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ABSTRACT 
 
This paper selects a number of effective, general methods 
for enabling signal detection, estimation, and classification 
needs for cognitive radio.  Implementations of algorithms 
such as these are of key importance to Dynamic Spectrum 
Access (DSA).  These algorithms are decomposed into 
logical blocks and then implemented in reusable GNU Radio 
signal processing blocks.  These blocks are then 
demonstrated in an example GNU Radio application running 
in a Linux environment, using a Universal Software Radio 
Peripheral (USRP) as a radio frontend.  A second USRP on 
an unconnected host computer is used to generate the 
relevant test signals used for training and 
detection/classification trials.   
 A key advancement presented in this work is 
application of these algorithms to real-world signals input 
from an RF frontend, rather than ideal signals generated in 
MATLAB.  We show that work is needed to normalize the 
output of the USRP to make signal detection and 
classification more robust. 
 

1. INTRODUCTION 
 
One of the most popular applications of cognitive radio is 
that of Dynamic Spectrum Access (DSA).  In DSA, radios 
must monitor activity on a given segment of radio-frequency 
(RF) spectrum and attempt to identify available unused 
regions: regions belonging to primary user signals whose 
service levels must not be degraded, and regions used by 
other secondary users' signals with which we may wish to 
communicate in order to form a cognitive radio network. 
 For the purposes of distinguishing between primary and 
secondary user signals, as well as establishing meaningful 
communications with other secondary users, and effective 
method for classification of observed signal modulation is 
needed.  This paper will focus on selecting effective 
algorithms which have been presented in prior research, 
implementing and connecting them to lay the detection and 
classification foundation for a DSA capable cognitive radio 
built by expanding upon the tools included in the GNU 
Radio Project.  The Universal Software Radio Peripheral 
(USRP) and the Cell Microprocessor are targeted as an ideal 

combination platform for this architecture due to their 
capabilities, low-cost, and wide-spread availability. 
 The remainder of the paper is organized as follows.  
Section two discusses the system architecture within GNU 
Radio.  Section three details our experimental, laboratory 
results.  Section four outlines avenues of future research and 
improvements to our implementation.  Section five 
concludes. 
 

2. SYSTEM ARCHITECTURE 
 
We can generally divide the task of receiving and 
characterizing the observed RF into three different logical 
groupings.  The first consists of a number of generic receiver 
functions which condition the received signal for further 
processing or demodulation.  The second consists of signal 
detection and bandwidth estimation schemes.  The third 
consists of our signal modulation classification task.   
 The implementation and interaction between these 
components will depend on the specific GNU Radio 
structure.  The ultimate method in which GNU Radio will be 
structured to take advantage of highly parallel platforms 
such as the Cell Microprocessor has not yet been 
determined.  Consequently, we offer design considerations 
which should allow our implementation to remain effective 
should any of these methods be chosen. 
 
2.1. GNU Radio on the Cell Microprocessor 
 
GNU Radio consists of a number of radio processing 
components referred to as blocks, which may be linked 
together to form a useful waveform.  Traditionally, each of 
these blocks run in a single thread and a scheduler has been 
used to run each block's work task when it has a non-empty 
input queue.  However in order to take advantage of the Cell 
architecture, we will need to distribute this work load onto 
multiple processors.  This can be done through the expected 
long-term approach of loading each block onto a Synergistic 
Processing Elements (SPE) to form a traditional pipeline, or 
through the short-term approach of simply offloading the 
work from one or two distinct processor intensive blocks 
onto available SPEs. 
 In the short term approach, as shown in Figure 1, all 
blocks are actually executed on the Power Processing 
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Element (PPE).  In the diagram, we show the movement of 
both data, denoted Data x, through processing code blocks, 
denoted BLK y.  The GNU Radio blocks are threaded on the 
PPE, and when BLK 1 finishes processing Data 1, BLK 2 
starts.  It makes a blocking call to task one or more SPEs 
with performing some computation, such as an FFT.  While 
this thread is blocking, the BLK 1 thread is free to begin 
preparing Data 2 until the SPEs return. 
 The short-term method is primarily the approach we 
will be targeting, as we attempt to parallelize as much of the 
workload into PPE threads as possible and make blocking 
SPE-based calls to do the heavy work. 
 The long-term approach also pictured in Figure 1 
should distribute an equal work load to each SPE, perhaps 
by grouping logical signal processing blocks, and ideally 
using the Cell's ring-bus topology in a linear fashion.  
However this approach poses many additional challenges 
with dividing and scheduling workloads which must be 
addressed first; therefore, we will focus primarily on the first 
method when considering our design. 
 
