
 SOFTWARE DEVELOPMENT SOLUTIONS FOR MULTIPROCESSOR AND
SOC SYSTEMS USED IN SDR

Toby McClean (Zeligsoft, Gatineau, QC, Canada, toby@zeligsoft.com)
Mark Hermeling (Zeligsoft, Gatineau, QC, Canada, mark@zeligsoft.com)

ABSTRACT

The advances in system-on-chip (SoC) and multiprocessor
platforms have made software development for these
environments much more involved. Today’s platforms
contain multiple processors, often from different classes
(DSPs, FPGAs, GPPs and so forth), and each of these
processors can contain multiple processing cores. The
traditional approach used to develop software cannot
address this complexity due to two major shortcomings.
Firstly, it views the world as a single layer in a
homogeneous environment or at most as an application
layer deployed to some form of an execution environment
layer. Secondly, the traditional approach uses a code-based
development environment to develop the application layer,
which provides the developer with no information about the
overall system.
This paper looks into why the traditional approach no
longer suffices when developing software for complex
platforms and what other technologies are available to
bridge the gap.

1. INTRODUCTION

The modern software engineer needs to develop software
that executes on multiple different platforms with varying
types of processors, high-speed buses, peripherals and
accelerators. The engineer requires information to
understand the impact of the distribution of software and the
usage of the platform. This information includes the
available MIPS, MMACS or number of gates, but also the
latency and throughput for the physical connections on a
platform. Change is constant in the software development
arena, and that is true for distribution as well: It will change
during the life-cycle of a project. This puts more pressure
on non-functional attributes like reusability and portability,
which were never easy to deal with in the first place.
Besides information, the software engineer needs assistance
and guidance. The engineer needs help to make sure that the
application can adjust to change while maintaining
important properties like performance and code size. The
software engineer also needs help to enable communication
across the processors in these complex platforms.
The complexity of current-day platforms makes it more
difficult for the engineer to obtain the information he needs

and to develop the software that satisfies requirements. This
fact, combined with tightening product development cycles,
has reached a breaking point. This breaking point cannot be
solved by growing the development team; a new solution to
developing software
for complex platforms
is required. Technical
articles appearing in
trade magazines, web
sites and journals are
increasingly clamoring
for a solution to this
problem.
In this paper we will
briefly look into the
shortcomings of
traditional software
development
approaches. From
there we will explore
best-practices such
as graphical
modeling,
component-based development, layering and code-
generation to see how they can alleviate the problem. We
will show how layering can be used to include the physical
hardware layer and how this applies to the system-on-chip
and multiprocessor world. We will also show how layering
can benefit code-generation to result in smaller, faster code.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Figure 1 -- The Mercury
Computer Systems Ensemble2
is an example of a complex
platform

The resulting solution is a best practice based approach to
provide the software engineer with the tools to deliver the
next generation of complex systems on time, within budget
and with the highest possible software quality. It bridges the
gap between the current methodologies and the new,
complex platforms that are being introduced.

2. TRADITIONAL APPROACHES TO SOFTWARE
DEVELOPMENT

2.1 Architecture-Centric Development
Most medium to large, modern day software development
projects use an architecture-centric approach to
development [1]. That is, the development team sits down
early on in the project and maps how they plan to divide
responsibilities in the system. An architecture typically
involves horizontal partitioning of the system into layers
and/or vertical partitioning into subsystems. The

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:toby@zeligsoft.com

architecture also describes the allocation of functionality to
processors and cores and the communication medium used
in the interactions between them.
There are typically three main goals to this partitioning: 1)
Divide and conquer complexity to facilitate implementation;
2) Decouple the different parts of the architecture to
increase reuse; and 3) Increase the ability to relocate
functionality to other processors in the system.
Architectures come in many forms. Many development
teams use graphical modeling tools utilizing diagrams like
class diagrams and collaboration diagrams from the Unified
Modeling Language (UML) [2].

