

FROM SIMULATION TO DEMONSTRATION – A SDR-BASED

 MULTI-MODE TESTBED

Lin HUANG; Kan ZHENG; Guillaume DECARREAU (Orange Lab, Beijing, China;
{lin.huang, kan.zheng, guillaume.decarreau}@orange-ftgroup.com)

Hanwen CAO; Gang LI, Zhangchao MA, Zhi YAN, Huangcheng ZENG
 (Beijing Univ. of Posts and Telecom, Beijing, China,{hanwen.cao, ligangcool, mzcroy,

yanzhibupt, zenghuacheng}@gmail.com)

ABSTRACT

This paper presents a SDR-based multi-mode testbed being
developed by Orange Lab Beijing and BUPT, which
consists of the Universal Software Radio Peripheral (USRP)
boards and the PC-cluster. GNU Radio, C++ / IT++
programming and MPI parallel computing framework are
used to make the testbed easy to be developed. So the fast
prototyping is possible. The purpose of this testbed is to
validate the algorithm performance in realistic channels and
in the presence of implementation impairments. Now the
TD-SCDMA 64 kbps / 384 kbps links and a 2x2 MIMO-
OFDM system are already built in this multi-mode PC-
Cluster SDR platform. The system performance, SNR,
BLER, MIMO channel fading and correlation matrix etc can
be shown in graphic monitor windows in real-time.

Keywords- SDR; testbed; PC-cluster; GNU Radio

1. INTRODUCTION

Most of the wireless system research uses the simulation as
an important tool to validate the system performance.
However, it cannot replace the test in real wireless
environment and sometimes it is even problematic.
Therefore, the motivation of our work is to build a flexible
testbed for evaluating the novel algorithms under wireless
transmission environment and accelerate the transition from
simulation to demonstration.
 GNU Radio [1] is an open source framework which
allows the construction of radios where the actual
waveforms transmitted and received are defined by software.
The Universal Software Radio Peripheral (USRP) from
Ettus Research [2] is a device connected to computer with
USB connection, to do RF / baseband conversion. It works
with GNU Radio to create the software defined radios. Now
this combination attracted the growing users from various
research groups. In our testbed, the USRP plus GNU Radio
are adopted as the RF front-end. Most of the baseband
processing is done in the PC-cluster.

To support real-time processing for the complex physical
layer, PC-cluster is used for the parallel computing. GNU
Radio sends/receives data to/from the PC-cluster with TCP
connection. Almost all of the baseband signal processing
modules are done in the PC-cluster parallel computing
environment, including the frequency synchronization,
channel estimation, modulation / demodulation, channel
coding / decoding and so on. The parallel computing
environment is built in the MPI (Message Passing Interface)
framework. Several computers work together to meet the
real-time requirement of intensive data processing. Some
parallel scheduling strategies are used in the cluster and can
be selected by the configuration interface. The simulation
source codes based on IT++ library are very easy to be
ported into the MPI framework. It makes the moving from
the simulation to the demonstration fast and smooth.
 Multiple wireless systems including TD-SCDMA and
3GPP LTE-like PHY layer have been implemented in this
testbed with the necessary simplification due to the
limitation of USRP. The video streaming application can be
demonstrated on the different PHY layers. The experiments
under the indoor environment and the short-distance outdoor

Mobile
 station

Base
station

USRP
RF/IF
board

Figure 1 Testbed overview

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:@orange-ftgroup.com
mailto:@gmail.com

environment are performed with good results. In addition,
the graphic user interfaces (GUI) of SNR, BLER, the
constellation and the channel correlation matrix are well-
designed to monitor the system performance.
In the following section, the system architecture will be
firstly introduced. Then the implementation details are
discussed in the third part. An example of MIMO-OFDM
system is shown in the forth part. Finally, the conclusion will
be given.

2. SYSTEM ARCHITECHTURE

The system architecture is shown in Fig. 2. At the
transmitter side, the source data stream is produced by the
transmitter computer, then this baseband stream is sent to the
USRP board and converted to RF signal to be transmitted.
The USRP front-end is configured to support 2 x 2 antennas.
So two receive antennas capture the RF signal from air then
the USRP board converts them into baseband and sends
them to the PC-cluster. In the PC-cluster, a node called
'Master' distributes processing tasks to several "Slaves" who
are assigned to the processing jobs. The processed results
generated by Slaves are then aggregated by the 'Integrator'
node to recover the data packets.
All the baseband processing is implemented in software on
the general computer by C++ programming. Although a
FPGA-DSP testbed can provide higher throughput and
shorter latency, using high level programming language on
common Linux system makes people with little or no
'hardware' background implement the platform very easy.
The software tools used in the development include C++,
Python, IT++ library and MPI. Fig. 3 gives the block
diagram of different software modules, their usage and the
interface with each other. Here one process or thread, i.e.
one software module, can be assigned to any node
(computer) according to the parallel strategy. In the part 3,
the details of different block will be introduced.
When a specific algorithm is created, to be implemented in
the testbed, the steps include

• Matlab simulation
• IT++ simulation (C++)
• Embed the C++ modules into MPI framework

So we could see that, this is a very easy algorithm transfer
from simulation to demonstration.