2.2. Common Front End 
 
The USRP combined with an appropriate daugherboard (we 
used an 800-2400 Mhz board) provides the ability to 
downconvert our tunable frequency band to IF, digitize the 
signal at 64 MSPS using an AD9862 Mixed-Signal Front-
End Processor, and decimate this down to an appropriate 
rate that we can move it over the 480Mbps USB 2.0 
interface. 
 The USRP is fully supported by GNU Radio, and very 
little effort is required to add the appropriate source block 
into our waveform.  Since we can receive the decimated IF 
for an arbitrary tunable center frequency decimated at a 
selectable rate using this USRP source block, all that 
remains is to ensure that we maintain an appropriate 
dynamic range by adjusting the programmable gain 
amplifier (PGA) on the AD9862.  PGA control is 
implemented as shown in Figure 2.  It uses the GNU Radio 
standard Stream-to-Streams, Serial-to-Parallel, and Keep-

One-In-N blocks.  Additionally, a free-running python thread 
generates statistics on the samples, and steps the PGA up or 
down based on the sample vector mean falling above or 
below preset thresholds.  Lastly, the N parameter of the 
vector decimation block, or period between updates 
measured in vectors of samples, is modified when we 
observe the correct or incorrect dynamic signal range.  This 
quickly achieves an ideal gain value while relinquishing 
processing resources when not needed.   
 

  Start Frequency Stop Frequency 
Hole 1   2396031250 2399875000 
Signal 1   2399937500 2400062500 
Hole 2   2400171875 2403984375 

 
Table 1: Values Inserted into RF Map 

 
 
2.3. Signal Detection Block 
 
The signal detection block operates as a simple energy 
detector, performing thresholding and estimation on the 
output of a time-averaged power spectral density (PSD).  
The layout of this pathway is shown in Figure 3. 
 The signal detection pathway begins by vectorizing 
samples into groups of 512, and decimating the vectors to a 
rate which we can sustain real-time processing.  We then 
apply a Blackman-Harris Window to each 512-sample 
vector and take a 1-D, complex FFT, averaging the 
magnitudes of each bin over many samples in the next block.  
Finally, in the last block we calculate the mean and variance 
of the averaged PSD in the estimation step, artificially 
increasing the variance up to some minimum level, handling 
the case of no signal being present.  We then establish two 
thresholds using these statistics, and divide the frequency 

Figure 2: Common Signal Conditioning Pathway 

Figure 1: Proposed GNU Radio on Cell Implementation. 

Figure 3: Signal Detection Pathway 
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axis up into regions based on whether we fall under or over 
these thresholds.  The regions are defined by the following: 
 

Confident free spectrum:  P(f) < µ + 0.2σ 
Confident signal spectrum:  P(f) > µ + 3σ 

 
 By using these regions to classify any given frequency 
bin, and forming regions out of consecutive bins, we are 
able to quickly characterize the observed signal space.  In 
the example shown in Figure 4 we see a GMSK signal 
centered at 2.4 GHz being generated by another USRP 
across the room.  The observed regions are highlighted, and 
the corresponding additions to the RF map are shown in 
Table 1. 
 Ultimately, a form of successive approximation should 
be used during this step to subtract recognized signals from 
the PSD, recalculate the statistics, and search for more 
regions, until we hit our artificially increased sigma value.  
The RF Map component which maintains a listing of the 
various signal and hole regions should perform logical 
unions and collision checking on signal and hole regions.  
However for our purposes, a single pass is used currently 
used during this step and provides a sufficient metric to 
detect most signals without issue.  From the region start and 
end bounds we estimate the signal center frequency and 
bandwidth by calculating the center as the mean of fend and 
fstart and the width as fend – fstart.   
 This is a rough process, which could certainly be 
improved by a successive approximation algorithm which 
re-tuned around the suspected center, increased the 

decimation rate, and repeated the process until it achieved 
the desired resolution.  For our purposes a single pass was 
implemented and robust estimation of fine signal movement 
or bandwidth adjustment was not heavily tested. 
 