2.2 Current Development Approaches
Once the architecture has been laid down, the development
team can start to translate that architecture diagram into a
more detailed design and ultimately code. This is typically a
manual process, modeling tools such as the IBM Rational
[3] and Telelogic Rhapsody [4] solutions are popular, but
some teams prefer to do this with white boards.
The problem with all of these approaches is that they do not
give the developer the ability to address the complexity of
the platform. These approaches focus on developing
application functionality; they do not express how that
functionality is mapped to the platform or how the pieces
communicate together.
The development team has to make a-priori decisions on
where to allocate functionality and what communication
facility to use. They must then embed these decisions into
their source — people often refer to this as the runtime
architecture code. The run-time architecture code can
occupy as much as 50% or more of the entire system.
Runtime architecture code is notoriously difficult to write
and debug, even more so for complex platforms. Developers
often hard-code communication, resulting in the increase of
coupling between different parts of the application as well
as between the application and the platform. Any change to
the platform, such as the communication medium or the
hardware impacts the runtime architecture and can result in
multi-man-months worth of effort.
The development team will also have to work on
configuring the platform. Complex platforms have flexible
communication busses with routers or switches that need
configuring. They also have processors with accelerators
that can be turned on and off. The result of this
configuration activity could be low-level C code, linker
control files, XML files or other artifacts. This activity
requires highly specialized knowledge, which is often
difficult to find, train and retain.
As part of the mad dash to a working system, the original
architecture often gets sidelined. The original design intent
gets forgotten and developers make shortcuts where they
need them — like pointers into entities that were meant to
be decoupled, system calls that were not intended and the

like. The result is that the original architecture deteriorates,
this is not immediately noticeable, but it does impact non-
functional attributes of the system like re-usability and
portability.
The result of this is a working but rigid system. This
rigidness prevents the team from making changes to the
allocation of functionality to the platform, and it prevents
them from finding the optimal allocation. It also impacts
reusability of the code base, due to the coupling between
code and platforms. This in turn makes it more difficult to
build a family of products using different variants of
hardware boards.
Middleware like CORBA [5] can alleviate some of these
problems, however, it also causes a level of overhead to be
incurred that, while typically acceptable between GPP
processors, is often unacceptable for low-level signal
processing functionality on DSPs and FPGAs.

2.3 Summary
The impact of what we have described is far more severe
then it might seem at first glance. It impacts embedded
software development projects as follows:

• The runtime architecture is time consuming to
establish;

• Exploring deployment possibilities for the optimal
deployment is time consuming;

• Reuse of application software and platform
software is tedious;

• Changing deployments is expensive;
• Deterioration of architecture

As was previously stated, these problems cannot be solved
by adding more people. The problems are real, have been
reported by many projects and will not go away by
themselves. A new way of development software for
complex platforms is needed.

3. SOLVING THE MULTIPROCESSOR AND SOC
DILEMMA

The previous section described some of the challenges that
teams face when developing software for complex
platforms. From this a number of requirements can be
distilled that must be satisfied by a development
environment for these systems. Development teams need the
ability to:
R1 Change the allocation of functionality to hardware;
R2 Change the choice of communication media;
R3 Make effective use of resources and peripherals on a
complex platform;
R4 Configure a piece of software, platform or SoC;
R5 Utilize multiple platforms in a product line.
R6 Communicate software and system architecture and
design.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

The next section will look at several well-known best
practices and how they can be used together to provide the
flexibility that software developers need.

3.1 Component-based development
Component-based software development concerns
development of software as independently deployable,
encapsulated and reusable elements. The entire system is
divided into components with strongly typed interfaces. The
interface of a component expresses how the component
interacts with the environment and not how the component
is implemented.
A component can describe control behavior like routing, or
it can describe signal processing behavior like Forward
Error Correction (FEC). A component can contain other
components (hierarchical composition) or can have one or
more implementations. An FEC component can, for
example, have an implementation for a particular RTOS on
a GPP or DSP, or for a particular flavor of an FPGA.
A set of source code files typically implement a component.
This source code has two completely different
responsibilities. Firstly the source code implements the
behavior of the component, but secondly, the source code
also communicates with other components in the system.
These responsibilities should be kept separated, the
functional behavior of a component will always be the
same, but the communication behavior depends on the
communication mechanism chosen.
Several component-based standards exist. The OMG’s
Deployment and Configuration of Component-based
Distributed Applications Specification (D&C)’[6] the
Software Communications Architecture (SCA) [7] and the

