
DESIGN ABSTRACTION TOOL FOR ON-DEMAND, AUTOMATED
SYNTHESIS AND IMPLEMENTATION OF SOFTWARE-DEFINED RADIOS

Doug Jaeger (Northrop Grumman IT/TASC, Chantilly, VA; douglas.jaeger@ngc.com);
Patrick Ring (Northrop Grumman IT/TASC, Chantilly, VA; patrick.ring@ngc.com);
Matt Vondal (Northrop Grumman IT/TASC, Chantilly, VA; matthew.vondal@ngc.com);
fred harris (San Diego State University, San Diego, CA; fred.harris@sdsu.edu)

ABSTRACT

The term Software-Defined Radio (SDR) refers to a
class of radio devices that provide a flexible, generic
hardware platform where the modulated waveforms, data
format, and transport protocol are defined by configurable
means, such as software and programmable logic. This
configurability, if utilized, enables a radio to be modified
quickly in the field to meet changing requirements or
varying environmental conditions. The process of designing
a specific implementation for such flexible radios, however,
requires a large investment of time and effort by skilled
design engineers who posses in-depth knowledge of both
the signal processing and the development tools required to
implement and optimize the software or logic for a given
hardware platform. In this paper the authors discuss their
efforts to create a tool that provides a new level of radio
design abstraction – intended to provide an integrated
toolset for the rapid development of new designs by an
operator without an in-depth knowledge of communication
theory. By raising the level of radio design abstraction and
automating the process flow, this new tool enables designers
to generate implementations for software-defined radios
which can be quickly and easily adapted to changing signal
environments and the requirements of specific systems and
networks.

1. INTRODUCTION

Designing a radio requires expertise in many related
disciplines. These include radio architecture, signal flow,
modulation and demodulation, synchronization, digital
signal processing, filter design, finite arithmetic effects,
implementation budgets, platform and tool constraints,
protocols and others. To assure wide acceptance and a high
measure of success, the software-defined radio concept
requires a formidable list of attributes. A partial list includes
(i) easily upgradeable, (ii) quickly reconfigurable, (iii)
operable by unskilled users, (iv) presentable via a simple,
transparent human interface, and (v) capable of a high level
of specification abstraction.

The operator must be able to implement system changes
with minimal or no reliance on external instruments and
tools as might be available in a laboratory environment.
Field changes must be rapid, easy to implement, and
manageable with minimal guidance by unskilled operators.
The need for use by unskilled personnel means the system
must respond intelligently to low level of detail requests.
The system must accept low level input detail and must
respond with a high level configuration consistent with
interpreted tasks.

To address these issues, the authors are developing an
application that will reduce the amount of time, effort, and
knowledge necessary to create SDR configuration files. This
application, named Hotrod, provides an integrated tool
environment that simplifies and automates the process of
designing a radio system. Using the efficient design process
the operator can access the benefits provided by SDR and
quickly reconfigure the hardware to meet the
communication task within the constraints presented by the
immediate environment and currently available
communication systems and networks.

2. DESIGN ABSTRACTION

A necessary first step for simplifying the design process is
to raise the level of abstraction at which the design process
takes place. Most communication problems are stated in
high level concepts that are concerned with the objectives
and the environment, rather than the specifics of the
implementation necessary to achieve the goals - the "what"
and "where" rather than the "how." For example, the
problem may be stated something like "Get this data from
the aircraft to the ground," not "Encrypt this data, encode it,
then send it through a QPSK modulator with an output
frequency of 2.4 GHz and a link margin of 6dB." Working
at a higher level of abstraction reduces the complexity of the
problem by allowing the operator to describe it in more
familiar terms and leaving the more obscure details of the
implementation to tools specifically designed to handle
them. As a result, the amount of knowledge necessary to

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

produce a specification for the desired radio is reduced and
the design process is simplified.

