

AN FPGA FRAMEWORK SUPPORTING SOFTWARE PROGRAMMABLE

RECONFIGURATION AND RAPID DEVELOPMENT OF SDR APPLICATIONS

David Rupe (BittWare, Concord, NH, USA; drupe@bittware.com)

ABSTRACT

The role of FPGAs in Software Defined Radio (SDR)

applications has continued to increase in spite of significant

development costs. Implementation practices are non-

standard as developers work at low abstraction levels,

treating FPGAs as a blank canvas. The majority of

implementation cycles are spent building and testing

external device interfaces and infrastructure to support the

end application. The resulting long and drawn out

schedules, increased complexity, and overall risk of FPGA

inclusion in SDR applications is forcing developers to adopt

new implementation practices. This paper introduces an

FPGA framework leveraging concepts found in modern

software applications. By utilizing software methodologies,

this framework not only supports Software Programmable

Reconfiguration (SPR) it also makes rapid development of

FPGA-based SDR applications possible while decreasing

costs and minimizing risk.

1. INTRODUCTION

The growing complexity, size, and performance

requirements of today’s SDR applications have driven

industry wide utilization of FPGAs as primary processing

devices. Significant improvements in FPGA technology

provide developers with more gates, higher clock rates, and

valuable processing resources.

 However, implementation costs, which have always

been difficult to measure, are a large limiting factor in

FPGA development of SDR applications. Often times the

majority of development cycles are wasted building and

testing custom external interfaces, debugging component to

component connections, and reconfiguring systems to meet

changing requirements. Development efforts that should be

reused, typically are not, as designers tend to be more

comfortable with the ‘roll-your-own’ approach. As a result,

schedules are drawn out while developers often focus on

reinventing the wheel instead of developing application

specific IP.

 FPGAs can continue to expand the capability and

flexibility of SDR applications but the traditional route of

starting with a blank canvas is no longer suitable. By

leveraging software like methodologies within a scalable

FPGA framework, developers will have easy access to

resources that can facilitate Software Programmable

Reconfiguration (SPR) and rapid development of FPGA-

based SDR applications while significantly reducing risk.

2. THE SOFTWARE APPROACH

FPGA implementation methodology is very immature in

comparison to the well defined nature of software

development. Current FPGA implementation is most similar

to micro-processor development before the main stream use

of high level languages like C++, Java, and widespread use

of concepts like Object Oriented programming. Developers

implemented their applications at a very low level, in

assembly or C, writing custom device drivers and peripheral

interconnects, very similar to today’s gate level FPGA

implementation. To combat the challenges in software

development, developers began to abstract their application

from the device they were targeting. Peripheral

infrastructure like buses, UARTs, DMA, arbiters, and many

others were developed to lower risk and increase

development efficiency. As a result, peripheral and

infrastructure reuse became main stream and higher level

language development more feasible.

 By taking a software-like approach to FGPA

development and looking at the FPGA as a System-On-a-

Chip, with peripheral infrastructure in place, the goals of

SPR and rapid development of FPGA-based SDR

applications can be achieved. Figure 1 shows the

similarities between this type of FPGA framework and the

standard micro-processor framework with peripheral

support. The application is separated into two distinct

processing planes, each utilizing a common interface

standard for component interconnect. The first is the control

plane used for control, (re)configuration, status and memory

management. Routing of control/configuration and status is

accomplished with a control fabric. The second plane is the

streaming data plane. Each of the processing blocks are

connected to a streaming data fabric that allows for point to

point data transfer between waveform components.

 In addition, applications built using a scalable FPGA

framework promote hardware reuse at the component level

as well as the application level. Multiple waveforms can be

implemented on one device or across multiple devices and

component building blocks can be reused with each different

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 1: FPGA Framework

application. Integration of a soft core micro-processor into

the application improves design exploration and test,

providing a method of control, status, and flexible, real-time

adaptive software reconfiguration. Instead of re-designing,

re-writing HDL, simulating, re-synthesizing, and finally

reprogramming the FPGA every time a change is required,

the whole range of application requirements are

implemented and all the necessary adaptive software

reconfigurable components are deployed to a single device

or across multiple devices for easy software reconfiguration.

