
AN ELEMENTAL COMPUTING ARCHITECTURE FOR SD RADIO

Steven Kelem, Brian Box, Stephen Wasson, Robert Plunkett, Joseph Hassoun, Chris Phillips
(Element CXI, Milpitas, CA, US)

{steve.kelem, brian.box, stephen.wasson, bob.plunkett, joseph.hassoun, chris.phillips}
@elementcxi.com

ABSTRACT

This paper described a new reconfigurable architecture that
lends itself to parallelizable tasks, such as Software-Defined
Radio, while providing a new level of reliability for systems
built with this architecture. A new computing paradigm
called Elemental Computing efficiently combines four
computational styles: sequential, data-flow, message-
passing, and DMA in a rapidly-reconfigurable distributed
system on a chip. We call this an Elemental Computing
Array (ECA). Elemental code can be placed and routed in
real time to work around defects on a device. This extends
the useful lifetime of applications using this device, allowing
graceful degradation of the system instead of catastrophic
failure.

1. INTRODUCTION

The omnipresent goals in building electronic systems are to
meet the design goals of Power, Performance, and Price. By
concentrating on Reconfiguration and Resilience we
produced an architecture that also satisfies these power,
performance, and price goals.

Reconfiguration is defined as The ability of a
system to easily and quickly change its functionality.

Resilience is defined as The ability of a system, in
the presence of long-term aging, to continue to operate with
minimal disruption, provided sufficient computing
resources exist, and to degrade gracefully while warning
the user as resources become insufficient.

One of Element CXI's requirements is an
architecture that is tolerant of silicon defects. Defects in
electronic hardware typically follow a “bathtub curve”. This
curve plots defect rate vs. time. Defects are most prominent
at the infancy of a device and at the end of the life of a chip.
Defects during the “infancy” period are attributed to process,
handling, or installation defects[1]. Most of these defects are
caught early in a chip's lifetime with the remaining devices
working for many years. However, a fact that is not well
known, is that silicon devices do not last forever. Many
factors contribute to a finite lifetime for silicon chip, such as
dielectric breakdown of the gate oxide, hot carrier damage,
and electro-migration[2]. Building devices that are tolerant
of failures in the field meant re thinking how a
reconfigurable architecture is tested, programmed, and
monitored throughout a device's lifetime.

1. A TASK-BASED ARCHITECTURE

The Element CXI architecture is a multi-tasking architecture
that allows tasks to be built from sequential and parallel
building blocks. The Elemental building blocks are non-
homogeneous, highly pipelined and able to process many
waves of data simultaneously. Tasks are built from these
blocks. Tasks can be loaded onto the chip while other tasks
are running, even in the same region of the chip as a running
task. A task may have exclusive use of an Element or time-
share an Element with other tasks, depending on throughput
requirements. A portion of a task requiring high throughput
might require exclusive use of an Element. Portions with
lower throughput requirements can timeshare Elements.
Tasks can be distributed across computing Elements for
maximum speed and parallelism or “folded” onto a smaller
number of Elements, thus time-sharing the Element with
other portions of the same, or other tasks.

1.1 Hardware O/S

A multi-tasking chip needs an operating system to manage
the tasks. The ECA includes hardware support for system-
level functions:

 Task Loading, including rapid location of available
(and working) computing and routing resources

 Task Binding, rapid configuration of selected
computing and routing resources

 Interface Binding: binding the inputs and outputs of
one task to other tasks

 Task Run-Time Control: start, halt, suspend, single-
step and free a task.
These steps are done by distributed hardware

resources that perform multiple local searches
simultaneously. This enables the Hardware O/S (HWOS) to
be distributed across the ECA, improving performance and
resiliency by removing the HWOS as a single-point-of-
failure.

Providing hardware support for task binding means
that place and route can be done as a task is loaded into the
device. Components of a task are bound to computational
and interconnect resources in real-time. Run-time Binding
takes into account which resources are broken and which
ones are already in use, so that only free, working resources
are allocated to new tasks. This is in contradiction to devices
where the portions of a task to be loaded into a device must

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:stephen.wasson@elementcxi.com
mailto:stephen.wasson@elementcxi.com
mailto:brian.box@elementcxi.com
mailto:steve.kelem@elementcxi.com

be carefully “placed” and “routed” in anticipation of fitting
together snugly on the device. In the ECA, the Elemental
code is easily relocatable.

