

RAPID PROTOTYPING FOR SCA

Mark Hermeling (Zeligsoft Inc; Gatineau, QC, Canada; mark@zeligsoft.com);

Justin Rice (Virginia Tech; Blacksburg, VA; ricej@vt.edu)

ABSTRACT

 Mathematical modeling tools for the signal processing
chain are commonplace in the toolboxes of SDR (Software
Defined Radio) developers. Typically, engineers model the
physical layer of the waveform with these tools. Once the
engineer is satisfied with the simulated behavior, the model
is manually translated into high-level source code for DSP,
FPGA, and GPP targets. The source code then is extended
to behave as required with respect to the SCA standard.
 Manual workflows are the norm in the development of
SCA based Software Defined Radio. In this paper, we
describe the work done by a consortium of BAE Systems,
Virginia Tech University, The MathWorks, Xilinx, and
Zeligsoft to look at automating this development process.
 We look at rapid prototyping of waveforms through
model-based design of both signal processing and
component-based functionality. We discuss how the
different models are related and how they can be used for
automatic generation of required artifacts.

1. INTRODUCTION

 Currently, SDR development is mostly a manual
process. A team of engineers from very different
backgrounds—such as signal processing, software
engineering, and hardware engineering—labor together to
develop the radio. Model-based design tools have been
introduced in the different disciplines to assist these
engineers with the tasks required to deliver the radio.
However, these tools really only look at a single domain
(signal processing, software engineering, or hardware
engineering). Each tool allows engineers to model and
validate their work, and generate artifacts, but these artifacts
don’t always easily combine with the work done in the other
domains.
 In this paper, we look at model-based design from a
signal processing and SCA perspective. We investigate
how these models can be used to rapidly prototype and
build an SCA-compliant waveform (application) for a
mixture of General Purpose Processors (GPP), Digital
Signal Processors (DSP), and Field Programmable Gate
Arrays (FPGA).

 Traditionally, signal processing engineers have used
tools such as The MathWorks Simulink [4] to model and
simulate signal processing functionality. Both the sending
and receiving parts of the waveform are modeled. Error
patterns are injected so the performance of the waveform
can be evaluated. Once engineers are satisfied that the
waveform is sufficiently modeled, they manually translate
the modeled behavior into source code.
 This manual translation is a laborious process and a
frequent source of errors. However, many mathematical
modeling tools have built-in translation engines that can
take the mathematical models and translate them straight
into source code. This automatic translation increases
efficiency and removes the manual translation step.
 Additional modeling tools (for example, Zeligsoft’s
Component Enabler [2]) can model the SCA aspects of a
waveform. These tools can translate the SCA aspects into
artifacts—such as source code and XML descriptor files—
required for SCA applications.
 An integration between signal processing and SCA
tools could combine the output of these two tools and
directly generate SCA-compliant components with the full
signal processing behavior. This would allow engineers to
rapidly take the mathematical models, compile them into
SCA-compliant components, and execute them on an SCA-
compliant radio platform. However, at this time the
integration between the signal processing model and SCA
model is not available commercially.
 A consortium of BAE Systems, Virginia Tech
University, The MathWorks, and Zeligsoft has been
investigating the integration described above. In this paper,
we report on progress in this activity. We describe a process
for developing mathematical models in The MathWorks'
Simulink and then wrapping these models with source code
generated from the Zeligsoft Component Enabler for
execution in an SCA Core Framework (CF).
 We also document the advantages and limitations of
these tools and suggest future work to further accelerate
SDR development.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

2. BENEFITS OF MODEL-BASED DESIGN

 The complexity of functionality in Software Defined
Radios has been rising steadily. Engineers have been using
mathematical modeling tools to manage this complexity.
These modeling tools provide engineers with a way to
visually describe the signal processing behavior of a
waveform.
 Modeling tools provide toolboxes containing default
algorithms that can be used to rapidly create a waveform.
Examples of this include different types of decoding or
error correcting algorithms, source and sink for signals,
error simulation, and so forth. Engineers can quickly model
the desired behavior of a waveform with the standard
toolboxes; they can also define their own algorithms and
add them into the signal processing chain. Figure 1 contains
a simple example of a signal processing waveform.

Figure 1: Simple example of a signal processing model

 The processing chain can then be simulated and
analyzed to see how much signal distortion would still allow
uninterrupted data and voice transmissions. The end result
is a complete description of the signal processing behavior
of the radio. This is also referred to as ‘the golden
waveform.’
 This method of designing signal processing behavior is
referred to as model-based design. It is not new. Engineers
have been using model-based design for years with great
success. However, engineers would frequently model the
waveform, and once the design has been sufficiently
validated through simulation, manually implement the
functionality on DSP, FPGA, and GPP processors. This
manual step is not only laborious, but is also a major cause
of how errors can slip into the implementation.
 Modern model-based design tools now include an
automatic translation from the graphical model to
executable source code for a large class of DSP, FPGA, as
well as GPP processor cores. This approach provides a
number of direct benefits, including

