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ABSTRACT 
 
 Mathematical modeling tools for the signal processing 
chain are commonplace in the toolboxes of SDR (Software 
Defined Radio) developers. Typically, engineers model the 
physical layer of the waveform with these tools. Once the 
engineer is satisfied with the simulated behavior, the model 
is manually translated into high-level source code for DSP, 
FPGA, and GPP targets. The source code then is extended 
to behave as required with respect to the SCA standard. 
 Manual workflows are the norm in the development of 
SCA based Software Defined Radio. In this paper, we 
describe the work done by a consortium of BAE Systems, 
Virginia Tech University, The MathWorks, Xilinx, and 
Zeligsoft to look at automating this development process. 
 We look at rapid prototyping of waveforms through 
model-based design of both signal processing and 
component-based functionality. We discuss how the 
different models are related and how they can be used for 
automatic generation of required artifacts.  
 
 

1. INTRODUCTION 
 
 Currently, SDR development is mostly a manual 
process. A team of engineers from very different 
backgrounds—such as signal processing, software 
engineering, and hardware engineering—labor together to 
develop the radio.  Model-based design tools have been 
introduced in the different disciplines to assist these 
engineers with the tasks required to deliver the radio. 
However, these tools really only look at a single domain 
(signal processing, software engineering, or hardware 
engineering). Each tool allows engineers to model and 
validate their work, and generate artifacts, but these artifacts 
don’t always easily combine with the work done in the other 
domains. 
 In this paper, we look at model-based design from a 
signal processing and SCA perspective.  We investigate 
how these models can be used to rapidly prototype and 
build an SCA-compliant waveform (application) for a 
mixture of General Purpose Processors (GPP), Digital 
Signal Processors (DSP), and Field Programmable Gate 
Arrays (FPGA). 

 Traditionally, signal processing engineers have used 
tools such as The MathWorks Simulink [4] to model and 
simulate signal processing functionality. Both the sending 
and receiving parts of the waveform are modeled.  Error 
patterns are injected so the performance of the waveform 
can be evaluated. Once engineers are satisfied that the 
waveform is sufficiently modeled, they manually translate 
the modeled behavior into source code. 
 This manual translation is a laborious process and a 
frequent source of errors. However, many mathematical 
modeling tools have built-in translation engines that can 
take the mathematical models and translate them straight 
into source code. This automatic translation increases 
efficiency and removes the manual translation step. 
 Additional modeling tools (for example, Zeligsoft’s 
Component Enabler [2]) can model the SCA aspects of a 
waveform. These tools can translate the SCA aspects into 
artifacts—such as source code and XML descriptor files—
required for SCA applications. 
 An integration between signal processing and SCA 
tools could combine the output of these two tools and 
directly generate SCA-compliant components with the full 
signal processing behavior. This would allow engineers to 
rapidly take the mathematical models, compile them into 
SCA-compliant components, and execute them on an SCA-
compliant radio platform. However, at this time the 
integration between the signal processing model and SCA 
model is not available commercially. 
 A consortium of BAE Systems, Virginia Tech 
University, The MathWorks, and Zeligsoft has been 
investigating the integration described above. In this paper, 
we report on progress in this activity. We describe a process 
for developing mathematical models in The MathWorks' 
Simulink and then wrapping these models with source code 
generated from the Zeligsoft Component Enabler for 
execution in an SCA Core Framework (CF). 
 We also document the advantages and limitations of 
these tools and suggest future work to further accelerate 
SDR development. 
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2. BENEFITS OF MODEL-BASED DESIGN 
 

 The complexity of functionality in Software Defined 
Radios has been rising steadily. Engineers have been using 
mathematical modeling tools to manage this complexity. 
These modeling tools provide engineers with a way to 
visually describe the signal processing behavior of a 
waveform.  
 Modeling tools provide toolboxes containing default 
algorithms that can be used to rapidly create a waveform. 
Examples of this include different types of decoding or 
error correcting algorithms, source and sink for signals, 
error simulation, and so forth. Engineers can quickly model 
the desired behavior of a waveform with the standard 
toolboxes; they can also define their own algorithms and 
add them into the signal processing chain. Figure 1 contains 
a simple example of a signal processing waveform. 
 

