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ABSTRACT 
 
Continuous services improvement for Software Defined 
Radio system leads to use non Corba capable devices such 
as DSP and FPGA to meet the data rate requirements. The 
current version of the SCA (Software Communication 
Architecture) which provides solution for GPP 
implementation does not covered properly FPGA platform 
even if latest releases introduces MHAL [1] concept.  This 
paper describes some results achieved in using partial 
reconfiguration Virtex capabilities. We focus especially on 
the technologies to manage partial reconfigurability on non 
Corba enabled devices. 
 
 

1. INTRODUCTION 
 
JTRS program since the end of the 90’s tried to define 
common approach to facilitate the portability of waveform 
and the reconfigurability of a SDR receiver. The objective is 
to be able to port any waveforms onto any platform. This 
leads to the SCA [2] and Core framework concepts suitable 
for pure SW component such as GPP. Application of this 
approach to DSP is under progress and preliminary analysis 
and proposal has been raised for FPGA and several 
upstream programs work on this topics. FPGA technology 
provides intrinsic reconfiguration capability but full 
configuration is time consuming and in most of the cases 
does not meet the system availability requirement. 
 
The paper focuses on the partial reconfiguration technology 
and process itself and not on the portability features. It 
presents briefly the targeted architecture and the applied 
design flow to use partial reconfiguration. HW and SW 
architecture implemented within the SoPC are described. 
We conclude by the perspective offered by this technology 
and by an identification of complementary upstream studies 
to be held to solve the remaining key issues.  
 
 

2. PLATFORM OVERVIEW 
 
The demonstrator platform is based upon a ML405 
evaluation board delivered by Xilinx composed by a Virtex-
4 FX20 component and several transceiver components for 
connectivity purpose such as USB, Ethernet, … .The board 
provides also audio and video facilities. An overview of the 
physical demonstrator and its environment is provided 
below (fig 1). 
 

 
 

Figure 1: Demonstrator overview 
 
2.1. Hardware architecture 
 
The HW architecture is build around the PPC405 embedded 
within the FPGA FX20 devices. Classical interfaces are 
directly managed by the core and the embedded SW. The 
reconfigurable module is plugged onto the OPB bus and 
fully drives the audio interface.  
 
The FPGA is the main component of the demonstrator. 
Indeed, the Virtex-4 FX includes a PowerPC 405 that 
controls: 

WEBCAM 
 VIDEO 
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• The partial dynamic reconfiguration through the 
Internal Configuration Access Port (ICAP). 

• The non-stop display of a video controlled by the 
PPC 405,  through  the camera connected on the 
USB controller and the TFT screen connected on 
the VGA chipset. 

• The dialog with the GUI residing on the laptop by 
Ethernet link. 

• The SystemAce chip which allows the PowerPC 
405 to access to a Compact Flash memory which 
hosts the Operating Environment (OS, …). 

• Audio processing modules 
 
Concerning the audio processing part of the demonstrator, 
the FPGA includes a controller which manages the AC97 
Codec chip. A microphone and a speaker are connected to 
this chip. The AC97 Codec is used as a ADC/DAC. The 
audio processing module resides on a dynamic 
reconfigurable region of the FPGA so the user can change 
audio effects on the voice by activating the partial 
reconfiguration. 
 
2.1. Software architecture 
 
The software architecture of the demonstrator aims to 
provide an architecture compliant with SCA and which 
enables to take advantage of the Xilinx Virtex 4 partial 
reconfiguration technology. The Operating Environment is 
based on the Linux Monta Vista Operating System, MICO 
ORB the Thales CoreFramework. 
 
The SCA enables applications (typically radio waveforms) 
to be deployed dynamically into a hardware platform. The 
hardware platform is abstracted by a set of software 
components named logical devices in the SCA 
specifications. These logical devices have two functions: to 
enable applications to access to hardware resources in an 
independent way of their implementation, and to enable to 
load and to execute software on processors of the platform 
(GPP, DSP, FPGA). Management of application 
deployment is realized by another software module named 
Core Framework (CF). When the CF has to deploy an 
application, it relies on the logical devices present in the 
platform to load and to execute components of the 
application on the different processors of the platform. 
 
Architecture of the demonstrator focalizes on the definition 
and the realization of an SCA compliant logical device 
which enables a CF to load partial bitstreams in FPGA 
reconfigurable areas. First element is to define the 
granularity of device(s) compared to the number of 
reconfigurable areas. It is possible to make one SCA logical 
device to reconfigure all areas, or a device for each area. 

The second option was chosen for the demonstrator. This 
option enables to define a more flexible architecture. It is 
easier to adapt the architecture when the number of 
reconfigurable areas changes, it just has to be added or 
removed an instance of the device. 
 
