

A CASE STUDY COMPARING TRADITION TO MODEL-BASED RAPID

DEVELOPMENT OF SDR WAVEFORMS – PART II

David Haessig, Robert Regis (BAE Systems, NES, Wayne NJ, USA, david.haessig,

robert.regis@baesystems.com); Mark Hermeling (Zeligsoft, mark@zeligsoft.com)

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works
related to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce
their work, and to reuse material in whole or in part from their work; for derivative works, however, such authors
may not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

A CASE STUDY COMPARING TRADITION TO MODEL-BASED RAPID

DEVELOPMENT OF SDR WAVEFORMS – PART II

David Haessig, Robert Regis (BAE Systems, NES, Wayne NJ, USA, david.haessig,

robert.regis@baesystems.com); Mark Hermeling (Zeligsoft, mark@zeligsoft.com)

ABSTRACT

In [1], the authors compare traditional RTL design flow to

that of model-based design, applying both to a common

problem – implementation of the physical layer of

SATCOM waveform MIL-STD-188-165a. They report a

10:1 improvement in productivity in the areas of algorithm

simulation testing, code generation, and waveform

integration. That study carried the comparison through to the

point of hardware-in-the-loop testing, each design

implemented autonomously in a single FPGA node, looping

back the transmit signal to the receiver. In the current paper

we describe an effort to complete the waveform

implementation thru interoperability with another node, a

COTS modem. Finally, a paradigm for creating SCA-

compliant FPGA-hosted components via auto-code

generation is proposed, and the impact and implications that

this can have on code reuse is discussed.

1. INTRODUCTION

Field-Programmable-Gate Arrays (FPGAs) are increasingly

used in the implementation of software-defined radios

(SDRs), particularly for the implementation of the baseband

processes in wideband modems. This is due to the fact that

they are inherently reconfigurable at runtime, a feature

clearly required of SDRs and not possible with Application

Specific Integrated Circuits (ASICs). It is also something

that allows them to be more amenable, to some degree, to

the Software Communications Architecture (SCA) standard

required of JTRS Radios.

 To encourage their use as an alternative to the ASIC,

FPGA developers have produced a suite of development

tools and programming methods that closely mirror existing

ASICs design flows. This has had the effect of discouraging

entry into the pool of FPGA developers, somewhat limiting

this pool to those already having a background in chip

design. In the last six years, however, this situation has been

changing due to the emergence of a new class of FPGA

programming flows based on high level modeling in Matlab,

Simulink, C, and UML. Those that function within the

Simulink environment include the Xilinx System Generator

for DSP
TM

, the Altera DSP Builder
TM

, and Synplicity’s

Synplify DSP
TM

. These are in essence opening a new path

to RTL (Register Transfer Level) design by adding an

additional layer of abstraction to the layer already provided

by VHDL (or Verilog). This is making it easier for a larger

audience to become FPGA developers, and increasing

developer productivity, especially in the area of modem

development [1].

 It is interesting to note the type of developers who, from

this author’s viewpoint, are using the tool. One group that is

more readily accepting the tool are the algorithm developers,

those who may lack expertise in the traditional ASIC

hardware design flow, but have a good knowledge of DSP,

Matlab and Simulink. For this group these tools provide a

pathway to architecting, synthesizing, and validating high

performance algorithms on real hardware. The other group

is the traditional FPGA designer who is well versed in the

more deeply entrenched methods of RTL development. For

them these tools are often accepted more slowly, particularly

because these individuals can already produce the FPGA-

hosted functionality they need by using methods they

already know quite well and also because they see

shortcomings in the tools, either real or perceived due to

their inexperience. Nevertheless, this relatively new FPGA

development flow based on model-based design is proving

to provide significant productivity improvements over

traditional methods [2,3,4,5], not only through the avoidance

of hand-coding, but by enabling better exploration of the

architecture space, by combining into a single model the

models used for algorithm development and the model used

for code generation, and by creating a better environment for

joint development of the algorithm, the code, and the test

vectors involved in producing embedded DSP on FPGAs.