3. SYSTEM IMPLEMENTATION

In this section, the details of different parts in the testbed are
introduced.

3.1 RF/IF Front-End

The USRP is adopted as the RF front-end for our SDR
platform. It is designed to allow general purpose computers
to produce radio signal. In essence, it is a RF and IF
converter which sends or receives I/Q baseband signal
to/from the host by the USB 2.0 cable. The USRP product
family includes the motherboard, which contains an FPGA
and several AD/DA converters, and changeable plug-in
daughterboards that cover different frequency ranges. With
the various daughterboards, the USRP has an overall range
from DC to 2.9 GHz, which covers everything from AM
radio to Wi-Fi and beyond.
The chief limitation of USRP is its bandwidth. USB
connection is chosen as the interface between the board and
the host. Now the maximum throughput on the USB cable is
32MB/s. Considering the 2 I/Q channels and 2 bytes for one
sample, the available bandwidth is

32MB/s / 2channels / 2B/Sample = 8 MSample/s
In addition, the oversampling is needed, e.g. x2
oversampling. The 2-antenna MIMO transmission also
doubles the bandwidth requirement. So finally if x2
oversampling and 2x2 MIMO are used, the supported
bandwidth will decrease to

8MS/s / 2 / 2 = 2 MS/s
Therefore, the bandwidth that the USRP can provide is very
limited. This is a big constraint for high data rate system
design.
Together with USRP, GNU Radio is an open-source
software for SDR development. GNU Radio has libraries for
common software radio needs, including various filters,
modulators, FFTs, timing recovery etc. It is a very flexible
framework, and it allows programming on C++ and Python.

Receiver

USB

Node

Node Integrator

Transmitter

...

USB

Figure 2 System architecture

Application Software

GUI

Service packet (TCP/UDP connection)

Baseband Frames (TCP connection)

Turbo decoder

GNU Radio framework (Python)

Throughput

format setting

Scheduling algorithm
selection

Constellation, BLER
SNR, CPU utilization

Channel
estimation

MIMO
detection

...
MPI framework (TCP connection)

Frame
synchronization Framing

Control signal

Sample stream (USB connection)
Figure 3 Block diagram of software modules

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

In our architecture, the USRP is connected to a computer
which is called 'frontend PC', where GNU Radio software
runs to make USRP configurations and undertake some
fundamental processing jobs, such as framing and
synchronizations. Besides, the network interface is necessary
for the frontend PC to enable it to exchange data with PC
cluster.

3.2 The PC-Cluster

In our testbed, general purpose processors are used instead
of dedicated DSP processors for its flexibility and low-cost.
So here every computer in the cluster is looked as a data
processing unit that processes the data stream in a parallel
computing way. These processing units are called 'nodes' in
this system and connected together with the Gigabit Ethernet.
Every node has its IP address and the subnet IP address is
used as a broadcast address to send the control information
to all the nodes. There is a 'control point' assigned to help
the communication among the nodes.
TCP connection is used between the front-end PC and the
PC cluster, and also used in MPI among the computers in
cluster. The TCP communication function is integrated into
a C++ class which is convenient to be called.

3.3 The Physical Layer

Different physical layers can be implemented in this testbed.
We have realized TD-SCDMA 64 kbps & 384 kbps links
and simplified 2x2 MIMO 1.25 MHz BW LTE link. They
have quite different physical layer design. But some
common modules can be reused, such as modulation /
demodulation, convolutional coding and turbo coding.
The testbed uses GNU Radio on the 'front-end' computer.
Here, GNU Radio handles all hardware interfacing,
multithreading, thus it frees us to focus on the signal

processing. Fig.4 illustrates how the GNU Radio
collaborates with the MPI side and exchange information. A
slide correlation block is implemented in the front-end
computer to find the pilot correlation peak and divide the
continuous sample stream into frames. There is a frequency
offset compensation block in front of the slide correlation,
which receives the results of frequency offset estimation
from PC-cluster periodically and adjust the phase of
incoming signal stream. So this is a close-loop adjustment
procedure which will quickly converge to accurately
synchronized status.
Except the frame synchronization, most of baseband signal
processing is implemented in the MPI framework. Different
system consists of different modules and has different
complexity. We measure the time each system spends on
handling one frame, then multiply it by 3.0 GHz, the
processing frequency of CPU. This gives a rough measure of
their complexities, although it will be different when the
CPU structure or the manufacture is different. So in fact,
here the complexity is not absolute but relative. We list this
relative complexity requirement in the following.