1.2 Multi-Tasking

The Elemental device is a fine-grained, multi-tasking device.
The device has a task space of up to 1,024 tasks per
“cluster”. A task may be as small as a single Element
instruction or may occupy an entire Cluster of 16 Elements.
Tasks may be made up of parallel, data-flow, instructions
and sequential code. Data-flow instructions are mapped to
data-flow elements, which are high-speed, self-timed,
pipelined execution units that have streaming inputs and
streaming outputs. Sequential code is mapped to sequential
elements, which are specialized RISC processors. Data is
brought onto and off of the chip via PCI-e.

Tasks can communicate in one of two ways. One
way is through a shared memory. The Memory Unit Element
transfers blocks efficiently and notifies any downstream
tasks of the completion so that these tasks won't use data
before it is valid.

The other way for tasks to communicate is through
the streaming interfaces. When a task has a streaming input,
it receives streams of data. Tasks can be programmed to
“listen” to the output of another task making the broadcast
of data efficient.

Another important feature for run-time
reconfigurable systems is Run-Time Rebinding. In
Illustration 1.1, we have two tasks that are connected in
sequence. At some point, the Main task determines that
subtask PL1 is no longer needed and that subtask PL2
should be used instead. The main task then does the
following:

1. Suspend the streams that connect the Main task to
Task PL1. All processing inside the main task
continues running, except for the transmission of
data to Task PL1.

2. Free Task PL1. This halts the task and frees its
resources.

3. Load Task PL2 directing it to listen to the main
task's output stream.

4. Redirect the main task's TALU to listen to PL2's
output stream.

5. Run Task PL2.
6. Restart the Main Task's output stream.

These steps are performed very quickly. PL1 and PL2 do not
have to occupy the same resources. If sufficient resources
exist on the device for all three tasks, then steps 2 and 3 are
omitted.

2. ELEMENTAL COMPUTING

Elemental Computing is a parallel, distributed, data-flow
paradigm. The execution units are 16- and 32-bit operators.
All of the Elements are self-timed, so no timing closure is
required. Data transfers in every stage in a task are controlled
automatically by a handshaking protocol that is hidden from
the user. Their only concern is the levels of latency between
Elements. Elements are connected to other Elements in a
pipelined fashion. Elemental interconnect is word-based, and
includes a broadcast capability so a single Element can
transmit to multiple destination Elements.

Elements contain up to eight dataflow instructions,
called contexts. These contexts are not executed sequentially
as in a traditional processor. Instead, they are executed when
the data arrives at the appropriate instruction. Each of the
instructions in an Element can be allocated to only a single
task for the lifetime of that task. Instructions from the same
or different tasks can occupy other contexts of the same
Element.

One of the keys to high-speed execution and
resiliency is keeping data close to the execution units. This
allows multiple data to be fetched simultaneously, instead of
sequentially as from a central memory. Distributed memories
have the added intentional implication of being fault tolerant.

2.1 Elements

Elements are non-homogeneous data-flow computational
engines. All Elements have the same form, but different
capabilities. This allows us to provide efficient
implementations of each of the Element type, without having
to provide all the capabilities of all the Elements in each
computing node. There are currently seven Element types as
shown in Table 1.

Table 1: Element Types

BREO Bit Reorderer SALU Super ALU

BSHF Barrel Shifter TALU Triple ALU

MEMU Memory Unit

MULT Multiplier
SME State Machine Engine

Each Element Type has four 16-bit inputs and two
16-bit outputs, as shown in Illustration 2.1. Some Elements
have the capability of ganging a pair of inputs or outputs

Illustration 1.1.: Subtask Reconfiguration

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

together to perform 32-bit functions. Each input and output
of an Element is queued, isolating the Element from the
interconnect delays and bounding the maximum clock delay.
Every Element executes an operation in one clock cycle.

Illustration 2.1 also shows the Judge that is
necessary for the data flow operation of the Element. A
Judge monitors the input and output queues of its Element.
Other Elements supply this Element's input queues with data
operate asyncronous to this Element. A Judge ensures that its
Element will not operate unless there is a valid word in each
of the input queues and room to store the result in an output
queue. Thus, when the Element begins execution, it is
guaranteed to read valid data and have a place to store the
results, all in one clock cycle.

All (but one of) the Elements have four inputs and
two outputs. The Elements are highly configurable, and may
be reconfigured on a clock-by-clock basis, as we will discuss
below. Some of these configurations may not need all of
their inputs to perform a calculation. Such a configuration is
shown in Illustration 2.2. Inputs I0 and I1 and output O0
are used by the configuration, while the other inputs and
output are not used. To avoid having to wait for unused
inputs and outputs, we mark the inputs and outputs that are
used in a calculation as Significant. Unused inputs and
outputs are termed insignificant. The Judge does not check
insignificant inputs or outputs. In Illustration 3.2, I0, I1,
and O0 are significant. I1 contains one valid value, and O0
contains two. Therefore the Judge will not execute this
configuration for two reasons: (a) it does not have data in the
significant input I0, and (b) its output O0 is full.

