantly re-
designed to work with synchronous RAM blocks instead. 

Inferring IP resources has added advantages in being 
able to optimize for a platform’s resources. For example, 
consider a platform with limited memory resources. Read-
only memories (ROMs) are often generated to store 
trigonometric look-up tables. Using standard IEEE 
packages, it is simple to create a user-defined sine/cosine 
ROM that has generically configurable addresses and data 
widths in portable VHDL. Therefore, if necessary to 

accommodate a platform with limited memory resources, 
the design can be made smaller by changing one or two 
generics. 

Today’s synthesis tools have the capability to infer IP 
resources. Code written in generic VHDL is automatically 
targeted to the device’s specialized IP resources. The 
Synplify synthesis tool is convenient in that it supports 
resource inference for several vendors’ FPGAs, although 
other tools such as Altera’s Quartus and Xilinx’s ISE 
support inference as well. A simple test that L-3 Nova 
performs to validate portability is to use the Synplify tool to 
synthesize a waveform implementation to several device 
families of both Altera and Xilinx products. 
 
4.3 Multiple Clock Domains 
 
It has long been good design practice to produce FPGA 
designs with as few clock domains as possible. In designs 
targeted for low power operation clocking the logic at the 
lowest possible rate does reduce the power consumption. 
However, this approach can negatively impact portability. 

SRW is an instance of a waveform developed for low 
power operation which utilizes multiple clock domains 
within the modem. Their use becomes a problem when 
hosted on a platform that is unable to generate the required 
number of clocks. While not always feasible, the practice of 
using more than one or two clock domains should be 
avoided. 

 
5. WAVEFORM PORTABILITY CASE STUDIES 

 
Two JTRS waveform porting case studies, shown in Figures 
2 and 3 above, illustrate the importance of the Portability 
Toolkit and substantiate our recommendations for portable 
software techniques. 
 
 

           
Figure 2: Two examples of L-3 Nova’s  

JTRS SINCGARS waveform partitioning.  
Figure 3: The WNW-OFDM waveform partitioning has 

evolved to accommodate different hardware architectures. 
Port numbers reflect the numbering scheme in Table 2. 
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5.1 Case Study 1: JTRS SINCGARS 
 
This case study is based on two ports of the 

SINCGARS waveform: an initial port to the GMR platform 
and a subsequent port to a COTS GMR surrogate platform. 
Both ports included single channel and frequency hopping 
SDM SINCGARS modes, including both voice and 16K 
data. Crypto support, RF integration and EDM mode are not 
considered in this case study. Figure 4 outlines the porting 
processes and identifies maturing artifacts that resulted.  

The original JTRS SINCGARS waveform 
development, the output of which served as the baseline for 
the JTRS GMR SINCGARS port, resulted in a GPP-only 
implementation. The real time aspects of the waveform 
made this software architecture unworkable for the GMR 
platform. To make matters worse, no Portability Toolkit 
assets beyond source code and limited documentation were 
available. 

When ported to GMR, the waveform was re-architected 
to partition its real time components from the GPP to a 
DSP. This implementation ultimately succeeded in meeting 
performance specifications, but required device-specific 
timing management on the DSP to satisfy the waveform’s 
stringent control timing requirements. As a result, the GMR 
SINCGARS porting effort had higher than anticipated 
porting costs. 
 Contrast this first port with a subsequent repartitioning 
of the waveform. For the first time, bit-true, fixed point 
models of the SINCGARS waveform real-time functions 
were created. The waveform was documented thoroughly, 
complete test vectors were created, and, most importantly, 
the waveform was repartitioned to eliminate the DSP 
device-specific code that was previously used to mitigate 
the DSP’s nondeterministic timing. The two different 

architectures are illustrated in Figure 2. With a complete 
Portability Toolkit in place, as shown in Figure 4, the 
software architecture was modified to move the real time 
signal processing to an FPGA. In fact, the latest waveform 
port does not require the use of a DSP, consisting entirely of 
universally-portable, non-hardware specific GPP and FPGA 
code (making it ideal for platforms without a DSP, such as 
JTRS HMS). The resource utilization of the repartitioned 
SINCGARS modem in several different FPGAs is shown in 
Table 1. 