2.4. Signal Classification Block 
 
After insertion of a signal region into the RF Map as an 
unclassified region, the classification control thread is 
signaled.  This section immediately re-centers the RF tuner 
on the signal and sets the appropriate decimation on the 
front end to maximize the achieved resolution of our signal 
in the observation window.  The energy detection flow graph 
is then paused while the classification pathway runs on the 
signal.  This pathway is shown in Figure 5, and consists of 
the common task of breaking IF samples into vectors and 
reducing the data rate to something manageable, followed by 
a component which looks for cyclostationary features in the 
input signal by using the FFT Accumulation Method to 
calculate the Spectral Correlation Density (SCD) Function 
of the observed signal.  This is then reduced to the alpha-
profile, and sent into the ANN classifier block for a 
decision. 
 As has been demonstrated [1], each known modulation 
type will produce a different arrangement of peaks in its 
SCD plot, due to both inter- and intra-symbol correlation 
within the waveform.  We can see in Figure 6 the ideal SCD 
plot of a QPSK signal averaged over many sampling 
periods.  This arrangement of four clusters is common in 
many modulations, and this scale does not provide enough 
detail to highlight differences in the plots for various 
modulations. 
 Figures 7 and 8 compare an enlarged view of the 
rightmost major detail on the alpha axis of the SCD plot for 
both a QPSK signal and 4-FSK signal.  The cyclostationary 

Figure 4: Energy Detection on Observed Spectral Region 

Figure 5: Signal Modulation Classification Pathway 

 
Figure 6: SCD for QPSK 
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properties of each of these signals are clearly different by 
observation.  In order to allow our classifier to learn various 
modulation methods and discern between them, we will use 
the method proposed by Fehske, Gaeddert, and Reed [2] and 
take the alpha profile of our SCD plot as a 1-D vector input 
to an Artificial Neural Network (ANN) using the structure of 
a Feed Forward Multi-Layer Perception Network (MLPN) 
with back propagation [4]. 
 Our input layer consists of 129 neurons, each one 
associated with a normalized bin value from the alpha 
profile of our SCD. As in [2]’s design, we use a hidden layer 
consisting of four hidden neurons, a learning rate of 0.05, a 
learning momentum of 0.7, and a sigmoid symmetric 
activation function for all neurons. Since we are initially 
trying to classify only the three digital modulation types 
currently supported for transmission under GNU Radio 
(DBPSK, DQPSK, and GMSK), we will use a three neuron 
output layer, with an orthogonal output vector associated 

with each of the three modulation types.  Training data for 
the ANN is generated at run time through a graphical 
interface which allows the user to specify which type of 
modulation.  It places the ANN in a learning mode, in which 
it outputs the appropriate input and output layer data.  Figure 
9 shows a screen capture of the ANN training interface. 
 Training the ANN weights at runtime proved to quickly 
skew the data towards the class with the most trials.  To fix 
this we ultimately opted to write the training trials to a file 
where they could be manually inspected and adjusted if 
necessary for fairness. Upon initialization of the Classifier 
block in GNU Radio, these trials are then read in from the 
file and weights are calculated.  The MSE of our output 
vector, as we progress through this training progress, is 
shown in Figure 10.  This block uses the Fast Artificial 
Neural Network (FANN) library to implement, train, and 
execute the MLPN.  FANN was chosen as it is already one 
of the fastest implementations available for this purpose, and 
the Vector Fast Artificial Neural Network (VFANN) project 
plans to accelerate this even more in the near future by using 
vector operations available on the graphics processing units 
(GPU's) in inexpensive, widely-available video cards, which 
we hope will be easily portable to the fast vector floating 
point operations available on the Cell Processor’s SPEs.  
The output vectors used for training consist of permutations 
of {-1, -1, +1}, so to select the modulation chosen by this 
classifier we must simply choose the index of  
max(output_vector). 
 

 
Figure 7: Detailed SCD for a 4-FSK Signal 

 
Figure 8: Detailed SCD for a QPSK Signal 

Figure 9: Artificial Neural Network Training Interface 

 
Figure 10: Mean Square Error Durring MLPN Training 
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3. RESULTS 
 
