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ABSTRACT

This paper described a new reconfigurable architecture that 
lends itself to parallelizable tasks, such as Software-Defined 
Radio, while providing a new level of reliability for systems 
built  with  this  architecture.  A  new  computing  paradigm 
called  Elemental  Computing  efficiently  combines  four 
computational  styles:  sequential,  data-flow,  message-
passing,  and  DMA in  a  rapidly-reconfigurable distributed 
system on  a  chip.  We call  this  an  Elemental  Computing 
Array (ECA). Elemental code can be placed and routed in 
real time to work around defects on a device. This extends 
the useful lifetime of applications using this device, allowing 
graceful  degradation  of  the system instead  of  catastrophic 
failure.

1. INTRODUCTION

The omnipresent goals in building electronic systems are to 
meet the design goals of Power, Performance, and Price. By 
concentrating  on  Reconfiguration  and  Resilience  we 
produced  an  architecture  that  also  satisfies  these  power, 
performance, and price goals.

Reconfiguration  is  defined as  The  ability  of  a  
system to easily and quickly change its functionality.

Resilience is defined as The ability of a system, in  
the presence of long-term aging, to continue to operate with  
minimal  disruption,  provided   sufficient  computing  
resources  exist,  and  to  degrade  gracefully  while  warning  
the user as resources become insufficient.

One  of  Element  CXI's  requirements  is  an 
architecture  that  is  tolerant  of  silicon  defects.  Defects  in 
electronic hardware typically follow a “bathtub curve”. This 
curve plots defect rate vs. time. Defects are most prominent 
at the infancy of a device and at the end of the life of a chip. 
Defects during the “infancy” period are attributed to process, 
handling, or installation defects[1]. Most of these defects are 
caught early in a chip's lifetime with the remaining devices 
working for many years. However,  a  fact that  is  not  well 
known,  is  that  silicon  devices  do  not  last  forever.  Many 
factors contribute to a finite lifetime for silicon chip, such as 
dielectric breakdown of the gate oxide, hot carrier damage, 
and electro-migration[2].  Building devices that are tolerant 
of  failures  in  the  field  meant  re  thinking  how  a 
reconfigurable  architecture  is  tested,  programmed,  and 
monitored throughout a device's lifetime.

1. A TASK-BASED ARCHITECTURE

The Element CXI architecture is a multi-tasking architecture 
that  allows  tasks  to  be  built  from sequential  and  parallel 
building  blocks.  The  Elemental  building  blocks  are  non-
homogeneous,  highly pipelined  and  able to  process  many 
waves  of  data  simultaneously.  Tasks  are  built  from these 
blocks. Tasks can be loaded onto the chip while other tasks 
are running, even in the same region of the chip as a running 
task. A task may have exclusive use of an Element or time-
share an Element with other tasks, depending on throughput 
requirements. A portion of a task requiring high throughput 
might  require exclusive use of  an  Element.  Portions  with 
lower  throughput  requirements  can  timeshare  Elements. 
Tasks  can  be  distributed  across  computing  Elements  for 
maximum speed and parallelism or “folded” onto a smaller 
number  of  Elements,  thus  time-sharing  the  Element  with 
other portions of the same, or other tasks.

1.1 Hardware O/S

A multi-tasking chip needs an operating system to manage 
the tasks. The ECA includes hardware support for system-
level functions:

 Task Loading, including rapid location of available 
(and working) computing and routing resources

 Task  Binding,  rapid  configuration  of  selected 
computing and routing resources

 Interface Binding: binding the inputs and outputs of 
one task to other tasks

 Task Run-Time Control: start, halt, suspend, single-
step and free a task.
These  steps  are  done  by  distributed  hardware 

resources  that  perform  multiple  local  searches 
simultaneously. This enables the Hardware O/S (HWOS) to 
be distributed across the ECA, improving performance and 
resiliency  by  removing  the  HWOS  as  a  single-point-of-
failure.

