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ABSTRACT 
 
Differential Evolution (DE) is a very simple yet powerful 
algorithm for finding the global minimum of multivariate 
functions. Since DE belongs to the so-called  direct search 
methods it can also handle functions which are hihgly 
nonlinear, non-differentiable, mixed-integer or even 
discrete. Also constraints can be incorporated with relative 
ease. This broad applicability makes DE a suitable candidate 
for design taks in wireless communications that are difficult 
to tackle otherwise.  
Real-world examples are RF-circuit design, filter design, 
antenna optimization, construction of error correcting codes 
for CDMA and others. This contribution shows possibilites 
how to transform a design task into a minimization task, 
which then can be solved with a global optimization method 
like DE. It introduces the most effective variants of DE and, 
as an example, details a digital filter design problem which 
was successfully used for a channel simulator at Rohde & 
Schwarz. 
 

1. INTRODUCTION 
 
Many design problems for wireless communications 
applications can be recast into a parameter optimization task 
which means that the structure of the problem is fixed and 
just parameters need to be adjusted to find the best solution. 
In most cases the best solution can be represented by the 
minimum of a cost function f(x) where x is the vector of 
parameters xj, j=1, 2, …, D. In order to minimize such a cost 
function traditionally the theory of multivariate optimization 
[1] is employed which heavily relies on gradient 
computations. However, real-world design problems often 
result in highly nonlinear, constrained cost functions with 
parameters from both the continuous and discrete number 
space. In this case gradient-based techniques are difficult to 
apply and one has to resort to optimization methods with a 
more general scope. Since communication designers are not 
necessarily optimization experts the optimization method 
should both be effective and straightforward to use. 
Differential Evolution (DE) [2] is such a method and has 
proven its effectiveness in a wide variety of communication 

applications, like antenna design [3], …, [6], RF circuit 
design [7], …, [9], pulse shape optimization [10], design of 
error correcting codes [11], [12], filter design [13], …, [16], 
power allocation optimization [17], and others.  
 

2. THE RATIONALE FOR DIFFERENTIAL 
EVOLUTION 

As already indicated before cost functions f(x) belonging to 
real-world design problems typically exhibit the following 
difficulties: 

1) f(x) has regions of non-differentiability, especially 
if there are parameters from the continuous as well 
as the discrete domain. 

2) f(x) is multimodal, i.e. there is more than one 
minimum. 

3) f(x) exhibits several constraints on the parameters 
and/or the cost function itself. 

There are other issues like parameter dependence or number 
of objectives a more detailed treatment of which can be 
found in [2], but the rationale for DE can already be 
deduced from the problems 1), 2), and 3) above. 
 
In order to handle the first problem, i.e. non-differentiality 
of a cost function, using a minimization method not relying 
on gradients is the natural answer, so DE belongs to the so-
called direct search methods. 
 
The second problem, multimodality, gives rise to two 
subproblems, the starting point problem and the relocation 
problem which are best illustrated by an example. Figure 2.1 
shows the so-called peaks function [2] which has several 
local minima and one global minimum. It is obvious that 
using a gradient minimizer and choosing a disadvantageous 
starting point will get the minimizer trapped in a local 
minimum rather than the global one. Obviously more than 
one starting point must be chosen. This multiplicity can be 
implemented sequentially in time such that several runs of 
the same minimization routine can be done with varying 
starting points, or the multiplicity is put into effect by using 
a population of Np points which is worked upon 
simultaneously. DE takes the latter approach and hence 
belongs to the population-based methods. Population-based 
methods have the advantage that interaction and information 
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transfer between the points can be established more 
extensively. 
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Figure 2.1: The peaks function [2] has several minima. 

Since the topology of the cost function surface is generally 
unknown, the search for the minimum requires to alter the 
starting points from one minimization iteration to the next 
into a new set of probing points or probing vectors (the term 
point or vector will be used interchangeably). The question 
is how to relocate the probing points in terms of direction 
and step size. Many population based minimizers employ 
predefined probability distribution functions such as 
Gaussian or Cauchy to determine the relocation. Such a 
choice, however, still leaves the question on how to select 
the standard deviations and hence just shifts the relocation 
problem to a problem of determining standard deviations. 
DE takes a different approach by determining the probability 
distribution from the population itself by computing 
difference vectors from pairs of population vectors.  