 Recently [1,4] BAE Systems and Xilinx took advantage

of a unique opportunity to compare the new and traditional

RTL design methodologies discussed above. Two

development efforts were run in parallel, both seeking to

implement a subset of the SATCOM waveform, MIL-STD-

188-165a, on a pair of software-defined radio platforms. In

both cases the individuals working these efforts were experts

in the design methodology they employed. In addition, both

had access to an identical set of IP cores, therefore keeping

the comparison fair. The effort for each design was

measured in man-hours, each developer logging their time as

well as noting features of the design flow that were

particularly easy or troublesome. The results of the study

were quite remarkable – the design developed with model-

based design produced in less than 1/10th the total hours of

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

the traditional approach! This is a result that is not only

quite amazing, but often also received understandably with

caution and skepticism. Can one conclude from these results

that model-based RTL development will consistently

achieve similar savings when developing the physical layer

of software defined radios? I think it safe to say that this

example yielded a productivity improvement result that is on

the high side of the typical or average result. Nevertheless,

it shows that in cases such as these, model-based design can

very significantly improve the process of RTL development.

Additional studies are needed to hone in on the typical

improvement achievable in modem development.

 To this end, we are working to continue the MIL-STD-

188-165a case study, carrying it through the implementation

of a complete receiver and transmitter (not simply a loop

back within a single FPGA), a transceiver capable of

transmitting and receiving from another node, and therefore

including all needed receiver tracking functions -- carrier,

phase, gain and bit tracking. To prove this, a subsequent

goal is interoperation of the transmitter and receiver with a

COTS MIL-188-165a modem, a modem known to adhere to

the standard, the Radyne DMD2050. Thus we are

connecting the Radyne with a LyrTech FPGA platform

hosting the BAE developed implementation of that same

waveform. Section 2 describes this ongoing work and the

experience that one particular author had in delving into

System Generator to accomplish it.

 A secondary goal of the effort is the production of a test

bench for evaluation of new methods for creation of SCA-

compliant components hosted on FPGAs. An approach is

proposed in Section 3 which addresses a key impediment to

the hosting of SCA components on FPGAs – inefficiency.

2. IMPLEMENTATION RESULTS

An objective this case study (Part II) is to capture the efforts

required to design, code, and integrate on hardware a MIL-

188 waveform capable of interoperating with another

modem, comparing the model-based design flow being

applied currently with the traditional design flow applied to

this same problem done one year earlier. One author, who

is an expert in traditional RTL design flow, developed the

original design using those methods with which he is very

familiar. He also did the work described below to produce a

very similar design using model-based design. Thus we

have the unique opportunity have the same individual

perform both designs, thereby removing the variability

associated with the capabilities of two different individuals.

This also afforded us the opportunity to assess SysGen from

the viewpoint of a new user having extensive RTL

development experience but little model-based or SysGen

experience. The following sections describe the startup

process, the waveform design, and the noted benefits/issues

that occurred.

2.1. Getting Started – Conversion from RTL to Model-

based Developer

Starting with a digital hardware design background and

VHDL firmware experience meant that three new software

tools had to be learned. Learning the Matlab language and

its companion graphic modeling tool Simulink, both from

MathWorks, was the first step. With sufficient software

experience the new language is easy to learn and there are

hundreds of books that teach it or include examples. The

user doesn’t need a strong understanding of Matlab before

moving on to learning Simulink, and it is very convenient to

use them together. A class in Simulink just scratches the

surface of what the tool can do, but for the purposes of

Sysgen, much of complexity and details can be skipped.

Mastery of Matlab and Simulink really requires practice and

individual concentration on the specialized toolbox and

blocksets applicable to your discipline. The number of

functions, parameters, and examples available could take a

life time to learn. Nevertheless, the circuit design engineer

can get started faster if he can concentrate on the hardware

aspects of Sysgen while teamed with a system engineer with

more of a mathematical background and presumably years

of experience in signal processing analysis and modeling.

The three day Xilinx DSP Design Flow class was intense

and essential to getting started. There are a lot of new

concepts and features that would be hard to pickup on your

own. Topics included familiarization with the library of

building blocks, number representation, clock enables,

simulation, and synthesis. Even with the training it took a

bit of practice and thinking how to best apply this tool to the

design at hand.