Table I Signal processing complexity

Completely implemented TD-SCDMA
64 kbps link

2.2 GCycles/s

Completely implemented TD-SCDMA
384 kbps link

11.3 GCycles/s

Simplified LTE-like MIMO-OFDM
770 kbps link

8.8 GCycles/s

According to this table, the number of computers that the
system needs can be roughly estimated. Suppose all the
computers are equipped by 3.0 GHz CPU, then a 64 kbps
link requires one CPU; a 384 kbps link needs 4 CPUs; while
the MIMO-OFDM link can be real-time processed by 3
CPUs. The real-time experiments prove this estimation is
correct.
.
3.3 The Simplified MAC Layer

Above the physical layer, data packets are re-segmented and
some additional information is added to these packets. This
procedure is called packetization. For example, at our
simplified MAC layer, data packets from upper layer (IP
packets) are split into smaller units then the header is added.
The packetizing procedure can be simplified because the

Slide
correlation

Frequency offset
compensation

Frequency offset
estimation Data detection

sample stream

Stream to
frames

GNU Radio

MPI

TCP
UDP

Frequency
offset feedback

Data frame

Figure 4 Frequency synchronization and information exchange

between MPI and GNU Radio

5 byte BOP Source data packet

Data unit Padding
Figure 5 Packetization from MAC layer to PHY layer

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

scenario in our experiment is simple, only one way and
single user.
At the transmitter side, the PHY layer receives the UDP
packet from upper layer, then the packet will be divided into
smaller data units which is the payload of one radio frame or
TTI etc. These data units are then channel coded, modulated
and put into radio frames which are transmitted into air. At
the receiver side, an inverse process is done to recover the
source data. Thus, after the signal is decoded into data units,
they should be combined into UDP packets and delivered to
the data sink.
To facilitate the data unit combination, the BOP (Begin of
Packet) tag for a source packet is added at the beginning of
UDP packet as shown in Fig.5. The format of BOP tag is a
3-byte string followed by 2-byte packet size (unsigned
short). The maximum packet size is 64K, which is the same
as the maximum size of an IP packet.
When the size of source packet is not multiple of the size of
data unit, the padding bits will be inserted at the tail.
Although some of the payload is wasted, this part is much
smaller, just dozens or hundreds of bytes, than the size of
source packet which is usually large up to several Kbytes.
Thus the overhead is acceptable.

4. MIMO-OFDM EXAMPLE

In this section, a MIMO-OFDM system implemented on this
testbed is introduced as an example. This system design
refers to the 3GPP LTE (Long Term Evolution) draft. The
frame structure, bandwidth, number of subcarriers are
similar with LTE's. Table II gives some key system
parameters.
The subframe totally consists of seven OFDM symbols. The
guard interval (GI) is added in front of every OFDM symbol
to mitigate the effects of inter symbol interference (ISI)
caused by channel time spread. Among one subframe, the
first symbol is the reference signal for channel estimation.
The SCH (Synchronization Channel) symbol is inserted at

the end of subframe for the initial frequency and timing
synchronization. In the current testbed, the SCH symbol is
inserted in every subframe, but we will assign only one SCH
to every 4 subframes for less overhead. The Zadoff-Chu
sequence is chosen for the SCH symbol, which has the
immunity to large frequency offset.
Each antenna transmits its own reference signal, a PN
sequence. The reference signals from different antennas are
subcarrier-interleaved. That means they are frequency
division. For each antenna, the PN sequence is differential
coded to facilitate the integral frequency offset estimation.
The current version of USRP cannot support synchronously
transmitting on two motherboards. So the basic 2x2 MIMO
is configured now in our platform. This is a classical 2x2
BLAST spatial multiplexing. The information data is
divided into two streams, then transmitted from two
separated antennas. At the receiver side, ZF (Zero Forcing)
and ML (Maximum Likelihood) detections are realized and
tested.
The channel coding in this system is convolutinal code. The
generator polynomials is selected as g(0)=0133, g(1)=0171
for the constraint length of 7 and the code rate of 1/2. In
order to make the system more robust in severe wireless
channel, constraint length of 9 and turbo coding may be
implemented as our alternative in future. Furthermore, due
to the high complexity of the viterbi decoding, we chose a
SIMD (Single Instruction Multiple Data) optimized decoder
from Phil Karn to accelerate the processing speed [3]. The
Karn's viterbi decoder can reach up to 22 Mbps information
bit rate for 1/2 rate and the constraint length of 7 on the 3.0
GHz CPU. When the constraint length is 9, the maximum
throughput is 4 Mbps. This decoder greatly reduces the
program execution time. However, the BER performance of
1/2 hard decision convolution code is not good enough. A
high speed turbo codec is really appreciated. It’s under
further investigation.

