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ABSTRACT 

 

The role of FPGAs in Software Defined Radio (SDR) 

applications has continued to increase in spite of significant 

development costs.  Implementation practices are non-

standard as developers work at low abstraction levels, 

treating FPGAs as a blank canvas.  The majority of 

implementation cycles are spent building and testing 

external device interfaces and infrastructure to support the 

end application.  The resulting long and drawn out 

schedules, increased complexity, and overall risk of FPGA 

inclusion in SDR applications is forcing developers to adopt 

new implementation practices. This paper introduces an 

FPGA framework leveraging concepts found in modern 

software applications.  By utilizing software methodologies, 

this framework not only supports Software Programmable 

Reconfiguration (SPR) it also makes rapid development of 

FPGA-based SDR applications possible while decreasing 

costs and minimizing risk. 

 

 

1. INTRODUCTION 

 

The growing complexity, size, and performance 

requirements of today’s SDR applications have driven 

industry wide utilization of FPGAs as primary processing 

devices.  Significant improvements in FPGA technology 

provide developers with more gates, higher clock rates, and 

valuable processing resources. 

 However, implementation costs, which have always 

been difficult to measure, are a large limiting factor in 

FPGA development of SDR applications.   Often times the 

majority of development cycles are wasted building and 

testing custom external interfaces, debugging component to 

component connections, and reconfiguring systems to meet 

changing requirements.  Development efforts that should be 

reused, typically are not, as designers tend to be more 

comfortable with the ‘roll-your-own’ approach.  As a result, 

schedules are drawn out while developers often focus on 

reinventing the wheel instead of developing application 

specific IP.   

 FPGAs can continue to expand the capability and 

flexibility of SDR applications but the traditional route of 

starting with a blank canvas is no longer suitable.  By 

leveraging software like methodologies within a scalable 

FPGA framework, developers will have easy access to 

resources that can facilitate Software Programmable 

Reconfiguration (SPR) and rapid development of FPGA-

based SDR applications while significantly reducing risk. 

 

2. THE SOFTWARE APPROACH 

 

FPGA implementation methodology is very immature in 

comparison to the well defined nature of software 

development.  Current FPGA implementation is most similar 

to micro-processor development before the main stream use 

of high level languages like C++, Java, and widespread use 

of concepts like Object Oriented programming.  Developers 

implemented their applications at a very low level, in 

assembly or C, writing custom device drivers and peripheral 

interconnects, very similar to today’s gate level FPGA 

implementation.  To combat the challenges in software 

development, developers began to abstract their application 

from the device they were targeting.  Peripheral 

infrastructure like buses, UARTs, DMA, arbiters, and many 

others were developed to lower risk and increase 

development efficiency.  As a result, peripheral and 

infrastructure reuse became main stream and higher level 

language development more feasible. 

  By taking a software-like approach to FGPA 

development and looking at the FPGA as a System-On-a-

Chip, with peripheral infrastructure in place, the goals of 

SPR and rapid development of FPGA-based SDR 

applications can be achieved.  Figure 1 shows the 

similarities between this type of FPGA framework and the 

standard micro-processor framework with peripheral 

support.  The application is separated into two distinct 

processing planes, each utilizing a common interface 

standard for component interconnect.  The first is the control 

plane used for control, (re)configuration, status and memory 

management.  Routing of control/configuration and status is 

accomplished with a control fabric.  The second plane is the 

streaming data plane.  Each of the processing blocks are 

connected to a streaming data fabric that allows for point to 

point data transfer between waveform components.   

 In addition, applications built using a scalable FPGA 

framework promote hardware reuse at the component level 

as well as the application level.  Multiple waveforms can be 

implemented on one device or across multiple devices and 

component building blocks can be reused with each different  
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Figure 1: FPGA Framework 

 

application.  Integration of a soft core micro-processor into 

the application improves design exploration and test, 

providing a method of control, status, and flexible, real-time 

adaptive software reconfiguration.  Instead of re-designing, 

re-writing HDL, simulating, re-synthesizing, and finally 

reprogramming the FPGA every time a change is required, 

the whole range of application requirements are 

implemented and all the necessary adaptive software 

reconfigurable components are deployed to a single device 

or across multiple devices for easy software reconfiguration.   

 

3. FPGA FRAMEWORK 

 

COTS FPGA systems are often perceived as difficult to use.  