2.2. The Waveform

The current design goal is to implement a subset of the

Department of Defense standard MIL-STD-188-165A for

satellite communication, including BPSK, QPSK, and

OQPSK waveforms. The approach has been to start off with

the simplest BPSK waveform and expand the design in

stages until a full implementation and compliance is met.

The design accommodates numerous selectable data rates up

to 10 Mbps and includes various coding options including

differential encoding, convolutional FEC encoding, and

Reed Solomon encoding.

 The Lyrtech VHS ADC V4 board with a DAC add-on

contains a Xilinx Virtex-4 FPGA, a fixed 104MHz

oscillator, ADC and DAC channels clocked at the 104 Msps

rate. Lyrtech supplies a board support package that

specifically handles Sysgen designs providing a wrapper

with all necessary interfaces to control via software and the

cPCI bus and access to various digital I/O in addition to the

ADC and DAC chips. This arrangement allows not only

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

remote configuration of the FPGA but also Hardware in the

Loop simulations in conjunction with Simulink.

 Due to other priorities, this project began only one

month prior to this writing. Consequently, our initial

interoperability goal has been restricted to that of the

transmiter, as it is naturally less complex than the receive

side. In the transmitter, shown in Figure 2.1, the circuit

design generates the programmable data rate clock and

registers the data input into a FIFO. Buffering is necessary

because the data rates are programmed with a resolution that

is not achievable by the simple integer division of the

sampling clock. The data is clocked out of the FIFO,

scrambled, differentially encoded, and optionally FEC

encoded by a one half rate convolutional encoder. The data

rate is either unchanged or double the initial rate at this

point. Reed Solomon block coding and interleaving can be

added. This presents a complication because the check

symbols added to the data by Reed Solomon results in an

increase in data rate that is not an integer but an awkward

ratio of numbers. If the information data block size were

239 bytes and the number of check bytes added were 16,

then for every 239 byte in 255 bytes would shift out. The

encoded data rate in, this fictitious example would grow by

255/239 which is approximately 1.067. A fractional ratio

guarantees that you won’t get a conveniently commensurate

relationship between the data rate and the sampling rate

clock. Interpolation will be used extensively to not only

increase the sampling rate but also to alter it to an integer

submultiple of the unrelated sampling clock.

 To align the signal samples running at four times the

data rate to the incommensurate rate of the DAC clock we

need to perform a rate change through the a programmable

interpolator. Interpolators can multiply the sample rate of a

bandlimited signal by an integer or even by a rational ratio,

e.g. P/Q, if needed to produce a new sampled signal running

at the desired rate. In this case we need the interpolator to

take pulse shaped data signal sampled at four times the data

rate and bring it up to an integer multiple of the half the

sampling rate, i.e. 52 MHz. The interpolator used in this

design multiplies the data by a factor of 1040/Q and is then

followed by a fixed times two interpolator. This cascade of

filters and interpolators results in a programmable data rate

of 4 * 1040/Q * 2 which results in the exact DAC clock

sampling rate of 104 MHz. The result of these figures is that

for any non-zero positive integer value of Q the data rate can

be programmed with a resolution of 12.5Kbps.

2.3 Benefits/Issues when Designing with SysGen

The first step in recording and communicating the design is

to form a series of block diagrams in a tool like Visio for

instance. This is the natural way the human brain works

most efficiently. In addition, it is why board level circuit

schematics continue to be drawn and why a programmer or

VHDL designers often resort to drawing a sketch to clarify a

point. So there are strong reasons to desire an effective

design graphically based design tool for firmware and good

reason to assume that better productivity can result.

Schematic based design tools for firmware exist but have not

dominated the industry for a number of reasons. Text based

design using VHDL and Verilog hardware design languages

still dominate despite the fact that they can be unnatural and

tedious. Despite these obvious disadvantages, they are

widely used because of the perceived advantages in the areas

of standardization, reuse, portability, and wide spread

knowledge base. Unfortunately even with the latest

refinements available from competing vendors, these tools

can’t provide the level of productivity desired. Wider spread

availability and diversification of IP blocks has provided the

last significant boost in productivity with this methodology.