 Key improvements were made to the black side portion 
of the waveform where the modem resides. The software 
executes the same waveform modes and features and the 
signal processing techniques are identical. State machines 
were also added to improve the robustness of the waveform 
controller. The waveform functional partitioning was also 
designed to support porting spirals. For example, 
SINCGARS single channel modes can be demonstrated on a 
new platform very quickly as part of risk mitigation 
activities, while frequency hopping modes can be spiraled in 
later. In all cases, the SDR implementation was verified by 
demonstrating RF interoperability with legacy SINCGARS 
radios in all ported operating modes. 

The net impact of the successively improved porting 
process was a SINCGARS waveform architecture, codebase 
and Portability Toolkit that provides an estimated 15x 
reduction of required waveform porting effort over the 
original waveform implementation. These waveform 
components will ultimately be portable to a stable SDR 
platform in fewer than 24 man-weeks. 

 
5.2 Case Study 2: JTRS WNW OFDM 

 
L-3 Nova licensed its WNW OFDM PHY to the JTRS 
GMR program and was responsible for integrating the 
waveform on the GMR platform. Since 2004, Nova has 
ported its OFDM PHY to 11 different platforms in seven 
different hardware configurations, as shown in Table 2. Our 
experiences porting the waveform led to the creation of the 
WNW OFDM Portability Toolkit. The average time to 
complete a port and perform an RF demonstration is 
now typically 12 weeks. Two realizations of the waveform 
partitioning are shown in Figure 3. 

         
Figure 4: The JTRS SINCGARS Waveform porting process 

improved as Portability Toolkit artifacts were created. 

Table 1:  Utilization of L-3 Nova’s  
JTRS SINCGARS modem core 

Number % Number % Number %
Altera Stratix II
EP2S60 7,431 12.3 58,742 2.3 25 17.4

Altera Cyclone II
EP2C50

8,063 16.0 58,736 9.9 23 26.7

Xilinx Virtex-4
XC4VLX60 5,165 19.4 15 9.4 9 14.1

Xilinx Spartan-3
XC3S4000 5,174 18.7 15 15.6 9 9.4

Device
LEs/Slices Mem Bits/RAMS Multipliers/DSP48s

 

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



 In 10 of the 11 platform ports, the modem code did not 
require any modifications as it was ported to the target 
platform. In other words, the ideal definition of portability 
was attained in those porting efforts. In the remaining case, 
in which the code did require modification (Port 6), the 
software architecture was repartitioned to target a small 
form factor radio with limited DSP capabilities. Using the 
Portability Toolkit resources, the DSP signal processing 
blocks were retargeted to the FPGA. Since the Portability 
Toolkit provided the blueprint for the waveform, the 
recoding efforts and system validation costs were minimal. 

 

7. CONCLUSION 
 
The first iteration of waveform development efforts has 
fallen short of the community’s expectations of waveform 
portability, and continues to pose a challenge to waveform 
porting schedules and costs. However, we’ve described 
recommended practices that, when coupled with the JTRS 
Portability Guidelines, have the promise to make true 
waveform portability achievable. Our recommendations for 
a waveform Portability Toolkit are supported with anecdotal 
evidence from multiple, successful ports of multiple 
waveforms.  
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Table 2: Device configurations for the  
various WNW OFDM porting efforts 

Platform Config DSP FPGA
TI Xilinx Virtex-II

C6416 XC2V6000
TI Altera Stratix

C6416 EP1S80
TI Xilinx Virtex-II

C6416 XC2V3000
TI Altera Stratix II

C6416 EP2S60
TI Altera Cyclone II

C6416 EP2C70
TI Xilinx Virtex-4

C55x (OMAP) XC4VLX60
TI Xilinx Virtex-4

C6416 XC4VLX60

1

7

6

3

2

5

4
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