Table II MIMO-OFDM system parameters

System Parameters MIMO-OFDM
Sampling rate 2 MS/s, 1 MS/s
Carrier frequency 2.45 GHz
FFT size 128
Number of occupied sub-
carriers / valid sub-carriers 80

Symbols per subframe 7

CP length 14 for the first 6 symbols,
20 for the last symbol

Subframe length 1000 chips
Modulation QPSK, 16QAM
Channel Coding Convolutional code
Antenna Configuration 2x2
MIMO Scheme BLAST

0 1 2 3 4 5 6 7 8

10
-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

B
E

R

Real channel
AWGN channel
Rayleigh channel

Figure 6 BER performance comparison between simulation and real

channel experiment

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Fig.6 shows the BER performance comparison between
simulation and the real channel experiment. The simulation
results are gotten under AWGN channel and Rayleigh
channel. The measurement results of real channel are
produced by the SNR estimation block and the error bit
counting block. From this figure we chould see that the BER
curve of real channel reflects its Rayleigh fading property.
To make the system performance visible, we developed
many GUIs to monitor the real time status. Fig. 7-9 show the
received constellation, the MIMO channel estimation and
the SNR estimation respectively. These GUIs provide great
help in the various experiments. Moreover, many parameter
configurations and mode selections also can be made
through the GUIs.

5. CONCLUSION

This paper introduces the SDR-based multi-mode testbed
built on USRP and PC-cluster. GNU Radio, IT++ and MPI
are used to facilitate the transition from simulation to
demonstration. The algorithm evaluation in real wireless
environment becomes easy since the time cost is greatly
reduced. This is very useful especially for the current more
and more complex wireless system.
The TD-SCDMA 64 kbps / 384 Kbps links and a 2*2
MIMO-OFDM subsystem are built in the same multi-mode
testbed. The MIMO-OFDM system is introduced more
detailed in this paper. The experiment results in real channel
are also presented. The system performance, SNR, BLER,
MIMO channel fading and correlation matrix etc. are shown
in graphic monitor windows.
More experiments are currently being done such as channel
correlation measurement and outdoor environment trial. We
also plan to make some investigation and development on
cooperative transmission or cross layer optimization in
future.

6. REFERENCES

[1] www.gnu.org/software/gnuradio
[2] www.ettus.com
[3] http://www.ka9q.net/code/fec/simd-viterbi-

2.0.3.tar.gz
[4] K. Mandke, S. Choi, G. Kim, R. Grant, R. C.

Daniels, W. Kim, R. W. Heath, Jr., and S. Nettles,
"Early Results on Hydra: A Flexible MAC/PHY
Multihop Testbed," in the Proc. of IEEE Vehicular
Tech. Conf. , Dublin, Ireland, April 23 - 25, 2007.

[5] http://nms.csail.mit.edu/SpectrumWare/
[6] Sujian Zhao; Cong Shen; Xin Su; Yan Yao;

"Architecture of a softwareradio system based on
cluster of workstations". IEEE TENCON 2003.
vol.4, pp.1439 - 1444, 15-17 Oct. 2003

[7] Lin Huang; Kan Zheng; Xiaoyu Wang; Decarreau,
G."Timing Performance Analysis in an Open
Software Radio System", Communications and
Networking in China, ChinaCom '06, Beijing,
China, 25-27 Oct. 2006 Page(s):1 – 5

[8] Huang, Lin; Cao, Hanwen; Zheng, Kan; Decarreau,
Guillaume;"Practical Frequency Synchronization
Scheme in an Open Software Radio TD-SCDMA
System", Wireless and Optical Communications
Networks, WOCN '07, Singapore, 2-4 July 2007

Figure 7 Received 16QAM constellation

Figure 8 MIMO channel estimation, displayed in both frequency

domain and time domain

Figure 9 SNR estimation, the average SNR in experiment is

around 14 dB

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

http://www.gnu.org/software/gnuradio
http://www.ettus.com
http://www.ka9q.net/code/fec/simd-viterbi-
http://nms.csail.mit.edu/SpectrumWare/

	Home
	Search by Session
	Search by Author