 Sysgen brings a lot more to the table than the schematic

capture tools ever attempted while providing all the natural

desirability of a graphical tool. Matlab, Simulink, Sysgen,

and ISE essentially form an integrated design environment

(IDE) optimized for the development of signal processing

models and implementation. You can calculate filter

coefficients easily with numerous design functions in

Matlab. You can then paste the values or the formulas

directly into the parameter dialogs of the Sysgen blocks.

You can then simulate a combination of synthesizable

models in parallel with conventional Simulink models and

FEC

Conv

FEC

Conv

RS

RS

BPSK

Mod

Pulse

Shape

FIR

x 2

Programable

Interpolation

P/Q

1040

Q
x

Fixed

Interp

x 4

for Q = 1 to 954

x 1040 down

fs = 104 MHz

Data
TX DAC

Samples

12,500x Q

Exactly 62.5 kbps to

5.9 Mbps in steps of

12.5kbps for all FEC

modes

Switched

Interp x1

or M/N

=12.5KHz to 11.9 MHz

6,250 x Q =6.25KHz to 5.96 MHz

M

N
x

With RS compensating Interpolator

Figure 2.1 – Transmit Diagram

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

compare them on a waveform display modeled after an

oscilloscope. You can capture the results into the Matlab

workspace and immediately plot them or their spectrum. The

flow from simulation to design to evaluation and verification

can be very fluid and represents a breakthrough in a fully

integrated development environment.

 The long sought holy grail of closing the gap between

system engineering analysis and hardware design

engineering may finally have arrived. If the communication

system signal processing system engineer with strengths in

mathematics and modeling can successfully communicate

and share a common understanding and design with the

hardware design engineer, a lot less information and

mistakes will be made. Typically a system engineer’s design

is simulated and reported, and his job is done. The hardware

engineer picks it up and inevitably starts his design from a

partial understanding of what was accomplished with a set of

tools that operate in the implementation domain with

absolutely no semblance to the original model. The model is

necessarily discarded and the final hardware design can not

be verified against the original model that the system

engineer worked so hard to perfect. With Sysgen the

diagram is the model, which is simulated and analyzed with

Simulink and Matlab, and it is also the firmware design that

is generated and also simulated to verify successful

translation. Design errors in the model are found and

corrected earlier in the design process and the use of this

same model through the implementation can be verified to

be identical. The discovery of defects during the hardware

design, or worse, after the product is completed because of

faulty verification can be very costly. Many have been

seeking the ultimate tool that accepts a design drawing and

by pushing the magical button, the hardware automatically

appears. We may never perfect this process but we may be

close enough to make significant improvements in

productivity and life cycle cost reduction.

 Sysgen does a number of things behind the scenes that

can save time. One has to know how it handles different

clocking rates. Good design practice dictates that you design

entirely synchronously and minimize the number of clock

domains. Sysgen assumes that you are using one clock for

the entire design, or subdesign. Within this clock domain it

generates the appropriate clock enables at any integer

submultiple of the clock invisibly. If you have an

interpolating filter that produces four outputs for every input

sample the clock rate divided by one and divided by four

clock enables are automatically generated. Also if you insert

this filter block into the design and run the input rate at the

full clock rate it will generate an error. The filter needs the

output clock to run at four times the input rate and that

wouldn’t be possible if the input rate is running at the full

rate. If you are not entirely familiar with the internal design

of a block, this can surprise you. Sometimes it is not that

easy to determine why the error is happening but it usually

can be avoided if the author of the block reveals the

clocking requirements in help text. We encountered these

errors quite often while learning to use the tool and applying

FIR filter components that were predesigned and provided

by the library.

 Although Sysgen excels at signal processing signal

flows, there was skepticism initially about how well it would

handle other functions like control timing, state machines

and the like. One could certainly continue using a VHDL top

level design and inserting signal processing subsystems

designed with Sysgen as needed. When something a bit

more complex is needed like a BER detector and counter,

the choice depends on which tool the individual designer

feels most comfortable using. There was also the question

of whether a state machine which is clearly a control

mechanism can effectively be written and debugged in

Sysgen. Mcode blocks seem to have solved this problem,

allowing you to use a subset of Matlab code which is just as

descriptive and well documented as the VHDL version.

 The interested reader is referred to the presentation

material for the quantitative comparison of the two design

flows when applied through interoperability.