Hotrod supports this higher level of abstraction by
allowing the designer to specify the problem using these
higher level concepts. The operator can supply information
such as the amount of data, the protocol or available
equipment, maximum connection time, available spectrum,
or other easily measurable and familiar quantities, and allow
Hotrod to fill in the details.

To support this higher level of abstraction, the core of
Hotrod is a knowledge base that encodes the processes and
technology necessary to build a radio. The knowledge base
consists of an Expert System and a Function Database.

2.1 Expert System

The Expert System functions much as the design engineer
who supplies knowledge and experience to the radio design
process. It handles the lower level details of the radio
design process that are not provided in the design
specification. The knowledge-based system consists of a
list of design rules that encodes the functions, relationships,
dependencies, and procedures necessary to build a radio.
These rules include the experience of experts, heuristics,
and best practices that would ordinarily be used by a skilled
engineer in designing the radio. The rules are executed by
the Expert System step by step, as information is available,
just as a design engineer would approach the process. The
execution of these rules produces a model of the radio in
memory that meets the specified requirements.

The Expert System provides specific processing
advantages over other design programs. The underlying
software for the heuristic algorithm is designed for solving
problems a small piece at a time, performing specific
processing tasks for a specific set of input values. This
software consists of a rule-based engine rather than a
procedurally based program. Unlike a procedural program,
which executes statements in a linear fashion, the Expert
System operates on each rule as the information on which
that rule depends becomes available. As information is
added or updated, the rules can be executed repeatedly. As
a result, the Hotrod excels at providing the guidance and
structure necessary to determine a best fit solution to a
problem that is under-specified or poorly defined. As new
information is added or old information is changed, derived
values are automatically recomputed. This allows problems
to be solved in an iterative, but non-linear manner. This is
useful in situations where small adjustments can propagate
through a solution in many directions. This also allows
several different implementations to be calculated and
compared.

The knowledge-based system provides all of the usual
capabilities that are expected of design programs. It will
check the input data and requirements for consistency,

flagging any conflicts. Moreover, the algorithm provides
estimates, average values, or commonly used values for
missing data fields. It predicts the level of performance of
the radio in the field based on the provided design criteria,
or conversely, or even build a radio to meet a specified
minimum performance level.

Since each SDR hardware platform presents a different
set of interfaces to the software, the Expert System also
encodes information about how to target the design to the
specific hardware. This includes the hardware specific
interfaces, command and control, and any necessary
processing functions.

The Expert System also maintains an archive of the
work that it has completed, so it can be reused in the future.
Once the design processing is complete and the SDR
configuration file is created, the Expert System places it in a
database, along with the criteria used to produce it. When a
new request to build a radio is received, it checks this
database for a design that was previously implemented. If
there is a match, then this previous design is reused, saving
the time and processing necessary to create a new
configuration file, and using a design that may have been
verified by successful operation in the field.

As the Expert System processes the provided criteria
and designs the radio system, it uses blocks from the
Function Database to provide the necessary capabilities.

2.2 Function Database

The Function Database is a library of functional blocks that
can be used to build a radio. These include all constituent
functions such as encryption, differential encoding, error
correction, modulation, synchronization, equalization, and
others. Each block has standardized I/O interfaces, and is
parameterized so that it can be used in various
configurations. These blocks are developed and verified
independently outside of Hotrod. The verification occurs
over a range of parameter values in order to ensure that the
system in which they are used will operate correctly with a
high degree of confidence. Once verification is complete,
the blocks are placed in a library so they can be used by
Hotrod. New blocks can be added as additional
functionality is required and the block is developed.