When looking back on traditional FPGA implementation 

methodology, they are.  Developers not only had to learn 

about the platform it self, they were also required to 

implement all the external interfaces and internal 

infrastructure, in addition to application specific 

components.  Figure 2 shows the clean slate FPGA 

Figure 2:  Traditional FPGA Methodology 

developers used to start with when implementing 

applications on COTS boards. 

 The process of building and testing external interfaces 

and internal infrastructure is taxing, typically exhausting a 

significant amount of time and resources.  Project managers 

find it difficult to cost projects and measure the amount of 

effort required to complete application development.  

Fortunately, COTS board vendors now supply some sort of 

FPGA developer kit including the high risk external 

interface IP.  However, they still don’t offer an FPGA 

framework designed with the benefits of proven software 

constructs.  This type of framework fully leverages a 

common interface supplying more than just external 

interface IP.  Focusing on just FPGA implementation, the 

FPGA framework should include: 

 

1. Processing Utility Libraries 

2. Control, Configuration and Memory Management 

Facilities 

3. Component Interconnect 

4. Third Party IP 

5. Integration Software 

6. Capability for Software Programmable Reconfiguration 

 

 The infrastructure, supporting software and 

methodologies provided in an FPGA framework should be 

well documented and tested, meeting specified performance 

criteria.  In this manor COTS board vendors can mitigate 

developer risk, allowing them to refocus on application 

specific IP.  

 

3.1. Common Interface 

 

Similar to the software world, common interfaces abstract 

the functionality of a component from its interface.  They 

provide a standard API for communication between a 

functional component, its sources, sinks, masters and slaves.  

In doing so, component and platform reuse is promoted as 

there is no question to how components will communicate 

with each other.  In addition, design verification is 

simplified.  Simulation infrastructure like data generators, 

data checkers and other verification facilities can also be 

made standard and thus reused.  One of the most significant 

benefits to common interfaces that, so often overlooked, is 

that they enable automatic code generation.  Because 

component interfaces are well defined, it is and easy task for 

a software tools to generate integration code. 

 The typical component has two types of common 

interfaces as seen in Figure 3.  Each component requires a 

control/memory interface and a streaming data interface.  

The control/memory interface is an addressable interface 

that should support interrupts, burst read/write, flow control, 

wait states, variable latency, bi-directional or unidirectional 

bus interfaces, and other related functionality.  It is a bi- 
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Figure 3: Basic Component Structure 

 

directional interface supporting both reads and writes.  

Besides being used as a control interface, it is also used to 

interface register banks, flash, DDR, SRAM, and any other 

addressable interface.  The streaming data interface is a 

point to point interface for all source/sink connections, 

including component to component, component to 

infrastructure, and component to external interfaces.  It 

should support advanced features like: multiple channels, 

packets, burst and block transactions, flow control, wait 

states, variable latency, and other similar transactions.   

 Two common interface standards are currently gaining 

industry attention.  The first is OCP (www.ocpip.org) and 

the second is Avalon, defined by Altera.  Both interface 

specifications define a set of signals, the behavior of the 

signals and the types of transfers supported while 

maintaining low resource overhead. 

 

3.2. External Interface IP 

 

COTS board vendors add significant value to application 

development by providing external interface IP to  

Figure 4: External IP 

developers.  In doing so, hardware specifics are abstracted 

away from the implementer.  Similar to a CPU with 

peripherals, external interface IP is well defined, fully tested, 

and reusable.  By providing external IP with common 

interfaces, implementation efforts can be reduced 

significantly.  Figure 4 shows a block diagram of an FPGA 

device with yellow blocks representing the external interface 

IP.  Fiber, SerDes, LVDS and other external interfaces are 

already implemented, thus reducing the work the developer 

has to worry about, which is arguably the most difficult and 

time consuming aspect of FPGA implementation.  

 

3.3. Processing Utility Libraries 

The software world has printf, memcpy, string manipulation 

and many other helpful functions.  These library functions 

are provided to speed up implementation as developers can 

reuse common, existing, and verified functionality.  FPGA 

development should be no different.  A complete developer 

framework should supply HDL utility libraries to cut down 

on implementation efforts.  Some of the most commonly 

used functions that should be provided are: 

• Signal processing functions 

o Scale, round, saturate 

o Mag est., magnitude squared 

o Min/max 

• Common interface helper functions 

o Initialization 

o Scaling, resize, reshape 

o Array interfaces 

 In addition to the functions described above, the library 

should include other items to help minimize the developers 

learning curve.  Things like common interface How-To and 

design and component templates should also be made 

available.  Figure 5 depicts an application specific 

component leveraging HDL utility functions. 

