
VALIDATION AND VERIFICATION OF MODULAR SOFTWARE FOR
SOFTWARE-DEFINED RADIOS

Carlos R. Aguayo Gonzalez (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; caguayog@vt.edu); and
Jeffrey H. Reed (MPRG, Wireless@Virginia Tech, Blacksburg,VA, USA; reedjh@vt.edu).

ABSTRACT

The future of wireless technology relies on the flexibility
provided by Software-Defined Radio (SDR). This technology
enables the development of exciting new applications and
promises drastic reductions in development costs. However,
there are many challenges that must be overcome before
the full potential of SDR can be reached. In particular, the
appropriate validation and verification techniques are needed
to ensure the quality of SDR systems and their software
components.

This paper presents a framework for the validation and
verification of modular software for SDR. It includes de-
velopment and management techniques, tools, and metrics
that facilitate quality assurance in SDR modules and systems.
This approach enables agile development techniques, facili-
tating unit and integration testing strategies. We describe the
features that make modular and SDR software testing unique
and suggest techniques to address them, along with the tools
and infrastructure required. Elements of this framework are
applied to the SCA-based CIREN system being developed
at Virginia Tech as part of the Smart Radio Challenge. The
general principles, however, are applicable to any component-
based architecture.

1. INTRODUCTION

In many aspects, software-defined radio (SDR) is shaping the
future of wireless technologies. It provides a flexible platform
that can support a myriad of new applications. It also delivers
multiple benefits for equipment manufacturers by improving
intellectual property reuse and technology insertion. As a
result, more applications can be brought to market faster.
Unfortunately, as communication systems get more complex,
so is the software required to implement them. Developers are
required to split the functionality into independent modules
that can be assembled together. Developing stand alone soft-
ware components allows not only the partitioning of complex
systems into pieces of manageable complexity, but also the
dispersed development of the different pieces. In order to
deliver all the advantages of SDR, it is necessary to develop
software components that are correct, robust, maintainable,
and reusable. In other words, the software needs to be of
high quality and developed with these principles in mind.

Developing quality software requires continuous validation
and verification activities as part of a software quality assur-
ance process. Verification is performed during development
with the intent of steering the process so that the product
and intermediate artifacts meet specifications. Verification
answers the question: Are we building the product right?

Validation is applied at the end of the development process.
It checks the correspondence of the final product to user
expectations. In other words, validation answers the question:
Did we build the right product? [1].

Validation and verification activities take different forms,
ranging from informal peer reviews to mathematical proof
of correctness using formal methods, with testing being one
of the most widely used. Testing is a process of technical
investigation that increases the level of confidence that the
product will behave according to the expectations. Unfortu-
nately, testing cannot guarantee correctness for any system
of meaningful complexity. Due to the size of the state space
in software systems, it is virtually impossible to perform
exhaustive testing on a system of practical complexity.

Testing can consume a large portion of development re-
sources. It is estimated that about 50 percent of the total
cost and development time of software projects is spent
testing [2]. For large, critical systems this percentage isbound
to be significantly higher. The earlier the testing process
begins, the sooner problems and failures are detected, avoid-
ing expensive consequences further into the development
process.

For this reason, it is necessary to provide the tools and
methodologies required to perform efficient testing of mod-
ular software for SDR. This paper presents a framework for
the validation and verification of software components for
SDR. We describe the features that make modular and SDR
software testing unique and suggest techniques to address
them, along with the tools and infrastructure required.

2. CHALLENGES IN MODULAR SOFTWARE
TESTING

It is argued that the quality of software components increases
with frequent reuse by revealing faults and errors through
repeated use cycles, making further validation and verifica-
tion activities irrelevant. The assumption of a competitive
market, where only quality software prevails, further supports
the argument [3].

However, this is not always correct. While a component
may fulfill the needs of a particular user within a specific
context, it may be unsuitable or unreliable for a different
user with other needs in a different context. Therefore, it is
still necessary to perform validation and verification activities
regardless of the component’s use in other projects.