The Element, as described so far, can suffer from
being idle while waiting for inputs to arrive. To circumvent

this, the execution portion of the Element is shared across
multiple contexts. Each context contains a configuration,
which defines the function that the Element will perform, the
four input queues and two output queues, and their
configuration data. This is shown in Illustration 2.3. In each
clock cycle, the Judge examines the significant inputs and
outputs for each context, looking for the Execution Criteria:

a) Every significant input must have at least one data
value, and

b) Every significant output must have at least one
empty location in its queue.

 After a context has executed:
a) The results are stored in the output queue for that

context.
b) The inputs are consumed, removing them from the

input queues for that context.
Because every Element has its own Judge it can be

operating, independently, on every clock cycle, on its own
local data. (The SME and MEMU operate a little differently,
as will be described in a later section.)

An Input Queue may be written to while the
Element is reading data. Similarly, an Output Queue may be
written to while it is transmitting data. It is natural for an
Element to context switch on every cycle, and, at the same
time, collect data to be operated upon in future cycles.

2.2 Hierarchy

Elements are organized hierarchically. Four elements are
grouped into a Zone. Elements in a Zone are tightly bound,
communicating within a single clock cycle. Four Zones are
grouped into a Cluster. All of the Zones in a Cluster
communicate with each other through a number of special
queues, called Through Queues. All Clusters are identical.
The Cluster is the unit of replication on the die.

Up to sixteen Clusters are grouped into a Super-
Cluster. Clusters within a Super-Cluster can communicate
resiliently through a hierarchical bus structure, or more
expediently and less resiliently through local interconnect.

Up to sixteen Super-Clusters are grouped into a
Matrix. Super-Clusters within a Matrix communicate exactly

Illustration 2.3.: An Element with Eight Contexts

Illustration 2.1.: Element Interfaces

Illustration 2.2.: Element with Insignificant Inputs &
Outputs

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

as Clusters and this method of interconnecting levels of
hierarchy extends indefinitely. ECA devices communicate
via PCI-e in the same hierarchical fashion, extending the
hierarchy to the board level.

2.3 Element Types

An Elemental Computing Array contains seven Element
types designed with digital signal processing in mind, but
these are not your father's traditional DSP.

2.4 SME – State Machine Engine

Each Cluster contains a SME. The SME is a custom RISC
processor. The SME has a small instruction set that can be
augmented by Elements in its Cluster. The SME is used to:

 Execute sequential code. This is useful for blocks
of code that either do not lend themselves to
parallelism or are executed infrequently.

 Process Interrupts from the Cluster's Elements and
the Message Manager.

 Extend Elemental Instructions by emulating a data
flow Element.

 Extend the SME's instructions by using the data
flow Elements to make arbitrary instructions.

 Bind new tasks to resources and connecting tasks to
other tasks.

 To manage tasks by starting, suspending, halting,
and single-stepping tasks and their Elements. Task
management is asyncronous to and independent of
any other already-running tasks.
The SME's instructions and data come from the

Cluster RAM. The SME's instruction memory is protected
from accidental access by the Elements using the RAM as
data storage.

2.5 MM – Message Manager

Each Cluster sends and receives data packets through its
Message Manager. The Message Manager communicates
between Clusters and, to the PCI-e interface to the ECA at
the device level. The messages are posted and non-posted,
and come in three forms.

Write Messages – Inside a Cluster, this can be
Cluster RAM, the memory-mapped configuration addresses,
or memory-mapped control for the Elements and the SME.
Outside a Cluster, it can access other Clusters, transfer RAM
contents, or configure/control tasks in other Clusters. It is
also used to transmit data off-chip to peripherals.

Read Message – This is the mechanism for reading
data from off-chip or from other Clusters.

User Messages – Communicate between user tasks.

Messages, whichever form is used, operate on the
Cluster via DMA that is asyncronous to, and independent of,
the operation of the SME and the Elements and executing
tasks.

2.6 BREO – Bit Reorderer

The BREO can be configured to perform:
 Interleaving bits from up to four data streams.
 Select bits from each of four 16-bit words.
 Puncture (remove) bits from input words.
 Choose input words based on a masking functions.
 Control structure in FOR and WHILE loops.

2.7 BSHF – Barrel Shifter

The Barrel Shifter performs the following shifting functions
of 1 to 32 bits.