3. AN APPROACH FOR FPGA-HOSTED SCA

COMPONENTS

The US DoD is sponsoring the development of the Joint

Tactical Radio System (JTRS), a family of SDRs requiring

the use of a software module interface standard called the

Software Communications Architecture, or SCA [6,7].

The goal of the SCA is to enable software portability,

thereby promoting software reuse across platforms, reducing

costs, shortening development schedules, and quickening the

incorporation of new processing devices as they become

available.

 The SCA as originally designed applies to General

Purpose Processors (GPPs) which have sufficient resources

to support a CORBA transport interface between

components. Several different approaches have been

suggested to extend the SCA to Special Hardware

Processors (SHPs). We will look at the simplest approach

that will enable us to integrate the functionality generated by

SysGen into an SCA compliant application. The focus of

this discussion shall be an architecture involving a single

GPP connected to one or more FPGAs.

 An often heard complaint leveled toward the SCA is

that of code or processor inefficiency [8]. Inefficiency

impacts power consumption, size, and cost, none of which

can be spared particularly in handheld devices. This is

especially true with FPGAs. In many applications there are

often little to no resources available for a CORBA-type of

interface. Another issue directly related to inefficiency is

the complexity of the interface. FPGA interfaces have

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

traditionally been quite simple. For example, in an older

family of BAE radios the interface is just clock and data,

with a single bit value clocked in at a steady clock rate.

There is probably no interface that is simpler or uses fewer

FPGA resources. As data rate requirements have increased,

high performance serial transport links are being

incorporated such as RapidIO and PCI Express. Allowing

the FPGA designer to select the data interface type

appropriate for the design ensures processor efficiency, as

an appropriately sized interface can be used. Code

portability and reuse can be achieved by standardizing on

the interface design as described below.

 Another problematic notion for SCA compliant FPGAs

is that of runtime component deployment and connectivity.

The use of multiple SCA components in a single FPGA

connected at runtime does not fit with the FPGA design

flow. It implies that the synthesis, mapping, and the place

& route operations be performed at the radio node, which is

impractical as the radio nodes will often not have the

processing resources needed to accomplish those tasks

which can take hours even on a powerful workstation.

 Runtime deployment can be anticipated though. Keep in

mind that every possible deployment involves a mapping of

components to processors. Each of these deployments needs

to be tested before the SCA waveform is released. Hence an

FPGA loadable bit-stream can be created a-priori for each of

these deployments. Unanticipated designs would be built

when defined and uploaded through the network. Another

option to consider is the use of partially reconfigurable

FPGAs with a single component per reconfigurable area and

CORBA interfaces between them. A single reconfigurable

FPGA is comparable to multiple non-reconfigurable FPGAs,

hence this a-priori placing and routing will still be sufficient.

SCA Enabling RTL logic involves three major steps:

1 Communicating data to and from the RTL logic

2 Providing the RTL logic with values for it’s

configurable properties

3 Somehow implementing the CORBA CF::Resource

interface for the RTL logic

One of the proposed standards for SCA-enabling FPGAs is

the Component Portability Standard (CPS, also known as

CP289) [9,10]. It provides guidelines as to how to

implement the three steps mentioned above. CPS discusses

the use of the Open Cores Protocol (OCP) as a basis for

interface definition since it is bus, technology, and language

independent. The proposed approach, embracing that idea,

is as follows:

• Allow the selection of the FPGA interface type

appropriate to the design, thereby having minimal if any

impact on efficiency.

• Define the interface layout using OCP as a guide and

apply that to all SCA components to be hosted on that

FPGA, thereby enabling reuse

• Use the CPS idea of a global proxy to encapsulate the

RTL logic as a single SCA component, thereby having

no impact to the SCA with regard to the FPGA-hosted

component,

 As a tutorial example of this approach, consider how it

is being applied in the design of the MIL-STD-188

waveform. In that application, Dual Port RAM was

selected as the interface to carry data into and out of the

transmitter and receiver. As shown in Figure 3.1, a single

SCA component is contained in the FPGA, with a global

proxy creating the SCA interface and including access to the

data and address busses connected to the FPGA hosted

RAM. The entire RTL logic, including the Dual Port RAM,

is being constructed in SysGen. Note that this approach can

be extended to allow for a high speed link, for example, PCI

Express, by placing the associated core in the data flow path.