Software components are usually specified and imple-
mented with a specific application context in mind. Although
they may be developed as reusable, general components,
developers might make assumptions about certain aspects

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



of the application context, resulting in a context-dependent
component. Similarly, assumptions are often made when
designing test cases for them. The context for which com-
ponents are developed and tested may not be the actual
context under which they are used. This is more evident when
components are reused across platforms and projects. This
uncertainty makes it necessary to test components under the
specific operational conditions where they will be deployed,
despite their correct operation in other contexts. Needless to
say, all modular components that are expected to be reused
are required to be packaged with its unit tests.

When assembling applications completely or partially with
reusable components, integration testing is a critical part
in assuring the quality of the system. It checks module
compatibility and can be seen as a procedural continuation
to unit testing and builds from it. A fault detected during
integration testing can be seen as a gap in unit testing or as
incomplete or ambiguous specifications. Integration testing
is crucial to detect certain faults that are not likely to be
identified during unit testing such as:

• Inconsistent interpretation of the specifications.This
may occur when each interpretation is reasonable but
inconsistent (centimeters vs inches).

• Violations of domains or capacities.This can hap-
pen when some modules have implicit assumptions on
ranges and capacities (e.g. buffer overflows).

• Side effects on parameters or resources.Can occur
when a module uses a resource that is not explicitly
mentioned in its interface. This usage may collide with
another modules.

• Missing or misunderstood functionality
• Non-functional problems. Performance requirements

can have a great impact when integrating SDR systems.
• Dynamic mismatches.This is specially important in

frameworks that allow dynamic binding of modules.

3. CHALLENGES IN SDR SOFTWARE TESTING

There are many aspects of SDR that make their validation
and verification a challenge. Not only do they present all
the difficulties that radio and software development indepen-
dently have, but also new complications due to the extreme
flexibility. Furthermore, a fault in the analog RF or digital
conversion modules, can trigger a sequence of events result-
ing on a failure on seemingly correct but unrobust software.

The real-time applications that SDR support impose severe
performance requirements on the devices and software that
implement them. Unfortunately, this is an area where perfor-
mance improvements due to Moore’s law are not going to
help because the data rates of communication systems are
increasing at least as fast as processing power. Therefore,
the validation of performance requirements, either explicit or
implicit, presents an important and challenging area in SDR
development.

In order to deliver the required processing power, SDR
platforms are often heterogeneous, combining general pur-
pose processors(GPP), digital signal processors (DSP), and

field-programmable gate arrays (FPGA) adding further failure
points in their interfaces and control structures that needto
be validated.

SDR platforms are usually very constrained in terms
of memory, power, size, and weight, requiring optimized
code which complicates the validation efforts of software
modules. Although development of SDR modules is done
in resourceful platforms, with plenty of memory and power
to run simulations and code with debug symbols that make
debugging easier, the final versions are optimized and striped
from debug symbols. Optimized code can be very difficult
to debug and validate. There are some common optimiza-
tion techniques than can be implemented without platform-
specific features, although this is sometime unavoidable when
trying to achieve maximum performance. This creates a
challenge when developing and managing modular software
that is intended be reused.

As mentioned before, it is impossible to anticipate all
scenarios that a software module will experience during its
operational life. While developers do a great job at designing
test cases for the initial use case, they are usually not
sufficient or adequate for future use cases. Furthermore, SDR
are expected to support multiple applications simultaneously
adding extra uncertainty in terms of executional environment.
A rule of thumb is that reusable software takes at least twice
as long to develop than target specific code [4]. It may take
longer to develop SDR modules that include some degree
of optimization and are expected to operate in different
platforms with constrained resources.