 

Figure 5: Processing Libraries 

 

3.4. Control/Configuration and Memory Management 

 

Similar to software applications, an FPGA framework 

should include infrastructure to facilitate high level 

control/(re)configuration and status facilities.  Control 
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capabilities like interrupts and register banks for component 

reconfiguration are examples of common infrastructure that 

can be reused across components and applications.  In 

addition, components require access to different memory 

structures through arbiters and other types of memory 

controllers.  This commonly used and reusable memory 

infrastructure should be developed and ready for integration 

into the developer’s application. 

 

3.5. Component Interconnect 

 

Leveraging common interfaces for component 

implementation allows developers to reuse control and 

streaming data fabrics like muxes, FIFOs, dual port 

memories, arbiters, and other component to component 

interconnect.  The FPGA framework should not only 

provide the most commonly used interconnect infrastructure, 

it should also provide some less commonly used, like 

common interface adaptors to translate between different 

common interfaces standards, data serializers, de-serializers, 

and other data reshape, and multi-channel interconnect.  

Further enhancements can be made to the component 

interconnect by providing a control interface allowing real-

time reconfiguration and switching.  This infrastructure is 

well tested, documented, and proven to meet specified 

implementation requirements. 

 

3.6. Third Party IP 

 

Reusing existing functional IP is invaluable for rapid 

application development. Existing IP is design ready.  It has 

been fully tested and validated.  It should be well 

documented with performance metrics and resource 

utilization stated clearly.  Third party IP should be 

implemented using a common interface so the developer 

does not have to adapt the IP to his application.  In addition, 

it is very valuable to have a tool that aids in the definition 

and configuration of IP similar to Altera’s Mega Wizard.   

Pretty much any type of IP can be purchased from many 

different companies at varying levels of quality.  Some of 

these may include soft micro-processor cores, like the NIOS, 

peripherals interfaces like DDR and PCI, signal processing 

IP like filters and FFT functions, and communications IP 

like modulators and encoders. 

 

3.7. Integration Software 

 

Once a component has been developed and unit tested, it is 

necessary to integrate it into the application.  When using 

components implementing a common interface, the tedious, 

error prone task of integration can easily be generated using 

design integration software.  The interconnect fabric for 

control and memory, and the point to point streaming data 

connections should also be generated.  This software should 

allow developers to import custom components for quicker 

application integration. 

 

3.8. Software Programmable Reconfiguration 

 

Figure 6 represents an FPGA application based on the 

framework discussed previously.  Common interfaces are 

utilized throughout the application making up the API for 

communication across both control/memory and data planes.  

Supplied infrastructure provides the component interconnect 

and supporting control/configuration and memory 

management capabilities.  External interface IP connects the 

waveform application to the outside world while processing 

utility libraries and third party IP reduce component 

development efforts. All in all, implementation effort, cost 

and risk are substantially reduced so developers can focus 

on implementing waveform specific components, leaving 

even the integration process to special integration software. 

Figure 6: Typical Design Diagram 

 

 Even with the benefits mentioned above, FPGA 

applications lacking reconfiguration support can carry a 

significant cost during field test, measurement, and eventual 

deployment.  Each time an adjustment needs to be made, the 

application is usually sent back to the lab for replacement or 

rework.  Oftentimes, this can require significant redesign.  

An application built on an FPGA framework utilizing 

reconfigurable components with supporting infrastructure 

provides the flexibility to adapt to a field environment, thus 

minimizing rework expense.   

 Integrating a soft core micro-processor, like the NIOS, 

provides reconfiguration to aid in field testing and 

measurement.  Reconfiguration only requires a simple 

register write or other simple software switch.  In addition, 

applications supporting SPR with an integrated soft core 
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micro-processor can utilize ethernet, offering remote 

software control, reconfiguration, status, and visualization. 