Without going into the details of DE yet the advantage of 
using difference vectors for relocation shall be illustrated in 
Figs. 2.3 to 2.5 which show the population vectors on the 
left hand side of the drawings and the ensuing difference 
vector distribution on the right hand side. Note that for the 
sake of clarity only the endpoins of the vectors and 
difference vectors are shown in all cases. It can readily be 
seen that the difference vector distribution used for 
relocation is strongly varying in shape and adapts itself to 
the cost function topology.  
 

 
Figure 2.3: Generation g=1 using Np = 30 points. 

 
Figure 2.4: Generation g=12 using Np = 30 points. 

 
Figure 2.5: Generation g=20 using Np = 30 points. 
 
This is in contrast to, for example, a Gaussian distribution 
which would always be represented by a single cloud of 
points during the entire course of the optimization. 
 
Before the problem domain, i.e. how to deal with constraints 
is elaborated in chapter 4, a more detailed look at DE is in 
order. 
 

3. DIFFERENTIAL EVOLUTION IN DETAIL 
 
The standard version of DE can be defined by the following 
constituents: 
 
1) The population 
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where Np denotes the number of population vectors xi,g, g 
defines the generation counter, and D the dimensionality, i.e. 
the number of parameters. 
 
2) The initialization of the population via 

( ) .)1,0[rand L,L,U,0,, jjjjij bbbx +−⋅=  (3.2) 

 
The D-dimensional initialization vectors, bj,L and bj,U take 
the lower and upper bounds of the parameter vectors xi,j,g 
into account. The random number generator, randj[0,1), 
returns a uniformly distributed random number from within 
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the range [0,1), i.e., 0 ≤ randj[0,1) < 1. The subscript, j, 
indicates that a new random value is generated for each 
parameter.  
 
3) The relocation of a, yet to be defined, base vector yi,g by 
using a difference vector based mutation 
 

( ).,2,1,, grgrgigi F xxyv −⋅+=  (3.3) 

 
to generate a mutation vector vi,g. Setting yi,g = xr0,g defines 
what is often called classic DE where the base vector is also 
a randomly chosen population vector. The random indexes 
r0, r1, and r2 should be mutually exclusive. The difference 
vector indices, r1 and r2, are randomly selected once per 
base vector. The scaling factor F is adding diversity by 
preventing vi,g to be located at the coordinates of an already 
existing vector. Another popular variant for relocation is 
 

( ).,2,1,, grgrgbestgi F xxyv −⋅+=  (3.4) 

 
where the currently best vector is used as a base vector. This 
choice makes the search more greedy and results in faster 
convergence if the cost function to minimize is not 
deceptive. The downside of increased greediness is an 
increased possibility for getting trapped in a local minimum. 
 
Relocation by differential mutation is actually the crucial 
ingredient of DE giving the method its name. Using 
difference vectors for relocation leads to an effect called 
contour matching [2], i.e. the vector population adapts itself 
automatically to the contours of the cost function as seen in 
Figs. 2.3 to 2.5. A closer look at these figures reveals that 
the distribution reinforces the search around the most 
promising regions. Also as the population converges the 
difference vectors automatically become shorter and hence 
foster a more refined search. 
 
4) Diversity enhancement 
 
DEs method of determining the relocation from within the 
population comes at the price of a low number of difference 
vectors, and hence low diversity if Np is small. It has proven 
advantageous to add diversity to the relocation computation. 
The classic variant of diversity enhancement is crossover 
which mixes parameters of the mutation vector vi,g and the 
so-called target vector xi,g in order to generate the trial 
vector ui,g. The most common form of crossover is uniform 
and is defined as 
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In order to prevent the case ui,g = xi,g at least one component 
is taken from the mutation vector vi,g, a detail that is not 

expressed in Equation (3.5). In [2] it is shown, however, that 
crossover should only be used lightly because it has the 
potential to destroy DE’s contour matching property. 
 
There are various other possibilities of further introducing 
diversity. One common method is called dither [2] and 
works according to 

( )lhgldither FFrandFF −⋅+= )1,0(  (3.6) 

Dither randomly selects the weighting factor for the 
difference vector within a predefined range. Chakraborty 
showed that indeed DE is improved if dither is added to 
classical DE, especially if the cost functions are noisy [18]. 
Another advantage of dither is that it is neutral with respect 
to the contour matching property of DE. In Figure 3.3 the 
values Fh=1 and Fl=0.5 are used. 
 