Figure 1: Simple example of a signal processing model 

 
 The processing chain can then be simulated and 
analyzed to see how much signal distortion would still allow 
uninterrupted data and voice transmissions. The end result 
is a complete description of the signal processing behavior 
of the radio. This is also referred to as ‘the golden 
waveform.’ 
 This method of designing signal processing behavior is 
referred to as model-based design.  It is not new. Engineers 
have been using model-based design for years with great 
success. However, engineers would frequently model the 
waveform, and once the design has been sufficiently 
validated through simulation, manually implement the 
functionality on DSP, FPGA, and GPP processors. This 
manual step is not only laborious, but is also a major cause 
of how errors can slip into the implementation. 
 Modern model-based design tools now include an 
automatic translation from the graphical model to 
executable source code for a large class of DSP, FPGA, as 
well as GPP processor cores. This approach provides a 
number of direct benefits, including 

• removing the possibility of error introduction  

• significantly saving development time, since the 
manual step has been completely replaced by 
automation  [1] 

• removing the need for signal processing engineers 
to be intimately familiar with the development 
language for the processor 

 There are two more benefits that are less clear, yet 
definitely deserve some attention. 
 The first benefit is the option to perform hardware-in-
the-loop simulation. Engineers can execute part of the 
behavior of the model on actual target hardware. This 
ensures that the automatically generated implementation 
performs as expected. 
 The second benefit is that the design model describes 
the algorithm completely independent of the processor that 
executes that algorithm. As such, it is an excellent way to 
ensure platform independence. The model can be translated 
to run on multiple platforms: GPP-, DSP-, or FPGA-based. 
This translation can often be completely or partially 
automated. The important implication of this realization is 
that model-based design provides platform independence at 
the model level, rather than at the source code level. 
 

3. APPLICATION TO THE SCA 
 
 As stated in the previous section, model-based design 
has significant benefits in developing signal processing 
functionality. The question now is how this model-based 
design applies to applications that must adhere to the 
Software Communications Architecture (SCA). 
 The SCA treats applications as assembled and 
connected pieces of individually downloadable 
functionality. These pieces of functionality are referred to as 
components. A component can be executed on a GPP, DSP, 
or FPGA processor. An SCA-compliant platform consists of 
a number of processors; each processor can execute zero or 
more components. These components are then connected 
together through common communication buses such as 
CORBA, RapidIO, VME backplane connections, and so 
forth. SCA applications can also be graphically modeled, as 
shown in Figure 2.
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Figure 2: Component model of a sample waveform  

 
 Typically the signal processing model accounts for a 
small part of the SCA mode—only the physical layer, as 
mentioned above. Nevertheless, this is a very important part 
of the software stack. Comparing the models in Figure 1 
and Figure 2 begs the question as to how they are related. 
Figure 1 displays the signal processing content that 
comprises a part of the model in Figure 2. 
 Figure 1 displays the componentization of the software 
model.  The visual representation defines how the 
components communicate together to deliver the full 
application (waveform) functionality. The application needs 
to be executed on a platform. This is graphically represented 
in Figure 3, where each component from Figure 2 is 
mapped to a processor (a device in SCA-language) on one 
of the boards of a Spectrum SDR-3000 [5]. Each of the 
devices in Figure 1 represents a GPP, DSP, or FPGA 
processor. 
 Each of the components in Figure 2 has related 
implementations that provide compiled binary code that 
implements  the functionality of the component on a 
specific device (GPP, DSP, or FPGA). 
 The behavior modeled in the signal processing model 
(Figure 1) needs to be mapped to the component model in 
Figure 2. Typically, it maps the entire signal processing 
behavior into a single ‘physical layer’ component (Figure 
2). However, this raises a few questions. Most notably, 
which device will the component be executed upon.  
Usually, this is a DSP or FPGA. Another important question 
is whether this device has the capacity to run all the signal 
processing content. If not, then we have to split Figure 1 
into multiple components and map them to multiple devices. 

 This investigation becomes even more complicated if 
we want to execute the model on multiple, completely 
different platforms. The two step mapping of parts of Figure 
1 to components in Figure 2 to devices in Figure 3 turns into 
a puzzle with multiple solutions. Each of the solutions to the 
puzzle will have certain performance characteristics, which 
need to be evaluated to ensure the implementation provides 
the performance required. 
 No tooling currently exists to facilitate this mapping 
(see also Section 5 on Further Tool Integration). The 
mapping is typically done by experienced engineers who 
have a complete understanding of the waveform 
requirements, as well as the platform offerings. 

Figure 3: Deploying the FM3TR waveform to the SDR-3000 

 
 

4. COMPONENT WRAPPERS 
 

 Once all models have been sufficiently developed, it is 
time to build all the artifacts that the SCA requires for the 
waveform. The artifacts can be divided into two classes: 
XML descriptor files (the Domain Profile in the SCA 
lexicon) and the implementations for the components. 
 The XML descriptor files can be directly generated 
from the model in Figure 2. This is another instance of 
model-based design. Tools exist that can perform the 
translation of the graphical component model straight into 
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the required XML descriptor files, without further human 
intervention. 
 Creating the implementation files for the components 
requires more effort. The signal processing behavior for the 
components is already given in Figure 1. However, the SCA 
requires that the components implement extra SCA-specific 
interfaces. These SCA-specific interfaces are required so 
that the SCA middleware (the Core Framework) can 
configure and control the components (through, for 
example, messages such as start and stop, as well as 
configuration parameters). 
 The model in Figure 2 contains sufficient information 
to generate the code that implements these SCA-specific 
interfaces. This code is often referred to as ‘component 
code’ or ‘SCA wrapper code.’ The only information that is 
missing is the connection between the behavior in Figure 1 
and Figure 2. This is accomplished with a small amount of 
code, which merges these two models together. 
 The code required for the components depends on the 
device that the component executes on. The SCA standard 
is very clear on how to manage components on GPP 
processors, but it does not provide guidance for DSP and 
FPGA components. In this paper, we focus on how to 
integrate the two models for components executing on a 
GPP. Further work is required to experiment with 
generation for DSPs and FPGAs.  
 Components on a GPP use CORBA for 
communications between components. The component 
wrappers have to perform the following tasks: 