Software architecture of the demonstrator is composed of 
FPGA Area Devices to load dynamically partial bitstreams 
in reconfigurable areas, a GPP Device to load and to 
execute software on PPC 405 and of a CF software which 
manages deployment of applications on reconfigurable 
areas and on PPC 405 GPP. 
 

 
Figure 2: Detailed HW/SW architecture 

 
In the demonstrator, only one reconfigurable area was 
defined, so only one FPGA Area Device was instantiated. It 
enables the CF to load dynamically the content of its 
corresponding reconfigurable area, using the ICAP driver 
located in the operating system. 
 

3. DESIGN FLOW 
 
Standard design flow is dedicated to generate complete 
bitstream not taking into account partial reconfiguration. To 
succeed in using this innovative technology dedicated 
approach has to be applied. The main issue is related to the 
physical view of the module and more precisely the 
“footprint” i.e. the physical interface of the partial 
reconfigurable module must be identical for the different 
versions and the static design could be considered as a 
socket.  
 
In this paragraph, we will present the hardware workflow 
and provide general guidelines to develop reconfigurable 
platform. The figure below shows the hardware design flow 
and the tools used at each step: 
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Figure 3: Design flow 
 
Step 1 – HDL description & behavioral simulation 
Partial reconfiguration requires a hierarchical design 
approach that must be strictly followed during the HDL 
coding process. Global logic such as IO buffers, clock 
buffers and DCMs must be in the top-level design unit. 
Multiple base design modules and partially reconfigurable 
modules are instantiated as black boxes in the top-level 
module. In our case, the system integrates a PPC405 sub-
system generated by EDK tools from Xilinx [3], [4] and 
completed by our own content. However, the instantiated 
DCM required by the processor and the SDRAM controller 
have been displaced from the intermediate level to the top-
level.The reconfigurable modules cannot contain any clock-
related primitives. 
 
All PR modules for a given reconfigurable region must be 
pin compatible with each other, i.e. have the same port 
definitions and entity names. Consistent naming allows each 
of the PR modules to be linked from the same top-level 
description.  
 

At this time, the complete VHDL model is available to 
perform the behavioral simulation and to verify that the 
functional requirements are met. The reconfigurability 
aspect is not managed here; all the versions of the 
reconfigurable modules have to be validated separately. 
 
Step 2 – Modular RTL synthesis 
The PR flow requires separated netlists for each module and 
preserved hierarchy at the top-level.All the modules 
instantiated at the top-level are synthesized one at a time in 
macro mode (no automatic IO insertion) using standard 
synthesis tool. The various IP used is generated by EDK or 
the Coregen utility from ISE.  
 
Step 3 – Bus macros insertion & top-level synthesis 
As previously explained, the physical footprint of the 
module must be unchanged for the various configurations of 
the module. Specific cell, called Bus macros (BM) , have 
been created by Xilinx in order to lock the routing between 
the PR modules and the static part of the design. BMs are 
slice-based pre-placed and pre-routed hard macros that can 
handle up to 8 bits of data in a fixed direction and offer an 
enable control. These bus macros are inserted on every 
signal of the PR modules interfaces, except for the global 
signals such as clocks. The type of bus macro is mainly 
chosen depending on topological criteria (edge of the PR 
region, signals direction). 
 
The structural top-level HDL description – a collection of 
black boxes instantiations – is synthesized. 
 
Step 4 – Floorplanning 
The PR implementation flow is tightly driven by placement 
constraints provided in the User Constraints File (UCF).  
PlanAhead is a graphical floorplanning tool able to create 
these constraints. 
 
A PlanAhead project is created for each version of the PR 
modules. The netlists are imported in the tool just as the 
initial IO location constraints. 
 
PlanAhead brings the notion of “Pblock“. A Pblock gathers 
one or more design units on which a set of attributes may be 
assigned. The PR modules are Pblocks characterized by an 
area range and a “RECONFIG” mode. The range allocated 
to a PR Pblock must encompass all the logic resources 
needed for the module. PlanAhead is able to estimate the 
amount of required/available resources in a given Pblock. 
All the static modules belong to the same Pblock which 
does not have any area range attribute. 
 
All the Virtex-4 primitives instantiated in the top-level 
netlist have their location to be locked. It is particularly the 
case for the clock primitives (DCMs, BUFG) and the bus 
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macros. In PlanAhead, this task is performed by dragging 
and dropping the primitives onto the floorplan view. 
 
At this stage, PlanAhead performs a design rule check in 
order to identify potential violations hard to fix during the 
P&R. Afterwards, PlanAhead exports all the data required 
by the place & route step. The “Partial Reconfig. Mode” has 
to be used to perform this export. All the information are 
stored in the final UCF file. 
 
