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Abstract— One question commonly asked about software de-
fined radios is “How much memory do I need?”. While the an-
swer depends greatly on the software framework and underlying
operating system, this paper describes tools used to measure
memory usage on a Linux based system running the OSSIE
SCA framework. In addition to the conventional tools commonly
used to study memory usage, this paper introduces the exmap
and exmap-console tools for performing detailed memory usage
measurements. Results from these measurements help define how
much memory a radio requires by accurately measuring memory
usage. Accurate memory usage measurements allow the system
designer to reduce the number of memory chips in the final
hardware design, this leads to lower cost radios that require less
power to operate.

I. INTRODUCTION

A Software Defined Radio (SDR) is a radio whose function
is defined by software, not by the design of the underlying
hardware. SDR technology provides radio users with much
greater flexibility than is available from a traditional hardware
defined radio. When a new standard is developed, rather than
replacing the entire radio, only the software needs replacing.
When two groups of people, who normally use incompatible
standards must work together, their radios could be loaded
with software that allows them to communicate with each
other. Over the lifetime of a hardware design, new improved
radio standards can be installed on the radio without requiring
new hardware.

These characteristics of SDR provide cost savings by ex-
tending the life cycle of hardware and provide more capability
from a given set of hardware.

For small form factor radios such as hand held radios, or
sensor radios, SDR designs provide many benefits, however,
a SDR design will use more power to operate than traditional
fixed hardware solutions. This is due to the power consumption
of data converters and signal processing hardware. Close
attention must be paid to the SDR hardware in order to
meet battery lifetime requirements. Some factors that impact
power consumption are total memory requirements, system
clock rates, data converter sample rates. This paper focuses
on techniques to analyze system memory usage.

II. EMBEDDED SYSTEMS

An embedded system is a microcomputer system with
application specific hardware. Rather than the standard pe-
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ripherals found on a personal computer (PC), an embedded
system contains application specific peripherals. Many em-
bedded systems are designed for battery powered operation,
although some embedded systems, such as automobile engine
computers, building climate control computers, and security
system computers do not have low power requirements. On
the other hand, embedded systems such as personal digital
assistants, cell phones, and sensor network controllers, have
stringent battery life requirements.

A typical SDR embedded system contains familiar pe-
ripherals such as sound interfaces, network interfaces, LCD
panels and keypads. There are also specialized peripherals
that provide interfaces to the RF circuitry, such as tuners,
data converters, FPGA’s and DSP’s. A tuner converts RF
signals from the antenna to the frequency needed by the data
converter. Analog and/or digital tuning systems convert fixed,
or variable frequency ranges to frequencies usable by the
data converter’s. The data converters convert analog signals to
streams of digital numbers (or vice versa). These data streams
are digital representations of the analog signals. FPGA’s and
DSP’s perform high data rate signal processing on the data
streaming from the data converters. The typical embedded
system general purpose processor (GPP) cannot process data
at the data rates used by the data converters.

III. SOFTWARE COMMUNICATIONS ARCHITECTURE

The JTRS [1] [2] program is developing radio systems
using SDR technology for military applications. The JTRS
program seeks to develop a SDR capable of voice and data
operations to replace a large collection of legacy radios used
by the American military. Furthermore, the US military is
transforming the way it operates, part of this effort is the
development of the Global Information Grid (GIG). The GIG
seeks to network the individual war-fighter to the command
centers.

Part of this effort was the development of the software
communication architecture (SCA). The introduction to the
SCA specification [3] states that;

The SCA has been structured to:

1) provide for portability of applications software between
different SCA imp lementations,
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2) leverage commercial standards to reduce development
cost,

3) reduce software development time through the ability to
reuse design modules,

4) build on evolving commercial frameworks and architec-
tures.

In order to meet these goals, the SCA defined a component
based framework for implementing the functions required for
a SDR, defined an operating environment for the software,
and uses well defined standards for inter-component commu-
nication and configuration data storage. [4] provides a detailed
history of the origins and evolution of the SCA.

Component based development is a key feature of the SCA
architecture. Component based development has several basic
concepts: each portion of the software must use well defined
interfaces, components communicate with each other using
standard communication packages, and components are de-
veloped with a standard operating environment. This provides
a structure that allows easy re-use of components across differ-
ent radio platforms. UML (Unified Markup Language) [5] is
a standard graphical standard for describing component based
software systems.