Adding to the validation and verification challenges, the
communication standards keep evolving, adding more com-
plexity and increasing the pressure to get devices to market
faster. For this reason, SDR developers often have to deal
with incomplete and changing specifications, which increases
the risk of some faults getting through the testing process and
affect the final product. Furthermore, test vector generation
may be difficult for SDR. Test scenarios can get quite
complex; for example, in order to test the receiver path of a
radio, it may be necessary to create a flexible transmitter that
provides enough control over the transmitted signal to inject
faults and generate specific scenarios. This may become a
really challenging task in some cases.

4. A FRAMEWORK FOR SDR TESTING

The software industry is utilizing agile development tech-
niques to improve resource utilization and reduce the risks
related to incomplete and changing requirements. These agile
techniques have their foundation on test driven development,
early and continuous delivery of software, and preparedness
for requirement changes, among other principles [5]. How-
ever, they have not found widespread acceptance within the
SDR community. This is mostly because of the need to
optimize code for deployment on embedded platforms and
the traditional tendency to follow the waterfall development
process, with well defined specifications.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



It is possible to follow agile development techniques in
SDR if the correct tools are available. One of the most
important tools required is an automatic test framework that
supports software developers and increases the chances of
success in the adoption of agile techniques. Based on the ma-
terial covered in previous sections, and previous development
experience, we identified the requirements for an automatic
SDR test framework:

• Unified unit, integration, and system testing
• Standardized test case description
• Automatic execution of test cases
• Automatic oracle and reference implementations
• Automatic test result and coverage report capabilities
• Support for correctness, performance, and characteriza-

tion tests
• Support for generation of test vectors
• Profiling support
• Interface with test equipment
• Debug support

There are numerous unit test frameworks for different
languages and with different philosophies such as JUnit [6],
CppUnit [7], CUT [8], Check [9], and cxxTest [10]. This
last one is currently used in the Open-Source SCA Imple-
mentation::Embedded (OSSIE) [11] project to define and
execute unit tests for signal processing components. There
are also tools developed to verify compliance of systems and
modules with specific architectures and specifications such
as JTAP and WTT [12] for the Software Communications
Architecture (SCA) [13].

However, it is desirable to have a single toolset to support
validation and verification activities at all levels, from unit to
system testing, to ensure consistency and a reduction in the
learning curve, while spreading the maintenance/development
costs across the duration of the project(s). In order to achieve
this universality, it is necessary to define a unified way
of describing test cases. XML descriptors are a favorite
because of its platform independence and wide availabilityof
support tools. XML is also the language of choice for other
descriptors in open, popular architectures such as the SCA.
This description of test cases must include:

1) Operational parameters
2) Executables
3) Inputs
4) Comparison type
5) Expected outputs
6) Reference implementation if available

We know that test vector generation can be quite complex
in SDR. Fortunately, SDR developers are often familiar with
simulation software such as MATLAB. This software is
widely used by the SDR community to simulate communica-
tion systems and to perform algorithm analysis before the ac-
tual software implementation is developed. These MATLAB
simulations can be used for testing purposes in two different
ways: one is to generate the test vectors required to exercise
specific aspects of the implementation and as a reference

implementation required by a comparison test oracle. This
approach has been followed to test some signal processing
components of the Cognitively Intrepid Radio Emergency
Network (CIREN), an ongoing development effort at Virginia
Tech as part of the Smart Radio Challenge to develop an agile
sommunication system that automatically establishes data
links in the licensed family radio service (FRS) [14] band to
support first response teams following major disasters, while
avoiding primary users and interference.

The general operation of a comparison oracle is shown
in Fig. 1 where the goal is to find an input combination
that yields different outputs from both modules, setting the
output of the XOR to “true” indicating an implementation
error. Note that the reference implementation does not have
to be more reliable than the module under test, as long as
they are developed independently so it is easy to identify the
one that is in error in case of discrepancies. In order for this
to be practical, it is necessary to handle the type conversions
(e.g. double-precision floating point to unsigned integers) and
automatically interface MATLAB-generated vectors with the
target platforms.