Automotive Open System Architecture (AUTOSAR) [8] are
some examples.
The use of components enforces encapsulation of the
component’s internal functional logic from the environment.
This results in a component being independently reusable.
A component can be stored in a component library and
reused over multiple projects.
Composing applications of multiple components makes that
application deployable over a distributed system. The
amount of distribution is only limited by the level of
granularity of the components. A single application can
have a number of deployments, each deployment
representing a different allocation of components in the
application to processors in the platform.
Some component-based standards, like the SCA, dictate a
particular layer of middleware for management and
communication (in the case of the SCA the Core
Framework and CORBA and MHAL). However, a
management layer is not mandatory for a component-based
system. Likewise, a middleware layer is not required.
Components can communicate over RTOS messaging and
platform or customer proprietary messaging frameworks.
Components place requirements on their execution
environment. These can be simple requirements such as
“200 MIPS”, or “500 MMACS”, or more complex
requirements such as a multi-channel serial port with a 16-
bit word length and a 2 word frame.
The use of components for software satisfies requirement
R1 (change the allocation of functionality to hardware).

3.2 Graphical modeling
The use of components, as highlighted in the previous
section, requires that a graphical representation be present
to help developers properly understand, communicate and
evaluate the systems under construction. Modeling allows
teams to represent the system visually, from a high level,
and down through all the detail concerning the components
and their requirements. Software teams are often
geographically dispersed and the use of software models
allows them to work together easily.
The model of the system describes the set of communicating
components, or, in other words, the runtime architecture
mentioned before.
The graphical model contains the components (described in
the previous section) but also contains other elements
described by additional concepts introduced in the next
sections below.
The use of graphical modeling for capturing the architecture
satisfies requirement R6 (communicate software and
system architecture and design).
 Figure 2 -- Example of a component-based application
3.3 Layering
Complex software uses the concept of layering to further
improve encapsulation. A layer groups together components

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

at a certain level of abstraction. Typical layers are an
application layer specific for a particular piece of software,
a business layer and a platform layer.
Layering is an important technique to satisfy R5 (utilize
multiple platforms in a product line). The lower layers
change when the platform changes, but the higher layers
only change when the application changes. Layers are able
to contain the churn when a certain aspect of a system
changes.
Layers require services from lower layers and provide
services to higher layers through service access points and
service provisioning points respectively.

Figure 3 -- Layers in a software system

Layering can be used to include the physical aspects of the
system. This represents the actual chips and physical
connections in the platform, the elements that consume
power to perform functions.
Components are the main building blocks of these layers,
even for the logical execution environment and the physical
layer. Components can represent operating systems, DSPs,
FPGAs, partitions on FPGAs, logical communication busses
(for example CORBA), or RTOS messaging. Components
can likewise represent chips, hardware connections,
memory, multiplexers and bridges.
Logical and physical components have properties that
describe resources of interest, for example latency, MIPS
and MMACS.
As a rule of thumb, a system consists of 3 to 5 layers,
including the physical layer.

3.4 System-centric development
The layers mentioned in the previous section describe the
entire system, from the hardware layer up. However, the
layers are completely independent by design and need to
stay that way so that they can be reused in other products or
with other hardware. A system-centric model includes all
the layers and also has the capability to capture and
configure relationships between the layers; this is done in a
new modeling concept called a ‘deployment’. A deployment
contains a number of model elements from different layers
and it configures the elements and stages the components in
the higher layer to the components in the lower layer.

Configuration is the act of providing settings for the
properties on the layer. For example, the TCP/IP stack on an
RTOS can be provided with an IP address. A CORBA bus
can be provided with the location of the naming service in
use. This satisfies requirement R4 (configure a piece of
software, platform or SoC).
Deployment includes configuration and staging:

1. Configuring of properties on the components;
2. Staging of the components in one layer to the layer

below;
3. Staging of connections between components to

logical and physical communication busses;
4. Connecting services between layers.

The configuration and staging steps combine the layers in
the system and aggregate them into a complete system
representation. The deployment describes how the
components work together, where they execute and how the
layers are connected.
The developer can easily change a staging by dragging a
component to a different processor, a connection to a
different communication bus and so forth. This satisfies
requirement R2 (change the choice of communication
media).
The deployment is a final check-point for the user to verify
whether the system will actually work. That is, the user can
verify whether the resources, provided by the physical layer
upwards, meet the requirements expressed by the
components.
The system can be queried and analyzed as well in order to
calculate all possible stagings, or to find, for example, the
staging with the lowest latency. This satisfies requirement
R3 (Make effective use of resources and peripherals on a
complex platform).