3. FPGA FRAMEWORK

COTS FPGA systems are often perceived as difficult to use.

When looking back on traditional FPGA implementation

methodology, they are. Developers not only had to learn

about the platform it self, they were also required to

implement all the external interfaces and internal

infrastructure, in addition to application specific

components. Figure 2 shows the clean slate FPGA

Figure 2: Traditional FPGA Methodology

developers used to start with when implementing

applications on COTS boards.

 The process of building and testing external interfaces

and internal infrastructure is taxing, typically exhausting a

significant amount of time and resources. Project managers

find it difficult to cost projects and measure the amount of

effort required to complete application development.

Fortunately, COTS board vendors now supply some sort of

FPGA developer kit including the high risk external

interface IP. However, they still don’t offer an FPGA

framework designed with the benefits of proven software

constructs. This type of framework fully leverages a

common interface supplying more than just external

interface IP. Focusing on just FPGA implementation, the

FPGA framework should include:

1. Processing Utility Libraries

2. Control, Configuration and Memory Management

Facilities

3. Component Interconnect

4. Third Party IP

5. Integration Software

6. Capability for Software Programmable Reconfiguration

 The infrastructure, supporting software and

methodologies provided in an FPGA framework should be

well documented and tested, meeting specified performance

criteria. In this manor COTS board vendors can mitigate

developer risk, allowing them to refocus on application

specific IP.

3.1. Common Interface

Similar to the software world, common interfaces abstract

the functionality of a component from its interface. They

provide a standard API for communication between a

functional component, its sources, sinks, masters and slaves.

In doing so, component and platform reuse is promoted as

there is no question to how components will communicate

with each other. In addition, design verification is

simplified. Simulation infrastructure like data generators,

data checkers and other verification facilities can also be

made standard and thus reused. One of the most significant

benefits to common interfaces that, so often overlooked, is

that they enable automatic code generation. Because

component interfaces are well defined, it is and easy task for

a software tools to generate integration code.

 The typical component has two types of common

interfaces as seen in Figure 3. Each component requires a

control/memory interface and a streaming data interface.

The control/memory interface is an addressable interface

that should support interrupts, burst read/write, flow control,

wait states, variable latency, bi-directional or unidirectional

bus interfaces, and other related functionality. It is a bi-

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 3: Basic Component Structure

directional interface supporting both reads and writes.

Besides being used as a control interface, it is also used to

interface register banks, flash, DDR, SRAM, and any other

addressable interface. The streaming data interface is a

point to point interface for all source/sink connections,

including component to component, component to

infrastructure, and component to external interfaces. It

should support advanced features like: multiple channels,

packets, burst and block transactions, flow control, wait

states, variable latency, and other similar transactions.

 Two common interface standards are currently gaining

industry attention. The first is OCP (www.ocpip.org) and

the second is Avalon, defined by Altera. Both interface

specifications define a set of signals, the behavior of the

signals and the types of transfers supported while

maintaining low resource overhead.

3.2. External Interface IP

COTS board vendors add significant value to application

development by providing external interface IP to

Figure 4: External IP

developers. In doing so, hardware specifics are abstracted

away from the implementer. Similar to a CPU with

peripherals, external interface IP is well defined, fully tested,

and reusable. By providing external IP with common

interfaces, implementation efforts can be reduced

significantly. Figure 4 shows a block diagram of an FPGA

device with yellow blocks representing the external interface

IP. Fiber, SerDes, LVDS and other external interfaces are

already implemented, thus reducing the work the developer

has to worry about, which is arguably the most difficult and

time consuming aspect of FPGA implementation.