 

4. BITTWARE SPR DEMO 

 

In an effort to explore the benefits of an FPGA framework 

supporting SPR, BittWare and Altera have invested in the 

implementation of a reference application.  This task 

required the utilization of common interfaces in the 

development of portable infrastructure IP, and waveform 

specific IP.  Combined with third party IP, an existing NIOS 

soft core implementation, and beta integration software, an 

SPR reference design was created.   

 Figure 7 provides a high level view of the application 

running on a BittWare B2-AMC board connected via LVDS 

to Altera’s Cyclone III Starter Kit.  A GUI was developed 

for reconfiguration and data visualization.  Commands can 

be sent over a wireless ethernet connection from the GUI to 

a NIOS soft core micro-processor which then directs it to the 

correct destination.  A TigerSharc DSP was used to source 

and sink data through the system, simulating the ADC/DAC 

interface, and a Stratix II FPGA acts as the bridge between 

the B2-AMC and the Altera Cyclone III Starter Kit (shown 

in Figure 8).  The most interesting part of the demo is the 

software reconfigurable waveform application built using 

the Atlantis FPGA Framework developed by BittWare.  The 

application is simply three waveform components, a mixer, 

filter, and an FFT.  Each of the components is fully 

reconfigurable from the GUI.  The mixer has an adjustable 

LO frequency, the filter has three different filter banks that 

can be chosen, and the FFT can operate at five different FFT 

block sizes.  In addition, the streaming data fabric is a fully 

reconfigurable interconnect, allowing the streaming data 

path to change, bypassing or including any of the waveform 

components. 

 The complete FPGA implementation effort took one 

engineer a total of 18 weeks, full time.  A listing of task 

distribution follows. 

 

• 1 week – learning Avalon common interface and 

working out kinks in understanding use cases 

• 4 weeks – implementing and testing component 

interconnect infrastructure IP 

• 2 weeks – implementing and testing control/config 

and memory management infrastructure IP 

• 1 week – implementing processing utility libraries 

• 5 weeks – implementing and testing external 

interface IP 

• 1 week – reading 3rd party IP specs and properly 

generating IP and implementing application 

specific components using 3rd party IP 

• 2 weeks – writing common interface wrappers 

including configuration and status interface for 3rd 

party IP 

• 1 week – writing and verifying component 

integration since immature integration software 

proved to have limitations 

• 1 week – performing test and measurement of the 

application for data path scaling and optimization 

purposes 

 

 With a developer framework in place, this 18 week task 

would have reduced to 6 weeks.  By taking out the one week 

learning curve for common interfaces, as it is only required 

once per engineer, using more mature integration software, 

and obtaining 3rd party IP fully supporting common 

interface streaming data and reconfiguration, the schedule is 

reduced by another four weeks.  That leaves just two weeks 

of actual implementation effort focused on the waveform 

specific components.  Adding and removing components 

from this application, now that the developer framework is 

in place would take nominal effort beyond the development 

of the component itself.  

 

5. FUTURE WORK 

 

The FPGA framework, design methodology and toolset 

discussed in this paper is not limited to Software Defined 

Radio applications.  In fact, European companies are now 

discussing what they have also called, SDR, Software 

Defined Radar.  Image processing and sensor networks are 

Figure 7: SPR Demo Implementation 

Figure 8: Cyclone III Design Diagram 
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also struggling with the same difficulties in FPGA 

development as the Software Defined Radio community.  By 

adopting an FPGA framework supporting software 

programmable reconfiguration as described in this paper, 

any application requiring FPGAs will benefit significantly.  

As the use of FPGAs continues to grow, BittWare will adapt 

this methodology and supporting tools to meet industry’s 

varied needs. 

 BittWare is committed to the goal of adding significant 

value to SDR applications beyond top notch FPGA compute 

platforms.  By providing a stable, reusable, well defined 

FPGA framework, supporting SPR, implementation 

engineers can once again focus on their application specific 

IP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 

 

As FPGA technology continues to improve, gates and 

computational resources will become cheaper and cheaper.  

Developers can be well positioned for the future by utilizing 

FPGAs intelligently.  With an FPGA framework supporting 

the concept of SPR, the abstraction level of FPGA 

development can be raised, similar to that of a software 

application running on a micro-processor with peripheral 

support.  This scalable FPGA framework allows for an 

increase in application complexity, even mapping directly to 

an ASIC flow, and most importantly, enables rapid 

development of SDR applications within budget constraints. 
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