 Logical
 Circular
 Arithmetic; with and without saturation
 Word reversal
 Shifting functions for variable-length encoding.

2.8 MULT – Multiplier

The multiplier is based on a partitionable 16-bit multiplier
that performs a 16x16 multiplication or two 8-bit
multiplications in one cycle. Additionally, the multiplier can
perform a 32-bit multiplication in four cycles. The multiplier
also performs the following modes.

 Unsigned Integer
 Unsigned Fraction (Q.15 and Q.31)
 Signed Integer (two's complement)
 Signed Fraction (Q.15 and Q.31)

The MULT contains a 64-bit accumulator for 32-bit and 16-
bit modes. This accumulator is split in half when executing
in 8-bit mode so that two MACs can be performed
simultaneously.

2.9 TALU – Triple ALU

The TALU contains three configurable 16-bit ALUs, two
optional ABS, and three optional data aligners, as shown in
Illustration 2.4.

The ALUs can be configured to perform any of ten
different logical operations or any of six signed arithmetic
functions.
 The TALU can also be configured to perform a
data-steering function called conditional mode because it
evaluates a conditional of I2 and I3 in ALU2. Based on that
value, the values from I0 and I1 are either passed to O0 and
O1 or swapped, being passed to O1 and O0. This provides a

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

powerful and flexible way of merging or interleaving two
data streams.

2.10 SALU – Super ALU

The SALU performs any of fourteen logical operations or
ten arithmetic operations on either 16- or 32-bit signed or
unsigned data. When configured to perform 16-bit
arithmetic, it uses the four inputs as four data sources. When
configured in 32-bit mode, the four 16-bit inputs are paired
to form two 32-bit numbers. Signed arithmetic is two's
complement, and may be saturated or not. The SALU also
computes a number of useful functions, such as counting the
number of leading ones and the number of leading zeros in a
word, and counting the total number of ones and the total
number of zeros in a word.

An alternate configuration of the SALU is used in
control-flow. The SALU can be configured to control CASE
statements and FOR loops.

2.11 MEMU – Memory Unit

The MEMU provides data flow access to Cluster RAM. The
RAM can be accessed a word at a time, or as FIFOs or as
blocks of RAM. The MEMU contains six powerful Address
Generators (AG) that may be tied to individual execution
contexts. Each AG can be used in either FIFO or Block
mode. An AG allows a single execution context to access a
portion of RAM as a block, reading or writing a block as an
atomic instruction. The words in a block can be accessed
sequentially, or strided through in a positive or negative
direction. Two AGs can be ganged together to provide two-
dimensional addressing, each AG using its own stride to
define the rows and columns of the array.

The Cluster RAM is composed of eight 2K short
sub-blocks. Each is a single-ported RAM, but can be
accessed independently from the other RAM blocks. The
MEMU Judge allows up to eight simultaneous RAM
accesses, but only one access per block. These accesses
include the SME's instruction and data fetch as well as the
Message Manager's DMA access. The Judge makes sure that
only one context per Input Queue and only one context per
Output Queue is made. Thus, the MEMU can execute six
data flow instructions in one clock cycle, providing data

streams to the other Elements and providing data storage for
stream data from the other Elements.

2.12 Memory Hierarchy

The ECA has a hierarchical, distributed memory. Distributed
memory allows many calculations to proceed in parallel.
Placing memory with the calculating circuitry removes the
path of getting data out of the memory and into the
processing components. Distributed memory also provides a
form of redundancy, which contributes to greater resiliency.

2.13 Queues

Small amounts of memory in the form of queues, are located
on the inputs and outputs of each Element. Each queue is
two words deep, but is enough to separate the Elemental and
interconnect timing domains and guarantee fast cycle times.
There are 1,984 short words in all the queues in a Cluster.
The queues can be configured as a 2-word dynamic FIFO or
as a 1- or 2-word constant FIFO. A dynamic FIFO is
commonplace. An Input Queue is written into by the
interconnect (driven by the Output Queues) and read
independently by the Element. A Constant FIFO is one
whose values are never consumed (destroyed) by the
Element. If there is one value in a Constant FIFO, it will be
read forever. If there are two constants in the Constant FIFO,
then they will be read alternately forever. Constant FIFOs
can thus be used to supply constants, coefficients, initial
values, etc. instead of taxing a central memory.