This design worked extremely well classifying signals, with 
the exception of a few minor issues.  It did not make sense to 
present our results in the traditional SNR vs. detection rate 
fashion because most of the significant observable error 
could be attributed to several known factors which greatly 
outweighed the false detection rate inherent to the actual 
analytical method used.  When these effects were not 
observed, we received a correct signal classification an 
overwhelming majority of the time (>95%).  For more 
information on the theoretical limits of using this 
classification technique in varying SNR environments please 
refer to [2] which explores this topic in much more detail.   
 The PSD of the three narrow-band GNU Radio digital 
modulations (DBPSK, DQPSK, and GMSK) were trained 
on the order of minutes using a random stream of symbols as 
input.   They were all trained at a single signal level of 
another stationary USRP transmitting from across the room 
at the GNU Radio tx-amplitude 3e5.  Therefore, this training 
occurred in a typical indoor noise environment with a 
roughly constant SNR of 30 dB.   
 When manually adjusting the transmit signal power on 
the transmitting USRP, we were able to retain our 
classification ability for a wide range of observed SNR 
values using our initial training.  However, when attempting 
to move the signal to another frequency or bandwidth, we 
ran into issues. Since the classification block relies on the 
center frequency and bandwidth of the signal to be 
normalized when it receives its conditioned input, the 
resolution to which we are tuning and decimating is not fine 
enough, and we can observe gaps where fine changes in this 
value result in movement of the signal within the 
classification observation space.  When making fine 
adjustments to the bandwidth or frequency from those at 
which it was trained, we can observe variable levels of 

misclassification. However, typically if we fall within the 
center of an FFT bin, and with a diatomic multiple of the 
trained signal bandwidth (which does not fall outside the 
minimum and maximum decimation constraints imposed by 
the USRP) we are able to successfully classify.  
Additionally, small variations in the automatic gain control 
which were not seen during training often lead to 
misclassification of signals.  
 The resolution used in calculating our SCD was limited 
by GNU Radio buffer constraints, and our AutoFAM output 
was limited to 17x129, which was sufficient for the 
successful classification described above.  However, the 
majority of the information used in making the classification 
decision is localized in a few common areas of the plot, 
where higher resolution would most likely contribute to our 
correct classification rate.  Figure 11 shows the similarity of 
a small interest region of the alpha-profile for the three 
modulation types. 
 

4. FUTURE WORK 
 
If this approach of performing classification on a completely 
normalized signal is to be effective and robust in the long 
term, several enhancements to this design are needed.  Due 
to the coarseness of the adjustments provided by the 
programmable gain amplifier and diatomic, integer-only 
decimation values allowed by the USRP front-end, either 
much more fine control of these is needed at the front end.  
Alternatively, another layer of software re-sampling and 
signal-level normalization is required to condition the signal 
for the classification pathway.   
 An alternative to this may be to train the ANN with the 
RF frontend in a variety of possible configurations. Much as 
was done in [2] to train against signals at varying power 
levels, we could train over the expected fine range of 
bandwidths one would see between two coarse decimation 
values.  This could be done for both signal amplitudes 
between two coarse programmable gain amplifier levels and 
for signal center frequencies between the center frequencies 
of two separate frequency bins.  In these cases, as well as the 
case of an increased output vector size due to more 
modulation classes, we will need to re-evaluate the structure 
of the MLPN to allow for more degrees of freedom. 
 Another possible area to look at is using the output of 
the MLPN to estimate a confidence estimate, which could be 
useful in determining if we are seeing one of the modulation 
classes we have trained against, or possibly something which 
we have never seen before. 
 Additionally, the issue of low resolution SCD output 
could be addressed in a number of ways.  One technique is 
to serialize transfer of data between blocks, or combining 
the data reduction of the alpha profile with the AutoFAM 
component.  Additional methods for increasing resolution in 
various areas of the SCD plot could increase our resolution 

Figure 11: Comparison of Alpha-Profiles of Three Modulations 
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and useful information upon which to base our 
classification. 
 

5. CONCLUSION 
 
In this paper we have taken a variety of signal detection and 
classification algorithms and implemented them within the 
GNU Radio architecture.  We looked at real-world 
implementation issues that arise from operating with a real 
RF receiver/digitizer system, such as the USRP.   
 Many of the simulations completed as a part of current 
implementations do not have to deal with the peculiarities of 
automatic gain controllers, coarse signal decimation, and 
center-frequency tuning.  We showed that a real-world 
implementation of these signal detection and classification 
algorithms, such as would be necessary for dynamic 
spectrum access radios, requires classification algorithms to 
either be robust to these variations, or first normalize signals 
prior to classification.  Next steps for our research include 
implementing this required normalization. 

 Overall, we have shown that generic signal detection 
and classification is achievable in GPP-based SDR systems, 
but may the processing power associated with higher-
performance GPPs, such as the IBM Cell Processor. 
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