The operating environment for the SCA is based on sev-
eral industry standards. The SCA specification describes the
operating environment in great detail. Summarizing the spec-
ifications: The operating environment defines a subset of the
POSIX interfaces for use by components, and the components
may use the interfaces defined by minimum CORBA, and the
IDL interfaces provided by the CORBA Naming Service and
the CORBA Event Service. For file 10, the SCA provides file
I/O services and requires the components use those interfaces,
not other file IO interfaces.

The SCA uses CORBA[6] for inter-component commu-
nication. CORBA is a middle-ware standard developed by
the Object Management Group (OMG). Numerous CORBA
implementations are available, both commercial and open
source. CORBA is used for communication services in a large
range of application, such as banking, control systems, and
many other applications requiring distributed computing in a
heterogeneous computing environment.

A. OSSIE

OSSIE [7] (Open Source SCA Implementation::Embedded)
was released by Virginia Tech in 2004. OSSIE is an open
source SDR software framework based on the SCA. OSSIE
originally used TAO for CORBA support and XERCES-C
for XML support, later versions use omniORB for CORBA
support and tinyXML for XML support. The first version of
OSSIE ran on windows, subsequent versions run on Linux.

OSSIE was originally to introduce communication engineer-
ing students to SDR design methods, and provide a framework
to support SDR research [8].

IV. MEMORY MANAGEMENT

The Memory Management Unit (MMU) controls a pro-
cesses access to physical memory. The MMU provides the
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Fig. 1. Virtual Memory Management

ability to allow multiple processes to use the same virtual
memory addresses, while providing isolation between the
processes. This simplifies software design since the program-
mer does not need to account for the details of memory
addressing. The MMU maps the virtual address to specific
physical memory addresses. Furthermore, the MMU allows
programs to share the same physical memory under certain
circumstances.

A an example of how a MMU works is shown in Figure 1.
This figure shows two processes (A and B) accessing the same
physical memory space via a MMU. The physical memory is
mapped into each processes by the MMU. Memory is mapped
into the virtual memory space in units called pages, a typical
page contains 4096 bytes of physical memory. The figure
shows examples of pages used only by a process and pages
shared between the two processes. The two processes each
have unique pages and shared pages. Here are some terms
used to describe MMU operation:

o Page - Smallest unit of memory the MMU can control.

o Anonymous mapping - Memory that does not have any
relation to a file. Typically read/write memory for a
process without any initialization.

o Dirty Page - A page that contains modifications.

o Copy on Write (COW) - A page may be shared between
two processes until one of them writes new data into the
page.

o Page fault - occurs when the processor attempts to access
virtual that does have corresponding physical memory.

e Swap - writing dirty pages to mass storage temporarily
to free physical memory for re-use.

V. MEASUREMENT TOOLS

Measuring physically memory usage in virtual memory
systems can be challenging. With conventional command line
tools, such as ps, top, pmap, and free, estimates of memory us-
age can be created. However, results obtained from these tools
do not fully account for the impact of memory shared between
processes. The exmap [9] tool provides detailed measurements
of process memory usage for desktop class systems. For
embedded systems, the exmap-console [10] extension provides
a small server to install on the embedded machine allowing
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total used free shared buffers cached
Mem: 29676 15300 14376 0 0 10368
-/+ buffers/cache: 4932 24744
Swap: 0 0 0

Fig. 2. Output from free command

memory usage data collection on the embedded system and
analysis on a desktop system.

The free command provides a system level view of memory
usage. This command shows the total memory available to the
system and with limited details of how the memory is used.

Figure 2 shows the output from the free command run on
an OMAP Starter Kit[11] (OSK) shortly after booting. This
board has 32 M bytes of RAM. At first glance the 15.3 M
bytes of memory used seems high for an embedded system
with only a few processes running, however the second line
shows that, after accounting for memory used for buffers and
caching, the system is using 4.9 M bytes. Also note that the
output of the free command shows the system does not have
any swap space available.

Buffer and cache pages are used to store copies of data from
mass storage devices in memory temporarily, in case the data
needs to be reused. This reduces access time to data stored
on mass storage devices at the expense of memory usage.
However, if applications need more memory, the memory used
by the cache is reclaimed for application use. This is why
the free command shows the overall memory usage, and the
memory usage adjusted by buffer/cache usage.