Fig. 1. General comparison oracle

It is not always straight forward to apply the pass/fail
criteria for SDR modules. Many have a range in which their
operation may be inconsistent but still considered correct.
For example, the performance of a synchronization module,
phase-locked loop, may have slight variations in its perfor-
mance, depending on the noise applied to the input, and still
be operating correctly. Because SDR modules often display
this kind of behavior, it is necessary to provide support
for performance and characterization tests that execute and
analyze the results of hundreds or thousands of similar test
cases and provide a measure for the correctness of the system.

One of the most important features in a test framework is
the automatic execution of test cases. While the identification
of test cases is a highly intellectual task which requires
creativity, experience, and lateral thinking, the execution
has to be as mechanical and automatical as possible. The
less error-prone manual interaction is required to execute
a set of test cases, the more likely the test cases will be
executed as often as they are required. This is especially
true for development efforts where part of the specifications
are changing and constant regression testing is required.
Furthermore, automated test execution is one of the critical
requirements of agile software development, which relies on
test-driven development. To automatically execute test cases,
a generic way of instantiating the test cases (drivers) and an
automated way of applying the pass/fail criteria (oracles)are

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



necessary. We already talked about some of the requirements
for automatic oracles and how we can use MATLAB for this.
Test drivers provide the means to invoke the software under
test with the appropriate execution environment. This may
be simple, as in the case of stand-alone components such as
SCA resources, where it is only necessary to instantiate the
component and feed the inputs. On the other hand, there may
be other component models on which significant scaffolding
is required to instantiate the modules, drive the tests, and
collect the results.

After the tests have been executed and the results deter-
mined, it is necessary to develop a report. Appropriate test
reports can greatly simplify the selection and re-execution
of failed test cases. There are other requirements in terms
of reporting capabilities that need to be considered, one of
the most important ones being test coverage. The metrics
vary from project to project and can include lines of code
executed, execution paths, loops, or multiple condition cov-
erage [15]. Having a metric for the test effort is necessary
in the software development process to establish test and
development stages and better estimate the overall develop-
ment effort. There are many tools and integrated development
environments that provide code coverage mechanisms Texas
Instruments’ Code Composer Studio [16] and Microsoft’s Vi-
sual Studio [17]. Unfortunately, these tools are not integrated
into test frameworks and the collection of reports may be
cumbersome.

Because of the stringent performance requirements and the
constrained resources on platforms, it is necessary to provide
profiling support in the test framework for both performance
and memory footprint. While a specific count of clock cycles
spent in a specific module is ideal, sometimes there is not
such support for the target platform and developers have to
settle for indirect metrics of performance such as percentage
of execution time. Having profiling support is critical for
efficient optimization of SDR software modules and applica-
tions. There are plenty of tools that help developers with code
profiling, CCS [16] and oProfile [18] are good examples, but
unfortunately they are not integrated into a test framework
and they have to be executed separately. The same applies
for memory profiling tools such as EXMAP [19].

While all the features described thus far facilitate the
validation and verification tasks, there is another important
feature that comes into play after the tests have revealed
errors in the software: debugging support. Developers need
to execute the test cases in a controlled environment with
enough observability so they can trace the faults. While there
are many debug environments that allow the step-by-step ex-
ecution of programs, they are, again, not integrated into a test
bed and their operation usually require a context switch from
command line to graphical user interfaces, requiring much
manual interaction and slowing the overall process. For more
advanced component models, such as the SCA, it may be
difficult to provide debugging support due to the distributed
processing capabilities inherent to the architecture. In this
case, other approaches shall be followed to provide insight

into the system’s operation.
Because we are ultimately dealing with the validation and

verification of radio devices, interfacing with test and mea-
surement equipment is required. With the tight integration
between the analog RF modules and the digital domain, it is
necessary to validate the effects of the software logic on radio
emissions as well as the characterization of radio modems.
To this end, controlled radio environments and spectrum
analysis tools are required. Seamless integration betweentest
equipment and the rest of the test framework is desirable and
there are already examples of succesful attempts [20].