Another interesting diversity-enhancing method is called 
jitter [2]. In jitter F is randomized for each single parameter 
j=0, 1, …, D-1 and for every new mutant vector i according 
to 

( )( )5.0)1,0[1, −⋅+⋅= jijitter randFF δ  (3.7) 

For jitter it seems to be very important that δ be small, e.g., 
δ=0.001 to not affect contour matching excessively. 
 

while (convergence criterion not yet met)
{

//---xi defines a vector of the current vector population-----

    //---yi defines a vector of the new vector population---------

Fd = 0.5*(1+rnd());  //Dither factor Fd ex [0.5, 1] increases
                         //diversity
    for (i=0; i<NP; i++) //there are NP vectors in a population

    {
r1 = rand(NP); //select a random index from 1, 2, ..., Np
r2 = rand(NP); //select a random index from 1, 2, ..., Np
r3 = rand(NP); //select a random index from 1, 2, ..., Np
ui = xr3 + Fd*(xr1 - xr2);//add weighted difference vector

       if (f(ui) <= f(xi))      //trial vector ui better than xi ?

       {
yi = ui;               //if yes ui wins

       }
       else
       {

yi = xi;

       }
    }
    swap(Y,X); //new population Y becomes current one
    ...
}//end while
...

 Figure 3.3: Basic version of DE in pseudo code using 
dither for diversity enhancement. 
 
5) Selection 
 
DE uses simple one-to-one survivor selection where the trial 
vector ui,g competes against the target vector xi,g. The vector 
with the lowest objective function value survives into the 
next generation g+1. A mathematical representation of this 
selection strategy is provided in Equation (3.8) 
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Figure 3.3 shows a simple pseudo-code version of DE which 
uses dither as a diversity enhancement method. 
 

4. HANDLING OF CONSTRAINTS 
 
Constraints are present very often in practical optimization 
problems, and DE offers several convenient ways to handle 
them [2].  Constraints on the parameters are best handled 
with a method called bounce back which is shown in Figure 
4.1. 
   ...

ui = xr3 + F*(xr1 - xr2);

   for (j=0; j<D; j++) //----BOUNCE BACK-----
   {
      if (uj,i<xj,L) //if child parameter exceeds lower bound

      {
uj,i = xj,r0 + rand(0,1)*(xj,L-xj,r0);

      }
      if (uj,i>xj,U) //if child parameter exceeds upper bound

      {
uj,i = xj,r0 + rand(0,1)*(xj,U-xj,r0);

      }
   }

if (f(ui) <= f(xi))

   ...

 
Figure 4.1: Parameter constraints are best handled after 
mutation and before evaluation . 
 
In bounce back parameters which go astray after mutation 
are placed randomly between the base vector and the bound 
and hence the trial vector is placed automatically within 
bounds. In order to handle inequality constraints these are 
best brought to normal form, i.e  

Mmm 1,2,...,     ,0)( =≤xγ  (4.1) 

All that needs to be changed then is the selection criterion of 
DE where a trial vector now wins against the target vector 
only if either: 

1. The trial vector u and target vector x fulfill all 
constraints but the trial vector u has the lower cost 
function  

2. or the trial vector u fulfills all constraints but the 
target vector x doesn’t 

3. or at least each γm(u) < γm(x), i.e. the trial vector 
fulfills all constraints better than the target vector. 

 
For inequality constraints it is convenient to write  

Nnn ,...,2,1     ,0)( ==xϕ  (4.2) 

and work with an extended cost function 
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where wn denote weights which, however, can usually be set 
to unity. 

 
5. DIGITAL FILTER DESIGN 

 
As an example for an optimization task belonging to the 
wireless communication domain the design process for a 
digital filter employing DE is described. The digital filter is 
used at Rohde & Schwarz in a channel simulator for wireless 
applications. The tolerance scheme of the filter is depicted 
in Figure 5.1 which shows a filter with Gaussian magnitude 
of extremely narrow bandwidth, i.e.  Ω ∈ [0, 0.0046], that 
was set out to be implemented by an FPGA-based IIR-filter 
of 8th order and a wordlength of 32 bits.  
 

 
Figure 5.1: Tolerance scheme for the Gaussian magnitude 
response A(Ω) where the upper constraint curve CA,U(Ω) 
equals the lower constraint curve CA,L(Ω) for   
Ω ∈ [0, 0.0046]. 
 
For ease of implementation the filter structure was set out to 
consist of four biquad stages. The magnitude at Ω = 0.0046 
was set to be -57dB.  
 
All endeavours to use standard filter design tools failed due 
to strong violations of the constraint curves when the 
coefficients were set to their finite wordlength. This failure 
was due to the two-step approach taken by the tools where 
the coefficients were determined with infinite precision in 
the first step and quantization in the second. So a design 
using DE was undertaken where the coefficient quantization 
was taken directly into account. 
 