The ps and fop command show several measures of memory
usage on a per process basis. These are the amount of memory
in use (resident), the amount of virtual memory used (virtual),
the amount of memory used for code (code), the amount of
memory used for data (data) and the amount of memory that
could be shared with other processes (shared).

The pmap command breaks down virtual memory usage by
section. A section is a piece of memory that is initialized with
data read from a mass storage device, memory initialized to all
zeros, and uninitialized memory. Sections without correspond-
ing data on a mass storage device are known as anonymous
sections. pmap shows the access flags set by the MMU, a
section may be readable (r), writable (w) and/or executable
(x). Figure 3 shows results from running pmap on the process
that starts the Domain Manager and Device Manager classes
for OSSIE.

Pages that are not writable (r—, r-x) may be shared between
processes, since the data contained on the page can not be
changed. Read/write pages (rw-) may be shared, until one of
the process sharing the page writes to it, when a write occurs
the page is copied to a new page before the update occurs.
This is an example of COW.

Each of the commands free, ps, fop, and pmap provide
pieces of information needed to analyze system memory
usage. free provides a high level view of memory usage. ps
and fop provide per process usage. pmap provides details
of the internal process space memory map. However, these
commands provide a fragmented view of true memory usage.

684: nodeBooter
00008000 12K r-x /usr/bin/nodeBooter
00012000 4K rw—- /usr/bin/nodeBooter
00013000 376K rwx [ anon ]
4003a000 1768K r-x /usr/lib/libomniDynamic4.s0.0.7
401£4000 32K --- /usr/lib/libomniDynamic4.so0.0.7
401fc000 200K rw- /usr/lib/libomniDynamic4.so0.0.7
4022e000 4K rw-— [ anon ]
4022£000 16K r-x /usr/lib/libomnithread.so.3.2
40233000 32K --- /usr/lib/libomnithread.so.3.2
4023p000 4K rw— /usr/lib/libomnithread.so.3.2
4023c000 1340K r-x /usr/lib/libomniORB4.so0.0.7
4038b000 32K ——- /usr/lib/libomniORB4.s0.0.7
40393000 44K rw- /usr/lib/libomniORB4.so0.0.7
4039e000 4K rw-— [ anon ]
4039f000 788K r—-x /usr/lib/libossieidl.so0.0.0.4
40464000 32K —-—- /usr/lib/libossieidl.so0.0.0.4
4046c000 72K rw- /usr/lib/libossieidl.so.0.0.4
4047e000 276K r-x /usr/lib/libossieparser.so.0.0.4
404c3000 28K --- /usr/lib/libossieparser.so.0.0.4
404ca000 8K rw- /usr/lib/libossieparser.so.0.0.4
404cc000 396K r-x /usr/lib/libossiecf.so0.0.0.4
4052£000 28K —-—- /usr/lib/libossiecf.s0.0.0.4
40536000 60K rw- /usr/lib/libossiecf.so0.0.0.4
40545000 756K r-x /usr/lib/libstdc++.s0.6.0.8
40602000 28K —-—- /usr/lib/libstdc++.s0.6.0.8
40609000 8K r—- /usr/lib/libstdc++.s0.6.0.8
40600000 12K rw— /usr/lib/libstdc++.s0.6.0.8
4060e000 24K rw- [ anon ]
407ea000 8188K rwx-— [ anon ]
total 41408K

Fig. 3. Abbreviated results from pmap command

The amount of virtual memory a process uses does not reflect
actual memory usage. For example, when the omnithread
library (part of omniOrb) creates a thread, a stack section with
a size of 8188 K bytes is created. However, since only a few
hundred K bytes are actually used on the stack, most of that
memory is never mapped to physical memory.

The shared memory field available in ps and top shows
only the amount of memory that could be shared. There is no
information detailing if the memory is actually used by more
than one process, and if so, how many processes use it. It is
possible to create estimates of how much memory is shared by
examining the output from pmap to identify sections of code
that could be shared and counting the number of processes
that use these sections. This gives a count of the number of
processes that share the same libraries, however this does not
show the processes actually share specific pages.