5. CONCLUSIONS

The specific features of the component model and devel-
opment methodologies used in a SDR implementation will
ultimately dictate the final requirements for a test framework.
The scope of the project, the sensitivity and criticality ofthe
application, and the resources available will ultimately define
the sophistication of the test framework required. Critical
applications, and markets where development agility is re-
quired, will justify greater investments in test infrastructure.

The more users share a component model and a stan-
dardized way to describe test cases, the easier and cheaper
it will be to develop test tools that support the validation
and verification tasks. At Wireless@Virgina Tech, as part of
OSSIE and CIREN projects, we have taken significant steps
towards the implementation of an integrated toolset for agile
testing of SCA software components and waveforms. Our
approach relies on cxxTest for unit test and custom tools to
perform debugging and integration testing. Separate efforts
have been done to integrate test equipment and to profile
applications and framework modules. Further development is
required to refine and complete the tools with the remaining
features described in this paper.

So far there is no integrated, comprehensive test framework
openly available that includes the aforementioned features.
There are important efforts and developments in individual
aspects such as unit test frameworks and profiling tools,
including the work of groups such as the IEEE 1900.3
that is recommending practices for conformance evaluation
of SDR software modules. The difficulty and importance
of thorough testing in complex systems, such as SDR, is
well understood by the software community. The availability
of appropriate test frameworks and tools will ultimately
accelerate development, thereby increasing the confidenceon
SDR technology.

ACKNOWLEGMENTS

This work was supported by Texas Instruments, NSF, and the
Wireless@Virginia Tech Partners

References

[1] S. R. Rakitin,Software Verification and Validation for Practitioners
and Managers, 2nd ed. Artech House, 2001.

[2] G. J. Myers,The art of software testing (Revised and Updated). John
Wiley & Sons, 2004.

[3] Beydeda, S. and Gruhn, V. (Eds.),Testing Commercial-off-the-Shelf
Components and Systems. Springer, 2005.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



[4] M. Pezze and M. Young,Software Testing and Analysis: Process,
Principles, and Techniques, 1st ed. Wiley, 2007.

[5] R. C. Martin, Agile Sofytware Development: Principles, Patterns, and
Practices, 1st ed. Prentice Hall, 2003.

[6] “JUnit Testing Framework,” Available at: http://www.junit.org/.
[7] “cppUnit Website,” Available at: http://cppunit.sourceforge.net/cppunit-

wiki.
[8] “C Unit Test System,” Available at: http://sourceforge.net/projects/cut/.
[9] “Check: A unit testing framework for C,” Available at:

http://check.sourceforge.net/.
[10] “cxxTest Website,” Available at: http://sourceforge.net/projects/cxxtest.
[11] “Open-Source SCA Implementation::Embedded,” Availableat:

http://ossie.mprg.org.
[12] “JTAP: Software-Defined Radio Certification Suite,” Available at:

https://jtel.spawar.navy.mil/products.asp.

[13] S. C. A. S. V2.2,http://jtrs.army.mil.
[14] “Family Radio Service,” Available at: http://wireless.fcc.gov.
[15] P. C. Jorgensen,Software Testing: A Craftsman’s Approach, 2nd ed.

CRC Press, 2002.
[16] “Code Composer Studio IDE,” Available at: http://www.ti.com/.
[17] “Microsoft Visual Studio,” Available at: http://msdn.microsoft.com/.
[18] “OProfile - A System Profiler for Linux,” Available at:

http://oprofile.sourceforge.net/news/.
[19] “EXMAP Website,” Available at: http://www.berthels.co.uk/exmap/.
[20] “Software Defined Radio: An Integrated Test Method for

Designing Software Communications Architecture (SCA)
Compliant Radios (Application Note),” Available at:
http://www.tek.com/Measurement/AppNotes/
37 18369/eng/37W183690.pdf.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved


	Home
	Search by Session
	Search by Author