Providing hardware support for task binding means 
that place and route can be done as a task is loaded into the 
device. Components of a task are bound to computational 
and  interconnect  resources in  real-time. Run-time Binding 
takes into account  which  resources are broken and  which 
ones are already in use, so that only free, working resources 
are allocated to new tasks. This is in contradiction to devices 
where the portions of a task to be loaded into a device must 
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be carefully “placed” and “routed” in anticipation of fitting 
together snugly on the device. In the ECA, the Elemental 
code is easily relocatable.

1.2 Multi-Tasking

The Elemental device is a fine-grained, multi-tasking device. 
The  device  has  a  task  space  of  up  to  1,024  tasks  per 
“cluster”.  A  task  may  be  as  small  as  a  single  Element 
instruction or may occupy an entire Cluster of 16 Elements. 
Tasks may be made up  of  parallel,  data-flow, instructions 
and sequential  code. Data-flow instructions are mapped to 
data-flow  elements,  which  are  high-speed,  self-timed, 
pipelined  execution  units  that  have  streaming inputs  and 
streaming outputs. Sequential code is mapped to sequential 
elements,  which  are specialized  RISC processors.  Data  is 
brought onto and off of the chip via PCI-e.

Tasks can communicate in one of two ways. One 
way is through a shared memory. The Memory Unit Element 
transfers  blocks  efficiently  and  notifies  any  downstream 
tasks of the completion so that  these tasks won't use data 
before it is valid.

The other way for tasks to communicate is through 
the streaming interfaces. When a task has a streaming input, 
it  receives  streams of  data.  Tasks  can  be  programmed to 
“listen” to the output of another task  making the broadcast 
of data efficient.

Another  important  feature  for  run-time 
reconfigurable  systems  is  Run-Time  Rebinding.  In 
Illustration  1.1,  we  have  two  tasks  that  are  connected  in 
sequence.  At  some  point,  the  Main  task  determines that 
subtask  PL1  is  no  longer  needed  and  that  subtask  PL2 
should  be  used  instead.  The  main  task  then  does  the 
following:

1. Suspend the streams that connect the Main task to 
Task  PL1.  All  processing  inside  the  main  task 
continues  running,  except  for  the transmission  of 
data to Task PL1. 

2. Free Task  PL1.  This  halts  the  task  and  frees  its 
resources. 

3. Load  Task PL2 directing it  to  listen to the main 
task's output stream. 

4. Redirect the main task's  TALU to listen to PL2's 
output stream. 

5. Run Task PL2. 
6. Restart the Main Task's output stream. 

These steps are performed very quickly. PL1 and PL2 do not 
have to occupy the same resources.  If sufficient resources 
exist on the device for all three tasks, then steps 2 and 3 are 
omitted.

2. ELEMENTAL COMPUTING

Elemental  Computing  is  a  parallel,  distributed,  data-flow 
paradigm. The execution units are 16- and 32-bit operators. 
All of the Elements are self-timed, so no timing closure is 
required. Data transfers in every stage in a task are controlled 
automatically by a handshaking protocol that is hidden from 
the user. Their only concern is the levels of latency between 
Elements.  Elements  are connected  to  other  Elements  in  a 
pipelined fashion. Elemental interconnect is word-based, and 
includes  a  broadcast  capability  so  a  single  Element  can 
transmit to multiple destination Elements.

Elements contain up to eight dataflow instructions, 
called contexts. These contexts are not executed sequentially 
as in a traditional processor. Instead, they are executed when 
the data arrives at the appropriate instruction.  Each of the 
instructions in an Element can be allocated to only a single 
task for the lifetime of that task. Instructions from the same 
or  different  tasks  can  occupy  other  contexts  of  the  same 
Element.

One  of  the  keys  to  high-speed  execution  and 
resiliency is keeping data close to the execution units. This 
allows multiple data to be fetched simultaneously, instead of 
sequentially as from a central memory. Distributed memories 
have the added intentional implication of being fault tolerant. 

2.1 Elements

Elements  are  non-homogeneous  data-flow  computational 
engines.  All  Elements  have  the  same form,  but  different 
capabilities.  This  allows  us  to  provide  efficient 
implementations of each of the Element type, without having 
to provide all  the capabilities of  all  the Elements in  each 
computing node. There are currently seven Element types as 
shown in Table 1.