With the standard tools available with operating system, sys-
tem memory usage can be examined in some detail. However,
results from these methods involve some “hand-waving” to
explain results obtained from these tools. A tool to accurately
examine process memory usage would help reduce the amount
of “hand-waving” involved in determining system memory
usage. Furthermore, accurate measurements of memory usage
help developers create systems that can operate with less
physical memory, this can lead to cost and power savings in
finished products.

A. Exmap and Exmap Console

Exmap is a tool that uses a Linux kernel module to access
the page tables from the MMU. Examining the page tables
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Process 1279 [nodeBooter]

Virtual memory 24840 KB
Effective VM 22285 KB
Heap 264 KB
vdso : 0 B
Mapped 5076 KB
Effective mapped: 2521 KB
Sole use : 936 KB

Fig. 4. Output from exmap command

provides a wealth of information about actual memory usage.
This information, combined with debugging information em-
bedded in executable provides a very detailed view of system
memory usage. exmap is designed for use on desktop class
machines and is not suitable for use on embedded systems.
exmap-console is an extension designed for limited resource
systems.

In addition to the kernel module for reading the page
tables, exmap-console contains three parts; the exmap pro-
gram, exmap-server, and exmapd. exmap is the user interface
program that reads data from the kernel module or a remote
machine. The user interface provides information about mem-
ory usage, the amount of detail is controlled by command
line options and the availability of the symbol table for the
binaries. The exmap-server is a very small program that runs
on the embedded system and allows the exmap user interface
to connect to the embedded system via a network connection.
This minimizes the system resources needed to monitor the
embedded system. Finally, exmapd runs exmap periodically
and logs results to disk. This allows monitoring of memory
usage over a period of time.

For this paper, summary data was collected for each process
using exmap via the exmap-server running on the embedded
system. Data was also collected using the free command for
comparison purposes. Only per process summary information
is discussed in this paper, consult the exmap documentation
for information on collecting detailed memory usage data.

Figure 4 shows the output from exmap for a specific process.
At the time this snapshot was taken, the nodebooter process
required 24.8 Mbytes of virtual memory. The effective virtual
memory is the virtual memory number modified to account
for actual shared memory. This effective memory calculation
is described later in this paper.

The mapped amount of memory is 5.1 Mbytes of RAM,
this is the actual amount of memory in use at this time by the
nodebooter. The effective mapped memory is 2.5 Mbytes of
memory. The sole use number is 936 kBytes of memory, this
is the amount of memory used only by this process.

Effective memory is the sum of the sole use memory and
the amount of shared memory mapped divided by the number
of processes sharing that memory. By summing the effective
mapped memory numbers for all process on a system, the total
amount of memory in use can be calculated. For this paper,
only the sum of the effective mapped memory for radio related
components is used in calculations, this introduces small errors
in the memory usage calculations due to memory shared with

Process Mapped  Effective Mapped  Sole Use
omniNames 2292 1847 1800
TABLE I

MEMORY STATE AFTER STARTING CORBA NAMING SERVICE

processes not directly related to the radio system.

VI. DATA RADIO SYSTEM SIMULATION WAVEFORM

In order to evaluate the embedded system resource usage,
a waveform was developed using the OSSIE framework. The
test system consists of the OSK and the waveform, the combi-
nation of the hardware and software provides a representative
example of a SDR for measuring the system memory usage.

The waveform developed for the embedded system is a sim-
ple simulation of digital modulation transmitter and receiver.
This is a simple waveform constructed from several. The com-
ponents used are; symbol generator, channel simulator, and
receiver. The operations in each of these components is greatly
simplified from the operations performed in an actual radio.
The waveform performs little signal processing, however, it
provides a good skeleton for measuring the resource usage by
the SCA portions of the system.

The waveform does three things; create packets of data
representing a QPSK signal, offsets the constellation by a
complex imaginary number, and prints the values of the
received symbols. While this is a very simple waveform, the
methods described in this paper can be applied to larger more
complex systems.

VII. MEMORY USAGE EASUREMENTS DURING WAVEFORM
START UP

Start up of a SCA waveform involves several distinct steps.
During the startup process, measurements of system memory
usage were made at easch step. This process provides insight
into the memory usage for a SCA based waveform running
on an operating system that supports shared memory. Mea-
surements of each processes memory usage were made at the
following points; CORBA naming service start up, nodeBooter
start up, c_wavLoader start up, waveform installation, and
waveform start up. By summing the effective mapped memory
data, the amount of memory used by the radio software is
calculated. Subtracting the sum of the sole use memory shows
the amount of memory shared by the radio processes.