3.3. Processing Utility Libraries

The software world has printf, memcpy, string manipulation

and many other helpful functions. These library functions

are provided to speed up implementation as developers can

reuse common, existing, and verified functionality. FPGA

development should be no different. A complete developer

framework should supply HDL utility libraries to cut down

on implementation efforts. Some of the most commonly

used functions that should be provided are:

• Signal processing functions

o Scale, round, saturate

o Mag est., magnitude squared

o Min/max

• Common interface helper functions

o Initialization

o Scaling, resize, reshape

o Array interfaces

 In addition to the functions described above, the library

should include other items to help minimize the developers

learning curve. Things like common interface How-To and

design and component templates should also be made

available. Figure 5 depicts an application specific

component leveraging HDL utility functions.

Figure 5: Processing Libraries

3.4. Control/Configuration and Memory Management

Similar to software applications, an FPGA framework

should include infrastructure to facilitate high level

control/(re)configuration and status facilities. Control

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

capabilities like interrupts and register banks for component

reconfiguration are examples of common infrastructure that

can be reused across components and applications. In

addition, components require access to different memory

structures through arbiters and other types of memory

controllers. This commonly used and reusable memory

infrastructure should be developed and ready for integration

into the developer’s application.

3.5. Component Interconnect

Leveraging common interfaces for component

implementation allows developers to reuse control and

streaming data fabrics like muxes, FIFOs, dual port

memories, arbiters, and other component to component

interconnect. The FPGA framework should not only

provide the most commonly used interconnect infrastructure,

it should also provide some less commonly used, like

common interface adaptors to translate between different

common interfaces standards, data serializers, de-serializers,

and other data reshape, and multi-channel interconnect.

Further enhancements can be made to the component

interconnect by providing a control interface allowing real-

time reconfiguration and switching. This infrastructure is

well tested, documented, and proven to meet specified

implementation requirements.

3.6. Third Party IP

Reusing existing functional IP is invaluable for rapid

application development. Existing IP is design ready. It has

been fully tested and validated. It should be well

documented with performance metrics and resource

utilization stated clearly. Third party IP should be

implemented using a common interface so the developer

does not have to adapt the IP to his application. In addition,

it is very valuable to have a tool that aids in the definition

and configuration of IP similar to Altera’s Mega Wizard.

Pretty much any type of IP can be purchased from many

different companies at varying levels of quality. Some of

these may include soft micro-processor cores, like the NIOS,

peripherals interfaces like DDR and PCI, signal processing

IP like filters and FFT functions, and communications IP

like modulators and encoders.

3.7. Integration Software

Once a component has been developed and unit tested, it is

necessary to integrate it into the application. When using

components implementing a common interface, the tedious,

error prone task of integration can easily be generated using

design integration software. The interconnect fabric for

control and memory, and the point to point streaming data

connections should also be generated. This software should

allow developers to import custom components for quicker

application integration.

3.8. Software Programmable Reconfiguration

Figure 6 represents an FPGA application based on the

framework discussed previously. Common interfaces are

utilized throughout the application making up the API for

communication across both control/memory and data planes.

Supplied infrastructure provides the component interconnect

and supporting control/configuration and memory

management capabilities. External interface IP connects the

waveform application to the outside world while processing

utility libraries and third party IP reduce component

development efforts. All in all, implementation effort, cost

and risk are substantially reduced so developers can focus

on implementing waveform specific components, leaving

even the integration process to special integration software.

Figure 6: Typical Design Diagram

 Even with the benefits mentioned above, FPGA

applications lacking reconfiguration support can carry a

significant cost during field test, measurement, and eventual

deployment. Each time an adjustment needs to be made, the

application is usually sent back to the lab for replacement or

rework. Oftentimes, this can require significant redesign.

An application built on an FPGA framework utilizing

reconfigurable components with supporting infrastructure

provides the flexibility to adapt to a field environment, thus

minimizing rework expense.

 Integrating a soft core micro-processor, like the NIOS,

provides reconfiguration to aid in field testing and

measurement. Reconfiguration only requires a simple

register write or other simple software switch. In addition,

applications supporting SPR with an integrated soft core

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

micro-processor can utilize ethernet, offering remote

software control, reconfiguration, status, and visualization.