Table 1: Element Types

BREO Bit Reorderer SALU Super ALU

BSHF Barrel Shifter TALU Triple ALU

MEMU Memory Unit

MULT Multiplier
SME State Machine Engine

Each Element Type has four 16-bit inputs and two 
16-bit outputs, as shown in Illustration 2.1.  Some Elements 
have the capability of ganging a pair of inputs or outputs 

Illustration 1.1.: Subtask Reconfiguration
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together to perform 32-bit functions. Each input and output 
of  an  Element  is  queued,  isolating  the  Element  from the 
interconnect delays and bounding the maximum clock delay. 
Every Element executes an operation in one clock cycle. 

Illustration  2.1 also  shows  the  Judge  that  is 
necessary  for  the  data  flow  operation  of  the  Element.  A 
Judge monitors the input and output queues of its Element. 
Other Elements supply this Element's input queues with data 
operate asyncronous to this Element. A Judge ensures that its 
Element will not operate unless there is a valid word in each 
of the input queues and room to store the result in an output 
queue.  Thus,  when  the  Element  begins  execution,  it  is 
guaranteed to read valid data and have a place to store the 
results, all in one clock cycle. 

All (but one of) the Elements have four inputs and 
two outputs. The Elements are highly configurable, and may 
be reconfigured on a clock-by-clock basis, as we will discuss 
below.  Some of  these configurations  may not  need  all  of 
their inputs to perform a calculation. Such a configuration is 
shown in Illustration 2.2. Inputs I0 and I1 and output  O0 
are used  by the configuration,  while  the other inputs  and 
output  are not  used.  To  avoid  having to  wait  for  unused 
inputs and outputs, we mark the inputs and outputs that are 
used  in  a  calculation  as  Significant.  Unused inputs  and 
outputs are termed insignificant. The Judge does not check 
insignificant inputs or outputs.  In Illustration 3.2,  I0,  I1, 
and O0 are significant. I1 contains one valid value, and O0 
contains  two.  Therefore  the  Judge  will  not  execute  this 
configuration for two reasons: (a) it does not have data in the 
significant input I0, and (b) its output O0 is full.

The Element, as described so far, can suffer from 
being idle while waiting for inputs to arrive. To circumvent 

this, the execution portion of the Element is shared across 
multiple  contexts.  Each  context  contains  a  configuration, 
which defines the function that the Element will perform, the 
four  input  queues and  two  output  queues,  and  their 
configuration data. This is shown in Illustration 2.3. In each 
clock cycle, the Judge examines the significant inputs and 
outputs for each context, looking for the Execution Criteria:

a) Every significant input must have at least one data  
value, and

b) Every  significant  output  must  have  at  least  one  
empty location in its queue.

 After a context has executed:
a) The results are stored in the output queue for that  

context.
b) The inputs are consumed, removing them from the  

input queues for that context.
Because every Element has its own Judge it can be 

operating,  independently, on every clock cycle, on its own 
local data. (The SME and MEMU operate a little differently, 
as will be described in a later section.)

An  Input  Queue  may  be  written  to  while  the 
Element is reading data. Similarly, an Output Queue may be 
written to while it is transmitting data. It is natural for an 
Element to context  switch on every cycle, and, at the same 
time, collect data to be operated upon in future cycles.

2.2 Hierarchy

Elements  are  organized  hierarchically.  Four  elements  are 
grouped into a Zone. Elements in a Zone are tightly bound, 
communicating within a single clock cycle. Four Zones are 
grouped  into  a  Cluster.  All  of  the  Zones  in  a  Cluster 
communicate with each other through a number of special 
queues,  called Through Queues.  All Clusters are identical. 
The Cluster is the unit of replication on the die.

Up  to sixteen Clusters are grouped into  a  Super-
Cluster.  Clusters  within  a Super-Cluster can  communicate 
resiliently  through  a  hierarchical  bus  structure,  or  more 
expediently and less resiliently through local interconnect.

Up  to  sixteen  Super-Clusters  are  grouped  into  a 
Matrix. Super-Clusters within a Matrix communicate exactly 

Illustration 2.3.: An Element with Eight Contexts

Illustration 2.1.: Element Interfaces

Illustration 2.2.: Element with Insignificant Inputs & 
Outputs
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as  Clusters  and  this  method  of  interconnecting  levels  of 
hierarchy  extends  indefinitely.  ECA  devices communicate 
via  PCI-e in  the same hierarchical  fashion,  extending  the 
hierarchy to the board level.