The next level of memory comes from grouping all
contexts of an Input Queue together to get 16 words of data.
When all eight contexts on an IQ are configured into a 16-
word queue, all contexts of the Element may read from the
head of this queue. Somc only one context can execute at a
time there's no contention for reading the queue. This mode
is used for a 16-word FIFO, to equalize unequal-latency
branches of a computation, and to supply a small number
(3–16) of constants to an Element. A Constant Queue can be
written to as part of the data flow, or by the SME or the
Message Manager for use in adaptive filters.

2.14 RAM

Most algorithms need RAM or ROM. Every Cluster in the
ECA has 16K short words (16-bits wide). The RAM is built
from 2K short word RAMs that can be accessed and
allocated independently. The flexibility allows a user/
designer to trade off memory for SME instructions, data, and
MEMU blocks and FIFOs. Some algorithms require more
sequential code, others more memory. This trade-off can be
made at compile or run-time.

Illustration 2.4.: TALU Internals

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

When a MEMU address generator accesses the
RAM as a FIFO, the size of the FIFO can be anywhere from
two words to the entire size of the RAM. The same is true of
the MEMU blocks. Blocks and FIFOs can exist anywhere in
memory.

2.15 Interconnect

A novel interconnect scheme is used within each Elemental
Zone. A Zone contains four Elements, each with four input
queues and two output queues. Each Zone also has eight
Through Queues (TQs) that connect to adjacent Zones. A
subset of these TQs connect to adjacent Clusters. There is
full interconnectivity within a Zone. Every source within a
Zone, that is, the Elemental Output Queues and incoming
TQs, broadcast to every destination within that Zone. A
destination is a context of each Input Queue and a context of
an outgoing TQ in that Zone. Every destination subscribes to
one, and only one, source within that Zone. Multiple
destinations can subscribe to the same source, making
replication of data transparent.

The converse of data broadcast is data merging.
Data merging is provided in each Element, between the
Elemental function and the Output Queue. Every execution
context normally writes its outputs to the same context of its
Output Queue. However, this is programmable. A context
can write to any specific context of its Output Queues, as is
shown in Illustration 3.5. Here, execution contexts 0 and 1

write their outputs to OQ0 context 0, thus merging the two
resultant data streams. In the same illustration, execution
contexts 2–5 write to OQ0 context 1, merging four data
streams. Note that this OQ mapping may be different for the
two Output Queues.

3. TESTING STRATEGIES

Two traditional means for testing a device in the field are
built-in testing and programmable testing.

Built-in Self Testing [3] uses special circuitry to
test the device (primarily) at power-on. When an error is
found the device can no longer be used (or trusted). But,
what if the error is in the BIST circuitry?

Programmable Testing is nothing new. Every time
you boot your PC, the BIOS runs programmable self-test
routines.

Our approach is to use the Elemental circuitry as
form of programmable testing. It can do this at power-on or,
because the ECA is multi-tasking, tests can be run while
application tasks are running. ECA testing is a matter of
running specific tasks at the desired frequency.

The frequency with which you should test a device
is dictated by the bathtub curve. Frequent tests are the rule
when a device is new and when it is “old”. Testing in-
between can be infrequently. The testing frequency is,
therefore, up to the designer, and the devices environment.

4. APPLICATIONS

We implemented a 20 MHz version of the AES cipher on the
Elemental Architecture. The target data rate for H.264 was
met in a small number of resources, 31 contexts in a total of
two Zones. A second benchmark is a 64-point FFT,
computing one cycle per butterfly. This runs at 200 Mhz
with a latency of 192 cycles. This FFT is parameterized up
to a 4K-point FFT. The performance of this FFT is suitable
for WiMAX, Wi-Fi, DVD, and ISDBT.

5. SUMMARY

The Elemental Computing Array was designed to meet
reconfigurable and resiliency goals, and ended up as a
powerful computing paradigm that is fault tolerant, yet
power and performance efficient. The multi-tasking device
allows relocatable tasks to communicate efficiently with one
another. Rapid reconfiguration of the device at the Elemental
level provides a high-level of silicon utilization and
throughput.

6. REFERENCES

[1] D. Wilkins, “The Bathtub Curve and Product Failure
Behavior,” weibull.com Reliability HotWire,
http://www.weibull.com/hotwire/issue21/hottopics21.htm.
[2] D.L. Goodman, IEEE Transactions on Components and

Packaging Technologies, Volume 24, Issue 1, March 2001,
pages 109–111.

[3] B. Koenemann, J. Mucha, and G. Ziehoff, "Built-in test for
complex digital integrated circuits," IEEE J. Solid State
Circuits, vol. SC-15, pp. 315-319, 1980.

Illustration 2.5.: Stream Merging through Output Queue
Mapping

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