The current target SDR platform is custom hardware
which uses a Xilinx FPGA for the reprogrammable
processing element. As a result, the Function Database
consists of blocks that can be targeted to an FPGA. As the
need arises, Hotrod can be expanded to include other tools
and SDR hardware platforms.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 1. Hotrod an On-Demand, Automated, Software Defined Radio Design Process

3. AUTOMATED IMPLEMENTATION

Another step for simplifying the radio design process is to
reduce the knowledge that is necessary to skillfully operate
the various tools that must be used to perform calculations
and implement the design. Typically, an analysis tool, such
as Matlab, is used to calculate design parameters such as
filter coefficients and to perform other complex calculations
during the design process. Once the design process is
complete, the design, which exists as a list of
interconnections between functional blocks, must be
converted to a form that can be executed on the hardware
platform. For FPGA-based hardware platforms, the design
must be converted to a netlist (a list of interconnections of
logic gates) and then converted to an FPGA-specific
configuration file. Hotrod currently targets hardware that
uses Xilinx FPGAs, and the set of software tools that
produce configuration files for these FPGAs are complex
and take considerable effort to operate effectively. To
minimize this burden on the operator, Hotrod automates the
operation of these tools and integrates them into one
development environment.

3.1 Matlab

During the design process, Hotrod uses Matlab to perform
complex calculations for which it is designed and well
suited. Chief among these are determining filter coefficients
for the various filters in the signal processing path. Hotrod
calls the functions in the Matlab API to execute scripts and
retrieve the results.

For the Xilinx FPGA-based SDR hardware, Matlab is
used as the first step in the implementation process. The
function blocks are designed using System Generator from
Xilinx inside of Simulink. The radio design, as produced by
the Expert System, is saved as a Simulink model file and
loaded into Simulink. If desired, the operator can utilize the
graphical Simulink environment to view and explore the
system design, or to provide stimulus and simulate it. The
design can also be modified, if necessary, although changes
at this stage can no longer be checked by the Expert System.
Once the operator is satisfied with the design, Hotrod
invokes the System Generator executable to create an FPGA
netlist of the design as it appears in the Simulink model.

3.2 Xilinx Implementation Tools

Once the netlist is complete, Hotrod places it in a project for
final implementation by the Xilinx tool set. This project
provides the I/O interfaces expected by the radio, mapping
them to the hardware-specific interfaces on the target
device. Hotrod provides option files and invokes the Xilinx
implementation tools to produce the final device
configuration file. It monitors progress and checks for error
conditions and exceptions.

After compilation, Hotrod has a valid device
configuration file that can be loaded on the target hardware.
The configuration file, the design criteria, and the model are
saved to a project database and the operator is notified that
the configuration file is ready for use. In hardware
platforms which support it, Hotrod can send the
configuration to the hardware to automatically configure it.

At this point in the design process, the configuration
file is complete and can be loaded onto the target hardware.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

However, the complete radio has not been tested to ensure
that it works correctly and that it meets the design criteria.
As in any automatically generated configuration, validating
the system is a key step in ensuring that the system will
function as intended. There are several approaches to
verification that can be used on an automatically designed
system.

4. VERIFICATION

There are four primary potential sources of error that arise
during automatic synthesis of radio configurations: (i) the
modular components are flawed in a manner not previously
discovered; (ii) the desired connections and routing at the
system design level are flawed; (iii) the hardware
configuration and synthesis tools inaccurately report
successful completion; (iv) the real world implementation
adds impairments not accounted for in the system design.
Each of these sources can have serious or fatal effects on the
performance of the generated system, and should be
addressed in any thorough verification scheme.

All four sources of error can be mitigated to an extent
through dual-graph loopback testing. For instance, a digital
loopback after the modulator block back into the
demodulator verifies that the components are functional in
the current configuration, that the system routing is correct,
and that the design synthesized correctly. Digital loopback
costs little in resource overhead because a full modem
implementation is usually required for data link
configurations.

Analog loopback testing is only practical to a certain
extent. Performing a loopback test at the I/Q baseband,
sampled IF, or even RF level can verify that noise and
distortion effects at the digital interface and in the radio
front end are not limiting the performance. However, analog
loopback does require additional hardware investment.