Table I shows the memory used by the CORBA naming
service. Some sharing of memory already occurs due to the
presence of system wide libraries, such as the standard C and
C++ libraries. At this point, the radio software requires 1.8
M bytes of RAM. The 492 K bytes difference between the
mapped and sole use memory is memory shared with operating
system libraries, such as the C and C++ libraries. The memory
shared amongst other system libraries introduces small errors
into the calculation described above, since this memory is not
accounted for.

Starting the nodeBooter process create instances of the
Domain Manager and Device Manager SCA classes, and starts
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Process Mapped  Effective Mapped  Sole Use

omniNames 2612 1051 428

nodeBooter 5076 2521 936

GPP 4772 2285 760
TABLE I

MEMORY STATE AFTER STARTING NODEBOOTER

Process Mapped  Effective Mapped  Sole Use

omniNames 2612 901 404

nodeBooter 5160 2111 940

GPP 4832 1866 760

c_wavLoader 4668 1775 716
TABLE III

MEMORY STATE AFTER STARTING C_WAVLOADER

the GPP device that provides the executable device that runs
the waveform components. Table II shows memory usage by
the radio after starting the nodeBooter; at this point, the radio
software uses a total of 5.8 M bytes of memory. However, only
2.1 M bytes is used exclusively by the the radio software, the
remaining 3.7 M bytes is shared by the radio processes.

c.wavLoader provides the user interface to the radio.
c_wavloader calls the intrefaces provided by the Domain
Manager in order to obtain radio information and status. Now
the radio uses 2.8 M bytes plus 3.8 M bytes shared by the the
radio software for a total 6.6 M bytes of memory.

Next the test waveform is installed on the radio. Waveform
installation creates processes for each of the radio components
by using the interfaces provided by the GPP device. Table IV
shows memory usage after the waveform is installed. At this
point the radio processes are using a total of 9.2 M bytes of
memory, 5.4 M bytes are used exclusively by different radios
processes and they share 3.8 M bytes of memory.

Finally, when the waveform starts, the memory usage num-
bers show no change. Table V contains these results. This
is due to the waveform signal processing being very small
compared with the framework code required to create the
waveform. In a real waveform, we would expect memory
usage to increase as the actual radio code started execution.

Table VI presents a summary of system memory usage
during the start up process for the SCA waveform described in
this paper. This table summarizes the results described above
and adds a final column with an estimate of memory usage

Process Mapped  Effective Mapped  Sole Use
omniNames 2692 758 488
nodeBooter 5372 1638 1036
GPP 4964 1288 712
c_wavLoader 4824 1305 776
TxDemo 5304 1441 792
ChannelDemo 5296 1438 792
RxDemo 5256 1421 784
TABLE IV

MEMORY STATE AFTER INSTALLING THE WAVEFORM

Process Mapped  Effective Mapped  Sole Use
omniNames 2692 758 488
nodeBooter 5372 1638 1036
GPP 4964 1288 712
c_wavLoader 4824 1305 776
TxDemo 5304 1441 792
ChannelDemo 5296 1438 792
RxDemo 5256 1421 784
TABLE V

MEMORY STATE AFTER STARTING THE WAVEFORM

Step Sole use total ~ Shared total ~ Total  From free
Naming service 1.8 .047 1.8 1.8
NodeBooter 2.1 3.7 5.8 4.3
c_wavLoader 2.8 3.8 6.6 6.2
waveform install 5.4 3.8 9.2 10.1
waveform start 5.4 3.8 9.2 10.5

TABLE VI
MEMORY USAGE DURING WAVEFORM START UP

based of results from running the free command at the points
during the start up process as the exmap commands. These
show that the numbers from free roughly follow the results
from free, but the exmap results provide more details about
the overall memory usage.

VIII. SUMMARY

This paper describes tools and methods used to measure
system memory usage for a SCA based waveform running
on a Linux based embedded computer. The basic memory
usage tools (free, top, ps, and pmap provided with most Linux
systems were reviewed. The exmap and exmap-console tools
for performing detailed memory usage analysis for Linux
based system provide several advantages over the traditional
tools. Measurements of a simple SCA based waveform running
on an OSK were collected and summary results from these
measurements were compared with measurements made with
the free command.
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