4. BITTWARE SPR DEMO

In an effort to explore the benefits of an FPGA framework

supporting SPR, BittWare and Altera have invested in the

implementation of a reference application. This task

required the utilization of common interfaces in the

development of portable infrastructure IP, and waveform

specific IP. Combined with third party IP, an existing NIOS

soft core implementation, and beta integration software, an

SPR reference design was created.

 Figure 7 provides a high level view of the application

running on a BittWare B2-AMC board connected via LVDS

to Altera’s Cyclone III Starter Kit. A GUI was developed

for reconfiguration and data visualization. Commands can

be sent over a wireless ethernet connection from the GUI to

a NIOS soft core micro-processor which then directs it to the

correct destination. A TigerSharc DSP was used to source

and sink data through the system, simulating the ADC/DAC

interface, and a Stratix II FPGA acts as the bridge between

the B2-AMC and the Altera Cyclone III Starter Kit (shown

in Figure 8). The most interesting part of the demo is the

software reconfigurable waveform application built using

the Atlantis FPGA Framework developed by BittWare. The

application is simply three waveform components, a mixer,

filter, and an FFT. Each of the components is fully

reconfigurable from the GUI. The mixer has an adjustable

LO frequency, the filter has three different filter banks that

can be chosen, and the FFT can operate at five different FFT

block sizes. In addition, the streaming data fabric is a fully

reconfigurable interconnect, allowing the streaming data

path to change, bypassing or including any of the waveform

components.

 The complete FPGA implementation effort took one

engineer a total of 18 weeks, full time. A listing of task

distribution follows.

• 1 week – learning Avalon common interface and

working out kinks in understanding use cases

• 4 weeks – implementing and testing component

interconnect infrastructure IP

• 2 weeks – implementing and testing control/config

and memory management infrastructure IP

• 1 week – implementing processing utility libraries

• 5 weeks – implementing and testing external

interface IP

• 1 week – reading 3rd party IP specs and properly

generating IP and implementing application

specific components using 3rd party IP

• 2 weeks – writing common interface wrappers

including configuration and status interface for 3rd

party IP

• 1 week – writing and verifying component

integration since immature integration software

proved to have limitations

• 1 week – performing test and measurement of the

application for data path scaling and optimization

purposes

 With a developer framework in place, this 18 week task

would have reduced to 6 weeks. By taking out the one week

learning curve for common interfaces, as it is only required

once per engineer, using more mature integration software,

and obtaining 3rd party IP fully supporting common

interface streaming data and reconfiguration, the schedule is

reduced by another four weeks. That leaves just two weeks

of actual implementation effort focused on the waveform

specific components. Adding and removing components

from this application, now that the developer framework is

in place would take nominal effort beyond the development

of the component itself.

5. FUTURE WORK

The FPGA framework, design methodology and toolset

discussed in this paper is not limited to Software Defined

Radio applications. In fact, European companies are now

discussing what they have also called, SDR, Software

Defined Radar. Image processing and sensor networks are

Figure 7: SPR Demo Implementation

Figure 8: Cyclone III Design Diagram

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

also struggling with the same difficulties in FPGA

development as the Software Defined Radio community. By

adopting an FPGA framework supporting software

programmable reconfiguration as described in this paper,

any application requiring FPGAs will benefit significantly.

As the use of FPGAs continues to grow, BittWare will adapt

this methodology and supporting tools to meet industry’s

varied needs.

 BittWare is committed to the goal of adding significant

value to SDR applications beyond top notch FPGA compute

platforms. By providing a stable, reusable, well defined

FPGA framework, supporting SPR, implementation

engineers can once again focus on their application specific

IP.

6. CONCLUSION

As FPGA technology continues to improve, gates and

computational resources will become cheaper and cheaper.

Developers can be well positioned for the future by utilizing

FPGAs intelligently. With an FPGA framework supporting

the concept of SPR, the abstraction level of FPGA

development can be raised, similar to that of a software

application running on a micro-processor with peripheral

support. This scalable FPGA framework allows for an

increase in application complexity, even mapping directly to

an ASIC flow, and most importantly, enables rapid

development of SDR applications within budget constraints.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Author
	Search by Session