The content of RAM, i.e. the memory map, is defined to

include 4 segments: Configuration Parameters, Control and

Status Words, and Data. The Configuration Parameters are

read by the proxy to understand the interface and device

operation. Control & Status Words are defined to contain

the OCP suggested control flags (initialize, start, run, stop,

release, configure, test), and the status flags (init done,

release done, config done, test passed), with port control

handled as suggested in Figure 3.2. A single proxy

component can interface with any FPGA module written to

this standard. A new waveform definition with a different

FEC module, for example, built to this same standard,

permits the proxy to be reused. In addition, the source code

in the form of the SysGen model is also reused, although

modified in accordance with the new FEC scheme. Note

that this approach, applied here with RAM, can just as easily

be applied with other common interface types, such as a

FIFO, PCI Express, or others. Another potential advantage

of precise definition of the interface content is the potential

for auto-generating the GPP code implementing the proxy.

4. CONCLUSIONS

RTL development using the model-based design flow is

contrasted to the traditional design flow in this continuing

case study involving MIL-STD-188-165a. This paper

describes the work to complete the waveform development

through interoperability with a COTS modem, logging the

time consumed by the effort and comparing that to a prior,

traditional-flow effort. A method for design of FPGA-

hosted SCA components is provided. This method has a

significant advantage over those that place CORBA-like

constructs into the FPGA, having minimal impact on

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

resource efficiency and allowing reuse by creation of

interface standards.

Figure 3.1 – The MIL-188 example shown using a dual-port ram interface, one of many possible interface types; note a

single SCA component per FPGA

Figure 3.2 – MIL-188 FPGA block diagram with dual-port ram interfaces containing data and OCP defined control,

status, and configuration parameters, memory mapped within RAM

5. REFERENCES

[1] Haessig, D., et.al., “A Case-Study of the Xilinx System

Generator Design Flow for Rapid Development of SDR
Waveforms”, SDR Forum Technical Conference, Orange
County, CA, Nov. 2005.

[2] Mathworks User Story, “Nissan Develops Emission
Reduction System for Mass-Production Vehicles Using
MathWorks Tools”, http://www.mathworks.com/company/
user_stories/userstory7614.html?by=industry

[3] Mathworks User Story, “RealTek Gains 50% of Market Share
with a New Audio Chip Designed with MathWorks Tools”,
http://www.mathworks.com/company/user_stories/
userstory4685.html

[4] M. McHenry and D. Raun, “BAE Systems Proves the
Advantages of Model-Based Design”,

http://www.mathworks.com/company/newsletters/digest/2006
/sept/bae.html?_cid=MLD0906naad3TA1

[5] C. Dick and J. Hwang, “FPGAs: A Platform-Based Approach
to Software Defined Radios”, Chapter in Software Defined
Radio: Baseband Technologies for 3G Handsets and
Basestations, John Wiley & Sons, Ltd, 2004.

[6] JTRS Overview, http://jtrs.army.mil/sections/overview
/fset_overview.html

[7] SCA Technical Overview, http://jtrs.army.mil/sections/
technicalinformation/fset_technical_sca.html

[8] G. Bishoff, “SDR might be turning a corner”, MTR Bulletin,
V4, N40, August 2006.

[9] JTRS Program Office, “Extension for component portability
for Specialized Hardware Processors (SHP) to the JTRS SCA
Specification (a.k.a. CP 289)”, v3.1, 17Mar05.

[10] J. Kulp, M. Bicer, “Integrating Specialized Hardware to
JTRS/SCA Software Defined Radios”, Milcom 2005.

GPP

SCA Component

Proxy

FPGA

DP

RAM

Business

Logic

RAM

DAC

data
addr

we
control

GPP Radio

Software

ADC

clock

Ready_for_dat
a

DSP Logic

DP
RAM
Out

Device Controller

add
r

dat
w

DP
RAM
In

add

dat

Ready_to_sen
d

ADC DAC

G
o

Don
e

add
r
dat

dat
a

add

w
e

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