Step 5 – Non-PR implementation & timing verification 
This step is crucial for design debug, aids initial timing and 
placement analysis, and helps in determining the best area 
range and bus macros locations. 
 
The place & route process can be driven by PlanAhead after 
the design has been exported in “Area mode”, or performed 
by means of Xilinx ISE tool. Because the PR flow does not 
provide any simulation model, a post place & route 
simulation can only be achieved at that time. 
 
Step 6 – PR implementation 
PlanAhead is used again to manage the PR implementation 
after the design has been exported in “Partial Reconfig. 
mode”. For each step of the PR flow, the designer has to 
customize some parameters and PlanAhead launches the 
Xilinx implementation commands in batch mode. 
 
The Budgeting step builds a skeleton of the top-level 
design. 
The Static Logic Implementation step performs the place & 
route of the non reconfigurable part of the design, including 
the PPC405 sub-system and the ICAP primitive used in the 
reconfiguration of the FPGA. The PR Module 
Implementation step performs the place & route of ONE 
version of the reconfigurable modules.  
 
The final Assemble step merges the static part and all the 
PR modules to create bit files for configuring the FPGA. 
The PR flow provides a full bitstream for the initial 
configuration of the FPGA and, for each PR region, a 
partial bitstream corresponding to the implemented module 
plus a blank bitstream intended to “clean” the PR region. 
 
Once the PR flow parameterization is well settled, 
PlanAhead can generate script files which could be used to 
generate new version of the design  
 
Step 7 – Platform integration 
This step consists in finalizing all the files to load onto the 
target board. The various operations are managed by script 
files based on standard Xilinx commands (data2mem, 
promgen). The boot software is incorporated into the full 
bitstream which will be stored in the configuration memory 

connected to the FPGA. The application software is 
programmed in the flash memory. At start up, the boot 
software copies the application software to the SDRAM and 
launches its execution. The partial bitstreams are arranged 
in a dedicated table located in the flash memory. The 
application software reads the reconfiguration data in the 
flash memory and sends them to the ICAP. 
 
The design flow described above is operational and allow to 
develop reconfigurable devices even if some limitations still 
exist in the various tools due to their youth. Strong 
improvement has been achieved during the last years. 
 
 

4. RESULTS AND PERSPECTIVES 
 
The feasibility of dynamic on the fly reconfiguration has 
been assessed by this demonstrator leading to really flexible 
solution. Issues are related to the complete design flow and 
mainly the SW version consistency. Indeed, the 
reconfigurability is managed by the PPC and the SW stack 
running on it. The ICAP driver generated by the HW design 
flow should be compliant with the OS, CoreFramework and 
the ORB running on the power PC. Furthermore, stack layer 
for standard IP such as Ethernet, USB provides also some 
constraints in term of SW configuration. Prospects relative 
to the SDR demonstrator with FPGA partial reconfiguration 
are multiple. 
 
The main result of the study is the proof of the concept, i.e. 
it is possible to use the FPGA partial reconfiguration 
technology in an SDR environment. 
 
Integration of this technology in SCA-compliant 
architectures enables to reduce time necessary to reload 
FPGA firmware. This is important, as requirements for time 
of boot and waveform switching is very constrained in SDR 
terminals, especially when it is compared with previous 
legacy terminals. It also enables to reduce size of memory 
necessary to store the firmware, because only firmware 
which is loaded dynamically has to be stored with other 
waveform parts. The optimization of the FPGA size leads to 
a static power consumption reduction compared to a 
complete  
 
This solution also offers the possibility to reduce the Bill-
of-material as the size of the FPGA could be optimized 
embedding only the treatment used at each time. A multi-
waveform terminal could take advantages of such 
technology which allows to download transparently one 
business code in parallel of the current execution of another 
one. 
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To extend down to hardware the SCA approach of 
portability, interoperability and reconfigurability of 
components based waveform applications, a unified 
specification/design flow and execution environment have 
to be provided to developers by SDR platforms. 
 
System and user services provided and required between 
HW and SW components ports should be defined 
independently of target programming languages thanks to 
IDL or Xilinx Specific Language (DSL approach). 
 
In a more conceptual view, the possibility to load 
dynamically and partially a firmware in an FPGA can be 
considered as a first step to design this firmware in a more 
global software approach. For example, design of firmware 
can be integrated in a Model Driven Architecture (MDA)/ 
Model Driven Engineering (MDE) or even in an approach 
based on a component framework. 
 
  
 

5. CONCLUSION 
 

Dynamic partial reconfiguration provides really flexible 
approach to deploy SDR terminal. Remaining actions have 
to be performed to stabilize the SW environment and to 
achieve a consistent design environment including HW-SW 
tools and drivers). Second main issue is related to the 
connectivity to achieve a transparent deployment i.e. extend 
the SW abstraction approach down to the HW. 
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