2.3 Element Types

An  Elemental  Computing  Array  contains  seven  Element 
types designed with  digital  signal processing in mind, but 
these are not your father's traditional DSP.

2.4 SME – State Machine Engine

Each Cluster contains a SME. The SME is a custom RISC 
processor. The SME has a small instruction set that can be 
augmented by Elements in its Cluster. The SME is used to:

 Execute sequential code. This is useful for blocks 
of  code  that  either  do  not  lend  themselves  to 
parallelism or are executed infrequently.

 Process Interrupts from the Cluster's Elements and 
the Message Manager.

 Extend Elemental Instructions by emulating a data 
flow Element. 

 Extend  the  SME's  instructions  by  using the data 
flow Elements to make arbitrary instructions. 

 Bind new tasks to resources and connecting tasks to 
other tasks.

 To manage tasks by starting, suspending, halting, 
and single-stepping tasks and their Elements. Task 
management is asyncronous to and independent of 
any other already-running tasks. 
The  SME's  instructions  and  data  come from the 

Cluster RAM. The SME's instruction  memory is protected 
from accidental access by the Elements using the RAM as 
data storage.

2.5 MM – Message Manager

Each  Cluster  sends  and  receives  data  packets  through  its 
Message  Manager.  The  Message  Manager  communicates 
between Clusters and, to the PCI-e interface to the ECA at 
the device level. The messages are posted and non-posted, 
and come in three forms.

Write  Messages  –  Inside  a  Cluster,  this  can  be 
Cluster RAM, the memory-mapped configuration addresses, 
or memory-mapped control for the Elements and the SME. 
Outside a Cluster, it can access other Clusters, transfer RAM 
contents,  or configure/control  tasks in other Clusters.  It is 
also used to transmit data off-chip to peripherals.

Read Message – This is the mechanism for reading 
data from off-chip or from other Clusters. 

User Messages – Communicate between user tasks. 

Messages, whichever form is used, operate on the 
Cluster via DMA that is asyncronous to, and independent of, 
the operation  of the SME and the Elements and executing 
tasks. 

2.6 BREO – Bit Reorderer

The BREO can be configured to perform:
 Interleaving bits from up to four data streams. 
 Select bits from each of four 16-bit words.
 Puncture (remove) bits from input words.
 Choose input words based on a masking functions. 
 Control structure in FOR and WHILE loops.

2.7 BSHF – Barrel Shifter

The Barrel Shifter performs the following shifting functions 
of 1 to 32 bits.

 Logical
 Circular
 Arithmetic; with and without saturation
 Word reversal
 Shifting functions for variable-length encoding.

2.8 MULT – Multiplier

The multiplier is based on a partitionable 16-bit multiplier 
that  performs  a  16x16  multiplication  or  two  8-bit 
multiplications in one cycle. Additionally, the multiplier can 
perform a 32-bit multiplication in four cycles. The multiplier 
also performs the following modes.

 Unsigned Integer
 Unsigned Fraction (Q.15 and Q.31)
 Signed Integer (two's complement)
 Signed Fraction (Q.15 and Q.31)

The MULT contains a 64-bit accumulator for 32-bit and 16-
bit modes. This  accumulator is split in half when executing 
in  8-bit  mode  so  that  two  MACs  can  be  performed 
simultaneously. 

2.9 TALU – Triple ALU

The TALU  contains  three configurable 16-bit  ALUs,  two 
optional ABS, and three optional data aligners, as shown in 
Illustration 2.4.

The ALUs can be configured to perform any of ten 
different  logical operations or any of six signed arithmetic 
functions.
 The  TALU  can  also  be  configured  to  perform a 
data-steering  function  called  conditional  mode because  it 
evaluates a conditional of I2 and I3 in ALU2. Based on that 
value, the values from I0 and I1 are either passed to O0 and 
O1 or swapped, being passed to O1 and O0. This provides a 
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powerful  and flexible way of  merging or interleaving two 
data streams.