3.5 Generation
Modeling is required to provide developers with necessary
understanding and means to communicate. However,
modeling reaches the peak of its benefit if it is also used to
generate implementation code.
Components and layers in the model are kept completely
encapsulated and independent of each other and the
platform. They come together in the deployment; hence this
is where code is generated from and is known as
Deployment-Aware Generation™ (DAG).
The code make-up of a component, containing functional
logic and communication and control code, was described in
3.1. The functional logic of a component is fixed. It is
written by the developer and contains the actual behavior of
the component.
The communication and control code depends on how the
component is used in the application, which other
components the component is connected to, and the
communication media selected for its outgoing and

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

incoming connections. DAG code can generate this code
automatically from the deployment in the model.
This is called design time location transparency. It is
important to note that the functional logic of the component
is completely independent of the communication
framework. Communication in this case could be CORBA,
TI DSP/BIOS MSGQ, VxWorks messaging or a proprietary
transport. The user makes this choice during design time.
DAG allows for very tight and efficient code to be
generated as there is no code, memory or run-time
overhead, it simply contains the code that is needed for the
communication. DAG generates code for the entire run-time
architecture that was mentioned earlier.

3.6 Summary
The best practices described in the previous sections
combined together provide the developer with a powerful
set of tools to tackle his projects. Component-based
development, graphical modeling and layering have been
used for a long time with great success. System-centric
development, which includes a model of the physical layer
as well as deployment models, is new. Zeligsoft has
pioneered deployment modeling in its flagship product
Zeligsoft CE. Deployment-Aware Generation, that is,
generation from the deployments in the system-centric
models is brand-new and this facilitates developers writing
code for complex systems, as they no longer have to write
the run-time architecture code, while retaining the high
performance that they need.

4. CONCLUSION

This paper began with a discussion on the challenges
software developers faced when dealing with today’s
complex embedded systems. The problems they were
experiencing were then investigated and articulated, and
then distilled into a number of requirements.
A system-centric software development approach was then
presented that builds on object-oriented programming and
standards like the SCA, but combines it with a truly system-
centric view, that is, a view that includes the distribution of
software over hardware. A system-centric approach uses
graphical models, component-based technologies, layering,
deployments and generation. The system-centric approach
provides the necessary tools for the software developer —
including high-level architects, software implementers, and
testers. These tools allow the developers to see their work in
the light of the larger system.
Generation with the system-centric approach also provides
for the tightest code generation possible. It combines
complete knowledge about the system with advanced
generation techniques. It provides design time location
transparency, but it can also support the runtime location
transparency offered by middleware layers like CORBA.

The system-centric approach is the best of all worlds. It
gives the designer the power to make informed decisions by
querying the graphical models he builds with his, potentially
geographically dispersed, team.
The system-centric approach is supported by the Zeligsoft
CE 3.x software development environment, currently
targeting advanced TI DSPs (TCI6482, TCI6487, C6455
and other members of the c64x+ DSP core family). Other
processors will be available to meet market and customer
demand.

5. REFERENCES

[1] Bass, L., Clements, P. and Kazman, R. Software Architecture

In Practice 2nd Edition. Addison-Wesley Professional, 2003
[2] OMG. Unified Modeling Language (UML).

http://www.omg.org/cgi-bin/doc?formal/07-02-03.
[3] IBM Rational. Rational Systems Developer.

http://www.ibm.com/software/awdtools/developer/systemsde
veloper/index.html.

[4] Telelogic. Telelogic Rhapsody.
http://www.telelogic.com/products/rhapsody/index.cfm

[5] OMG. CORBA/IIOP Specification. http://www.omg.org/cgi-
bin/doc?formal/04-03-01

[6] OMG. Deployment and Configuration of Component-Based
Distributed Applications. http://www.omg.org/docs/ptc/03-
07-02.pdf.

[7] Software Communications Architecture (SCA).
http://sca.jpeojtrs.mil/

[8] AUTOSAR, http://www.autosar.org

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