5.1 DETERMINING THE COST FUNCTION 
 
The first and foremost step in transforming a design task into 
a minimization task is to find the pertinent cost function. 
The transfer function in Z-transform domain is given by 
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where the magnitude is defined by 

( ) ( ) ( )( ) ( )( )22222 ImRe Ω⋅Ω⋅Ω⋅ +==Ω πιπιπι eHeHeHA

 

(5.2) 

In Figure 5.1 the magnitude A(Ω) has to obey a certain 
tolerance scheme defined by an upper constraint CA,U(Ω) 
and a lower constraint CA,L(Ω). The deviation from these 
constraints are measured by equidistant samples along the 
Ω-axis following the principle shown in Figure 5.2. 
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Figure 5.2: Example tolerance scheme for the magnitude 
A(Ω) to illustrate the constraints CA,U(Ω) and CA,L(Ω) [13]. 

The cost function is constructed according to 
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and the step function 

( ) otherwise.00for1 ands ≥= δδ  (5.5) 

The parameters to be adjusted were chosen to  be the poles 
zp,m and the zeros z0,n rather than the coefficients themselves 
since stability could be ensured simply by using bounce 
back. The cost function was computed according to 
Equation (5.3) where the deviation was determined using a 
quantized version of A(Ω). This was achieved by 
determining the biquad coefficients from the poles and zeros 
and quantizing them before plugging the result into Equation 
(5.4), and (5.3).  
The ensuing cost function f(x) had many of the unpleasant 
properties mentioned above, i.e. a high dimensionality D=17 
due to 4 pole angles, 4 pole radii, 4 zero angles, and 4 zero 
radii, as well as one gain factor A0. In addition f(x)  
exhibited non-differentiality due to the constraints and the 
coefficient quantization, as well as multimodality. 

 
5.2 RESULTS 

 
For convenience the tool FIWIZ [19] was used to solve the 
Gaussian filter problem as it already provides DE-based 
filter design capability. In order to achieve fast convergence 
the base vector in this tool is chosen according to Equation 
(3.4). In addition both dither and jitter as in Equation (3.6) 
and Equation (3.7) are employed. Crossover as defined in 
Equation (3.5) is only used lightly by setting Cr=0.95. Due 
to these diversity enhancement measures the population size 
could be kept low at Np=30. With 28230 function 
evaluations the result shown in Figure 5.3 has been 
achieved. 
 

 
Figure 5.3: Result of the magnitude transfer function after 
28230 function evaluations for an 8th order biquad structure 
with 32 bits as a coefficient wordlength. 
 
It can be seen in Figure 5.3 that the constraints in the 
stopband could not be completely fulfilled. Still this result 
was more acceptable than an increase in filter order which 
would have been necessary otherwise. 
The filter coefficients for the ensuing biquad stages are 
listed below in Matlab-compatible format. 
 
Numerator coefficients: 
a0=[1.0 -1.9911251696757972 0.9926184536889195]; 
a1=[1.0 -0.721676564309746 0.18678478291258216]; 
a2=[1.0 -1.9880436742678285 12.484005219303071]; 
a3=[1.0 -3.3593827835284173 2.8323051296174526]; 
 
Overall amplification according to Equation (5.1): 
A0=7.229733026078507E-6; 
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Denominator coefficients: 
b0=[1.0 0.9818580755963922 0.7655303096398711]; 
b1=[1.0 -1.9761409498751163 0.9766676407307386]; 
b2=[1.0 -1.978497477248311 0.9786536265164614]; 
b3=[1.0 -0.3446712060831487 0.029700732324272394]; 
 

6. CONCLUSION 
 
The global optimization method Differential Evolution (DE) 
has been introduced and numerous references for its 
applicability to design problems in the wireless 
communication domain have been provided. By example it 
has been shown that DE is suitable to find the global 
mimimum of constrained cost functions with several or even 
many minima, non-differential regions and high 
nonlinearity. One of the biggest assets of DE are its 
simplicity and its ease of use since DE is mostly self-
steering. As a concrete example the DE-based design of an 
8th order digital filter with Gaussian magnitude response, 
used for a channel simulator, and exhibiting 17 free 
parameters and a coefficient wordlength of 32 bits has been 
laid out. Other approaches that first designed the filter with 
infinite precision and then applied the coefficient 
quantization afterwards have failed altogether.  
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