2.10 SALU – Super ALU

The SALU performs any of fourteen logical  operations or 
ten arithmetic operations on either 16-  or 32-bit  signed or 
unsigned  data.  When  configured  to  perform  16-bit 
arithmetic, it uses the four inputs as four data sources. When 
configured in 32-bit mode, the four 16-bit inputs are paired 
to  form  two  32-bit  numbers.  Signed  arithmetic  is  two's 
complement, and may be saturated or not. The SALU also 
computes a number of useful functions, such as counting the 
number of leading ones and the number of leading zeros in a 
word, and counting the total number of ones and the total 
number of zeros in a word. 

An alternate configuration of the SALU is used in 
control-flow. The SALU can be configured to control CASE 
statements and FOR loops.

2.11 MEMU – Memory Unit

The MEMU provides data flow access to Cluster RAM. The 
RAM can be accessed a word at a time, or as FIFOs or as 
blocks of RAM. The MEMU contains six powerful Address 
Generators  (AG) that  may be tied to individual  execution 
contexts.  Each  AG can  be  used  in  either FIFO  or  Block 
mode. An AG allows a single execution context to access a 
portion of RAM as a block, reading or writing a block as an 
atomic instruction.  The words in  a block can be accessed 
sequentially,  or  strided  through  in  a  positive  or  negative 
direction. Two AGs can be ganged together to provide two-
dimensional  addressing,  each  AG using  its  own  stride  to 
define the rows and columns of the array.

The Cluster RAM is composed of eight 2K short 
sub-blocks.  Each  is  a  single-ported RAM,  but  can  be 
accessed  independently  from the  other  RAM blocks.  The 
MEMU  Judge  allows  up  to  eight  simultaneous  RAM 
accesses,  but  only  one  access  per  block.  These  accesses 
include the SME's instruction and data fetch as well as the 
Message Manager's DMA access. The Judge makes sure that 
only one context per Input Queue and only one context per 
Output  Queue is made. Thus,  the MEMU can execute six 
data  flow  instructions  in  one  clock  cycle,  providing  data 

streams to the other Elements and providing data storage for 
stream data from the other Elements.

2.12 Memory Hierarchy

The ECA has a hierarchical, distributed memory. Distributed 
memory allows  many  calculations  to  proceed  in  parallel. 
Placing memory with the calculating circuitry removes the 
path  of  getting  data  out  of  the  memory  and  into  the 
processing components. Distributed memory also provides a 
form of redundancy, which contributes to greater resiliency.

2.13 Queues

Small amounts of memory in the form of queues, are located 
on the inputs and outputs of each Element. Each queue is 
two words deep, but is enough to separate the Elemental and 
interconnect timing domains and guarantee fast cycle times. 
There are 1,984 short words in all the queues in a Cluster. 
The queues can be configured as a 2-word dynamic FIFO or 
as  a  1-  or  2-word  constant  FIFO.  A  dynamic  FIFO  is 
commonplace.  An  Input  Queue  is  written  into  by  the 
interconnect  (driven  by  the  Output  Queues)  and  read 
independently by  the  Element.  A  Constant  FIFO  is  one 
whose  values  are  never  consumed  (destroyed)  by  the 
Element. If there is one value in a Constant FIFO, it will be 
read forever. If there are two constants in the Constant FIFO, 
then they will  be read alternately forever. Constant  FIFOs 
can  thus  be  used  to  supply  constants,  coefficients,  initial 
values, etc. instead of taxing a central memory.

The next level of memory comes from grouping all 
contexts of an Input Queue together to get 16 words of data. 
When all eight contexts on an IQ are configured into a 16-
word queue, all contexts of the Element may read from the 
head of this queue. Somc only one context can execute at a 
time there's no contention for reading the queue. This mode 
is  used  for  a  16-word  FIFO,  to  equalize  unequal-latency 
branches of a computation, and to supply a small number 
(3–16) of constants to an Element. A Constant Queue can be 
written to as part of the data flow, or by the SME or the 
Message Manager for use in adaptive filters.