Straightforward loopback testing does not localize the
radio errors to either the modulator or demodulator side, as
both maybe unverified, and certainly cannot test the actual
channel effects of the environment. Future work may look at
modes in the Expert System that deal with automatic
recovery from flawed radio synthesis. System choices could
include synthesizing a known good configuration or
iterating the design with a loopback test further back in the
system processing chain.

There are several data-aided and non-data-aided
statistical metrics that can always be embedded at several
levels within a synthesized modem like an automated
design-for-test. These may help locate the error source, but
still not require many resources. Further, by inserting digital
channel models into the loopback test configuration during
verification, the real world performance might be more
accurately predicted. Finally, testing to an arbitrary
percentage confidence level can require a long period of

time, especially for relatively low data rates. The capability
to accelerate the verification time by running multiple
parallel models, perhaps at an increased clock rate, could
serve to approximate real performance in a fraction of the
required time, provided enough resources are available.

Figure 2. Semi-Expert Mode Enables Directed Design

5. ADDITIONAL ADVANTAGES

Hotrod currently supports two interfaces, a graphical user
interface (GUI) and an Ethernet interface. The primary
interface for most operators is the GUI. It gives the operator
access to all of the capabilities of the software, and can be
customized to meet the needs of the situation and the
operator by varying the amount of information and the level
of abstraction that is presented. The Ethernet interface

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

provides these same capabilities to third-party software that
may want to take advantage of the design guidance or tool
automation that Hotrod provides.

Although Hotrod is designed to simplify the design
process for use by less knowledgeable operators, it is not
constrained to provide this level of assistance. It also
supports more experienced users by allowing them to enter
as much specific information as they know. For these users,
it will offer reduced levels of design guidance or possibly
none at all. This allows these users to design radios with
various combinations of parameters and function blocks that
Hotrod may not have been programmed to construct,
thereby permitting design trade-offs and comparisons to be
performed, while still automating the computational tasks.

The tool provides great flexibility in the design process
supporting simple and complex link configurations as
necessary to meet design objectives or guidance given by
the operator when Hotrod is used in a semi-expert mode.

To support single and multi-carrier configurations
within the design tool, data stream multiplexers and
demultiplexers have been developed. Incoming data is
broken into packets that are diverted to individual sub-
carriers. Hotrod automatically instantiates multiplexers as
needed to reassemble packet streams in the corresponding
receiver sections. Each sub-carrier is independently
configured for specific bandwidths, amplitudes, modulation,
and internal structure.

In similar fashion, Error Correction, Interleaving, Data
Framing, Protocol Support, and other functional
components are used to construct link architectures which
meet or best fit channel capacities and design requirements.
The authors are exploring expanded capability through BER
tracking, SNR estimators, and other blocks to enable
intelligent link layer management including dynamic carrier
re-assignment.

This approach to radio synthesis provides several
benefits. It speeds up the design process. It supports the
creation of modems that use multiple carriers as easily as
those that use only one. It will also permit different
waveforms on each carrier to effectively use the available
spectrum.

6. SUMMARY

Software-defined radios provide a flexible and generic radio
platform that can be reconfigured quickly in the field to
meet the changing requirements dictated by variations in the
signal environment and the capabilities of other accessible
communication systems. Creating new configuration files
for these radios can be a slow and demanding process
because of the amount of knowledge and expertise needed
to design the new radio and operate the tools necessary to
implement it. As a result, the advantages provided by
reprogrammable hardware are not fully realized. This paper
presented a software package that provides an integrated
design tool set that simplifies and expedites the radio design
process. This software uses Expert System technology and
process automation to raise the level of abstraction at which
the desired radio is specified, designed, and implemented.
As a result, SDR configuration files can be created more
quickly and easily by operators who do not have the
knowledge or experience necessary to design a radio using
the current design processes. In addition, these capabilities
allow experienced users to create and compare variations of
a design in ways that were not previously possible. By
simplifying the design process and designing at a higher
level of abstraction, the capabilities and flexibility of
software-defined radios can be more effectively exploited.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