• removing the possibility of error introduction

• significantly saving development time, since the
manual step has been completely replaced by
automation [1]

• removing the need for signal processing engineers
to be intimately familiar with the development
language for the processor

 There are two more benefits that are less clear, yet
definitely deserve some attention.
 The first benefit is the option to perform hardware-in-
the-loop simulation. Engineers can execute part of the
behavior of the model on actual target hardware. This
ensures that the automatically generated implementation
performs as expected.
 The second benefit is that the design model describes
the algorithm completely independent of the processor that
executes that algorithm. As such, it is an excellent way to
ensure platform independence. The model can be translated
to run on multiple platforms: GPP-, DSP-, or FPGA-based.
This translation can often be completely or partially
automated. The important implication of this realization is
that model-based design provides platform independence at
the model level, rather than at the source code level.

3. APPLICATION TO THE SCA

 As stated in the previous section, model-based design
has significant benefits in developing signal processing
functionality. The question now is how this model-based
design applies to applications that must adhere to the
Software Communications Architecture (SCA).
 The SCA treats applications as assembled and
connected pieces of individually downloadable
functionality. These pieces of functionality are referred to as
components. A component can be executed on a GPP, DSP,
or FPGA processor. An SCA-compliant platform consists of
a number of processors; each processor can execute zero or
more components. These components are then connected
together through common communication buses such as
CORBA, RapidIO, VME backplane connections, and so
forth. SCA applications can also be graphically modeled, as
shown in Figure 2.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 2: Component model of a sample waveform

 Typically the signal processing model accounts for a
small part of the SCA mode—only the physical layer, as
mentioned above. Nevertheless, this is a very important part
of the software stack. Comparing the models in Figure 1
and Figure 2 begs the question as to how they are related.
Figure 1 displays the signal processing content that
comprises a part of the model in Figure 2.
 Figure 1 displays the componentization of the software
model. The visual representation defines how the
components communicate together to deliver the full
application (waveform) functionality. The application needs
to be executed on a platform. This is graphically represented
in Figure 3, where each component from Figure 2 is
mapped to a processor (a device in SCA-language) on one
of the boards of a Spectrum SDR-3000 [5]. Each of the
devices in Figure 1 represents a GPP, DSP, or FPGA
processor.
 Each of the components in Figure 2 has related
implementations that provide compiled binary code that
implements the functionality of the component on a
specific device (GPP, DSP, or FPGA).
 The behavior modeled in the signal processing model
(Figure 1) needs to be mapped to the component model in
Figure 2. Typically, it maps the entire signal processing
behavior into a single ‘physical layer’ component (Figure
2). However, this raises a few questions. Most notably,
which device will the component be executed upon.
Usually, this is a DSP or FPGA. Another important question
is whether this device has the capacity to run all the signal
processing content. If not, then we have to split Figure 1
into multiple components and map them to multiple devices.

 This investigation becomes even more complicated if
we want to execute the model on multiple, completely
different platforms. The two step mapping of parts of Figure
1 to components in Figure 2 to devices in Figure 3 turns into
a puzzle with multiple solutions. Each of the solutions to the
puzzle will have certain performance characteristics, which
need to be evaluated to ensure the implementation provides
the performance required.
 No tooling currently exists to facilitate this mapping
(see also Section 5 on Further Tool Integration). The
mapping is typically done by experienced engineers who
have a complete understanding of the waveform
requirements, as well as the platform offerings.

Figure 3: Deploying the FM3TR waveform to the SDR-3000

4. COMPONENT WRAPPERS

 Once all models have been sufficiently developed, it is
time to build all the artifacts that the SCA requires for the
waveform. The artifacts can be divided into two classes:
XML descriptor files (the Domain Profile in the SCA
lexicon) and the implementations for the components.
 The XML descriptor files can be directly generated
from the model in Figure 2. This is another instance of
model-based design. Tools exist that can perform the
translation of the graphical component model straight into

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

the required XML descriptor files, without further human
intervention.
 Creating the implementation files for the components
requires more effort. The signal processing behavior for the
components is already given in Figure 1. However, the SCA
requires that the components implement extra SCA-specific
interfaces. These SCA-specific interfaces are required so
that the SCA middleware (the Core Framework) can
configure and control the components (through, for
example, messages such as start and stop, as well as
configuration parameters).
 The model in Figure 2 contains sufficient information
to generate the code that implements these SCA-specific
interfaces. This code is often referred to as ‘component
code’ or ‘SCA wrapper code.’ The only information that is
missing is the connection between the behavior in Figure 1
and Figure 2. This is accomplished with a small amount of
code, which merges these two models together.
 The code required for the components depends on the
device that the component executes on. The SCA standard
is very clear on how to manage components on GPP
processors, but it does not provide guidance for DSP and
FPGA components. In this paper, we focus on how to
integrate the two models for components executing on a
GPP. Further work is required to experiment with
generation for DSPs and FPGAs.
 Components on a GPP use CORBA for
communications between components. The component
wrappers have to perform the following tasks:

• receive input data from CORBA buffers
• format this input and pass it to the functional block
• run the functional code to produce an output
• repackage the output into CORBA compatible

packets
• translate SCA control messages such as start, run,

and stop into control signals recognized by the
signal processing code

 Several simple models were implemented to test these
ideas. The system model was developed using The
MathWorks Simulink. The Real-Time Workshop package
provides users with the ability to generate C/C++ source
code from a Simulink model. There are a variety of target
platforms to choose from; however, we only experimented
with the GPP.
 The SCA CF files were generated using Zeligsoft
Component. Component code in C++ was generated for
each component to provide an SCA-compliant CORBA
interface. Short segments of wrapper code were then written
and inserted into the component code. These wrappers
receive data from CORBA, pass it to the functional model,
run the model to generate an output, and then repackage the
output to match the expected CORBA interface. They

typically consist of several lines of simple and
straightforward C code.
 Several simple waveforms were generated for testing
purposes. The OSSIE SCA CF [3], developed at Virginia
Tech, was used to deploy these test waveforms on a GPP
platform. Each component was able to properly deploy on
the platform, process the input data, and communicate its
results along the data path.

5. FURTHER TOOL INTEGRATION

 Sections 3 and 4 describe in theory and in limited
practice how to integrate the signal processing aspect and
the SCA aspect of components. What is really needed,
however, is a fully integrated tool chain.
 Automating the details of the integration between tools
is clearly on the list of further work; the following section
highlights this in greater detail. However, there are still a
number of questions to discuss.
 As stated above, signal processing engineers work on
the ‘golden waveform,’ the signal processing behavior of
the waveform. Hardware engineers work on the details of
the platform: the processors, the buses, and the AD and DA
converters. Software engineers work on the hardware
abstraction layer that allows the hardware to execute
components (the ‘BSP’). Software engineers also work on
the higher level architecture, the components and their
interconnections. The components cover both the ‘golden
waveform,’ as well as higher order logic, which manages
functionality like TCP/IP routing and so forth.
 There is a mapping of pieces of the ‘golden waveform’
combined with higher order logic (1) to components (2) to
hardware abstraction layer (3) to actual hardware (4). Each
mapping is N-to-1 and has multiple possible solutions.
Only a select few mappings actually lead to a correctly
functioning waveform.
 Now, how can we improve tooling to help engineers
(be it signal processing, software, hardware, or systems
engineers) design and evaluate all these mappings. The
mappings cover multiple and very different domains—from
mathematical signal processing, through software
engineering to hardware design. Significantly more work is
required to understand how the total end-to-end
development process of signal processing, software, and
hardware can be further integrated.

6. CONCLUSIONS AND FUTURE WORK

 Modern model-based design tools provide an excellent
approach for the rapid prototyping of SCA radios. The
model-based design philosophy is a good match for the
ideals of the SCA, including code reuse and platform
independence. The combination of mathematical modeling
tools, SCA interface tools, and automatic code generation

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

allow system architects to quickly and easily progress from
a system model to a running implementation.
 The mixture of modeling tools is required since no one
tool can provide a complete solution. Some hand coding is
required to tie together the automatically generated
functional blocks with the SCA interfaces. Automating the
creation of these wrappers would provide a seamless
transition from system model to implementation.
 In this paper, we focused on solutions for GPP-based
systems. Unfortunately, these platforms lack the processing
power to manage waveforms that require high sampling
rates. Specialized hardware, including DSPs and FPGAs,
are typically called upon to provide the extra processing
power in these situations. The SCA standards for
implementing functionality on these devices, however, are
not well-defined. In order for work to progress on
developing wrapper structures for these platforms, the
interfaces need to be standardized. With a common set of
interfaces, wrappers could be generated for these
specialized processing devices following the same
principles as GPP-based design.
 Vendors are already at work integrating signal
processing and SCA tools. Solutions are expected to
become available soon. The larger problem, as explained in
Section 5, has not yet received significant attention.
Building entire waveforms still requires significant manual

development in a variety of separate, non-integrated tools.

7. REFERENCES

[1] Haessig, D., et al., “A Case-Study of the Xilinx System
 Generator Design Flow for Rapid Development of SDR
 Waveforms”, SDR Forum Technical Conference, Nov., 2005.

[2] Zeligsoft Component Enabler, http://www.zeligsoft.com/

[3] “Software Defined Radio (SDR) with OSSIE Open Source
 SCA.” <http://ossie.mprg.org/>.

[4] The MathWorks, Inc. http://www.mathworks.com/

[5] Spectrum Signal Processing SDR-3000
 http://www.spectrumsignal.com/products/sdr/sdr_3000.
asp

[6] Hermeling, M, “Component-based support for FPGA and

DSP”, SDR Forum Technical Conference, Nov. 2006.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

http://www.zeligsoft.com/
http://ossie.mprg.org/
http://www.mathworks.com/
http://www.spectrumsignal.com/products/sdr/sdr_3000.asp
http://www.spectrumsignal.com/products/sdr/sdr_3000.asp

	Search by Author
	Search by Session