2.14 RAM

Most algorithms need RAM or ROM. Every Cluster in the 
ECA has 16K short words (16-bits wide). The RAM is built 
from  2K  short  word  RAMs  that  can  be  accessed  and 
allocated  independently.  The  flexibility  allows  a  user/ 
designer to trade off memory for SME instructions, data, and 
MEMU blocks and FIFOs.  Some algorithms require more 
sequential code, others more memory. This trade-off  can be 
made at compile or run-time.

Illustration 2.4.: TALU Internals
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When  a  MEMU  address  generator  accesses  the 
RAM as a FIFO, the size of the FIFO can be anywhere from 
two words to the entire size of the RAM. The same is true of 
the MEMU blocks. Blocks and FIFOs can exist anywhere in 
memory.

2.15 Interconnect

A novel interconnect scheme is used within each Elemental 
Zone. A Zone contains four Elements, each with four input 
queues and  two output  queues.  Each  Zone also has  eight 
Through Queues (TQs) that  connect  to adjacent Zones. A 
subset of these TQs connect to adjacent Clusters. There is 
full interconnectivity within a Zone. Every source within a 
Zone, that  is,  the Elemental Output  Queues and incoming 
TQs,  broadcast  to  every destination  within  that  Zone.  A 
destination is a context of each Input Queue and a context of 
an outgoing TQ in that Zone. Every destination subscribes to 
one,  and  only  one,  source  within  that  Zone.  Multiple 
destinations  can  subscribe  to  the  same  source,  making 
replication of data transparent.

The  converse  of  data  broadcast  is  data  merging. 
Data  merging  is  provided  in  each  Element,  between  the 
Elemental function and the Output Queue. Every execution 
context normally writes its outputs to the same context of its 
Output  Queue. However,  this  is  programmable. A context 
can write to any specific context of its Output Queues, as is 
shown in Illustration 3.5. Here, execution contexts 0 and 1 

write their outputs to OQ0 context 0, thus merging the two 
resultant  data  streams.  In  the  same illustration,  execution 
contexts  2–5  write  to  OQ0  context  1,  merging four  data 
streams. Note that this OQ mapping may be different for the 
two Output Queues.

3. TESTING STRATEGIES

Two traditional means for testing a device in the field are 
built-in testing and programmable testing.

Built-in  Self  Testing [3]  uses  special  circuitry to 
test  the device (primarily)  at  power-on. When an  error  is 
found the device can no longer be used (or trusted).  But, 
what if the error is in the BIST circuitry?

Programmable Testing is nothing new. Every time 
you  boot  your PC,  the BIOS  runs  programmable self-test 
routines.

Our approach is to use the Elemental circuitry as 
form of programmable testing. It can do this at power-on or, 
because the ECA is  multi-tasking,  tests  can  be  run  while 
application  tasks  are  running.  ECA testing is  a  matter  of 
running specific tasks at the desired frequency.

The frequency with which you should test a device 
is dictated by the bathtub curve. Frequent tests are the rule 
when  a  device  is  new  and  when  it  is  “old”.  Testing  in- 
between  can  be  infrequently.  The  testing  frequency  is, 
therefore, up to the designer, and the devices environment. 

4. APPLICATIONS

We implemented a 20 MHz version of the AES cipher on the 
Elemental Architecture. The target data rate for H.264 was 
met in a small number of resources, 31 contexts in a total of 
two  Zones.  A  second  benchmark  is  a  64-point  FFT, 
computing  one  cycle  per  butterfly.  This  runs  at  200 Mhz 
with a latency of 192 cycles. This FFT is parameterized up 
to a 4K-point FFT. The performance of this FFT is suitable 
for WiMAX, Wi-Fi, DVD, and ISDBT.

5. SUMMARY

The  Elemental  Computing  Array  was  designed  to  meet 
reconfigurable  and  resiliency  goals,  and  ended  up  as  a 
powerful  computing  paradigm  that  is  fault  tolerant,  yet 
power and performance efficient.  The multi-tasking device 
allows relocatable tasks to communicate efficiently with one 
another. Rapid reconfiguration of the device at the Elemental 
level  provides  a  high-level  of  silicon  utilization  and 
throughput.
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Illustration 2.5.: Stream Merging through Output Queue  
Mapping
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