• receive input data from CORBA buffers 
• format this input and pass it to the functional block 
• run the functional code to produce an output  
• repackage the output into CORBA compatible 

packets 
• translate SCA control messages such as start, run, 

and stop into control signals recognized by the 
signal processing code 

 
 Several simple models were implemented to test these 
ideas. The system model was developed using The 
MathWorks Simulink. The Real-Time Workshop package 
provides users with the ability to generate C/C++ source 
code from a Simulink model. There are a variety of target 
platforms to choose from; however, we only experimented 
with the GPP. 
 The SCA CF files were generated using Zeligsoft 
Component. Component code in C++ was generated for 
each component to provide an SCA-compliant CORBA 
interface. Short segments of wrapper code were then written 
and inserted into the component code. These wrappers 
receive data from CORBA, pass it to the functional model, 
run the model to generate an output, and then repackage the 
output to match the expected CORBA interface. They 

typically consist of several lines of simple and 
straightforward C code. 
 Several simple waveforms were generated for testing 
purposes. The OSSIE SCA CF [3], developed at Virginia 
Tech, was used to deploy these test waveforms on a GPP 
platform. Each component was able to properly deploy on 
the platform, process the input data, and communicate its 
results along the data path. 
 

5. FURTHER TOOL INTEGRATION 
  
 Sections 3 and 4 describe in theory and in limited 
practice how to integrate the signal processing aspect and 
the SCA aspect of components. What is really needed, 
however, is a fully integrated tool chain. 
 Automating the details of the integration between tools 
is clearly on the list of further work; the following section 
highlights this in greater detail. However, there are still a 
number of questions to discuss. 
 As stated above, signal processing engineers work on 
the ‘golden waveform,’ the signal processing behavior of 
the waveform. Hardware engineers work on the details of 
the platform: the processors, the buses, and the AD and DA 
converters. Software engineers work on the hardware 
abstraction layer that allows the hardware to execute 
components (the ‘BSP’). Software engineers also work on 
the higher level architecture, the components and their 
interconnections. The components cover both the ‘golden 
waveform,’ as well as higher order logic, which manages 
functionality like TCP/IP routing and so forth. 
 There is a mapping of pieces of the ‘golden waveform’ 
combined with higher order logic (1) to components (2) to 
hardware abstraction layer (3) to actual hardware (4). Each 
mapping is N-to-1 and has multiple possible solutions.  
Only a select few mappings actually lead to a correctly 
functioning waveform. 
 Now, how can we improve tooling to help engineers 
(be it signal processing, software, hardware, or systems 
engineers) design and evaluate all these mappings. The 
mappings cover multiple and very different domains—from 
mathematical signal processing, through software 
engineering to hardware design. Significantly more work is 
required to understand how the total end-to-end 
development process of signal processing, software, and 
hardware can be further integrated. 

 
6. CONCLUSIONS AND FUTURE WORK 

 
 Modern model-based design tools provide an excellent 
approach for the rapid prototyping of SCA radios. The 
model-based design philosophy is a good match for the 
ideals of the SCA, including code reuse and platform 
independence. The combination of mathematical modeling 
tools, SCA interface tools, and automatic code generation 
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allow system architects to quickly and easily progress from 
a system model to a running implementation. 
 The mixture of modeling tools is required since no one 
tool can provide a complete solution. Some hand coding is 
required to tie together the automatically generated 
functional blocks with the SCA interfaces. Automating the 
creation of these wrappers would provide a seamless 
transition from system model to implementation. 
 In this paper, we focused on solutions for GPP-based 
systems. Unfortunately, these platforms lack the processing 
power to manage waveforms that require high sampling 
rates. Specialized hardware, including DSPs and FPGAs, 
are typically called upon to provide the extra processing 
power in these situations.  The SCA standards for 
implementing functionality on these devices, however, are 
not well-defined. In order for work to progress on 
developing wrapper structures for these platforms, the 
interfaces need to be standardized. With a common set of 
interfaces, wrappers could be generated for these 
specialized processing devices following the same 
principles as GPP-based design. 
 Vendors are already at work integrating signal 
processing and SCA tools.  Solutions are expected to 
become available soon. The larger problem, as explained in 
Section 5, has not yet received significant attention. 
Building entire waveforms still requires significant manual 

development in a variety of separate, non-integrated tools.
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