
ABSTRACT

Software testing is vital for the success of any SDR
engineering organization, given the complexity and
reliability requirements of radio communications. At Vanu,
Inc. all waveforms under development are tested 24 hours a
day by an automated system. The test system has been
running continuously since 2002. In that time it has evolved
in sophistication and become an integral part of the
company’s software engineering methodology.
 As soon as an engineer checks a new software version
into the code repository, the automated test system checks it
out, compiles versions of all derived and inter-operating
software, and commences testing. Test results are reported
continuously to all interested members of the engineering
team via web-based reports and an online chat room.
 Since Vanu waveforms are entirely implemented on
general purpose processors using standard operating
systems, the tests can run on standard servers without loss
of fidelity. A radio channel simulator enables end-to-end
testing of communication among multiple servers connected
by Ethernet. Since our radio heads exchange digital samples
with the baseband processing server via Ethernet, inserting
the simulator rather than actual radio hardware is fully
transparent to the software under test.
 This paper describes the architecture of the test system
and the design of its major components. Synergies with
aspects of the Vanu, Inc. SDR design approach are
highlighted.

1. INTRODUCTION

Testing is vital for the success of any SDR engineering
organization. However, testing SDRs only in their full and
final form—hardware and software combined—is
phenomenally expensive. Not only must testers have access
to enough radio hardware to complete the test suite in a
reasonable amount of time, but the ability to test at all is
gated on the availability of the hardware. If the hardware
platform is new or under revision, software testing may be
impossible for months while the hardware platform is
completed and verified.
 This paper suggests solutions to the challenges of
software test of SDRs by explaining the test practices in use

at Vanu, Inc. Vanu uses software radio technology to build
cellular basestations, radio access networks, and related
products. The company earned the first FCC certification
ever granted under the SDR rules, and has deployed radio
access networks for multiple customers in North America.
 At Vanu, all waveforms under development are
continuously tested 24 hours a day by an automated system.
The test system runs on off-the-shelf x86 servers, and
requires no radio hardware. Expanding the system’s
capacity is as simple as purchasing a new server or
repurposing an unused workstation. The test system is
detailed in Section 3.
 Testing SDR software without using the underlying
radio hardware is made possible in part by a Network
Channel Simulator (NCS). The NCS supports the digital
baseband interface used by our radios and simulates varied
RF channel models as directed by the specific test case. The
NCS enables full-system software tests that match real-
world conditions in as much detail as the channel model
provides. The NCS is detailed in Section 4.
 The automated test system, channel simulator, and
other techniques have been effective in both removing
defects before software is fielded and accelerating software
development. Section 5 notes synergies that make our
approach particularly effective, and provides suggestions for
other development organizations working on similar
problems.

2. VALUE OF TEST AUTOMATION

Improving test capabilities provides significant benefits for
SDR product development, for a number of reasons.
• Testing represents a significant fraction of the

engineering investment by SDR developers.
• The quality and thoroughness of testing directly impacts

end user experience with the product.
• Regulatory agencies such as the US Federal

Communications Commission are concerned about
interference due to software failures, so the quality of
testing can directly impact whether or not a device is
certified for sale.

• New device types such as cognitive radios are being
introduced that require a high level of software
assurance for their complex spectrum access
subsystems.

CONTINUOUS AUTOMATED TESTING OF SDR SOFTWARE

Jeremy Nimmer, Brian Fallik, Nick Martin, and John Chapin
Vanu, Inc. Cambridge, MA, USA info@vanu.com

�

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Within this general area, test automation is a particularly
valuable way to improve SDR engineering.
• Automation reduces staffing requirements.
• Fully automating a company’s software tests supports

efficient use of expensive resources such as test stations.
• Discovering errors earlier in the development cycle

makes them cheaper to fix. Without full automation, it
may be weeks or months between the creation of a
software module and the first time it is run through the
full test suite. A continuous automated testing system
like the one we describe reduces this to a few hours,
providing significant engineering efficiency gains.

Data that supports these observations is rarely published in
the open literature on SDR. One valuable source of
information is a presentation given in April 2006 by Joe
Miller of General Dynamics C4 Systems [1]. He surveyed
seven years of experience by GDC4S developing the Digital
Modular Radio (DMR) Maritime, a 4-channel SDR device
with more than 10 waveforms and 5 crypto algorithms.
 Miller reported the following level of effort per
software release of the DMR, which was normally
performed once or twice a year.
• 6,720 radio-channel hours of testing (~3.4 man-years)
• Four weeks of 24x7 testing using 150 radio channels
• Greater than 40 test stations
During seven years of development, GDC4S invested over
100 person-years of effort on testing, which corresponds to
about 15% of their software and support staff effort.
• Test procedure generation > 71,000 hours
• Incremental smoke test > 70,000 hours
• System test > 50,000 hours
The reported numbers may actually be conservative as a
fraction of total effort. Miller did not describe what
positions were included in the support staff category.
Removing personnel such as management and accounting,
if included in that category, would increase the effort
fraction on testing to well above 15% of software
engineering.
 In our experience, both in projects internal to Vanu and
in working with other SDR development organizations, this
level of effort on testing is within the typical range. The
high level of effort involved means that test automation
techniques—which reduce staff effort, improve usage of test
equipment, and speed the tests themselve—are of high value
to SDR engineering organizations.

3. TINDERBOX TEST SYSTEM

3.1 Initial History

Since the company’s inception in 1998, Vanu, Inc. has
followed a software process where some form of automated
self-test, such as unit tests or system tests, is always
developed in parallel with waveform software. By running

the self-test before committing changes to the source code
repository, software engineers can confirm that their
changes do not break the software.
 With growth in the organization, the honor system for
executing these tests became unworkable—engineers were
not running every self-test before every commit.
Furthermore, the software was also now being ported to
multiple processors, such as x86, ARM, and PowerPC.
Even conscientious developers with x86 workstations who
ran the tests regularly could not completely guard against
introducing errors on other platforms.
 As a result, the company introduced a nightly build
system during the summer of 2001. Every night, a batch job
would wake up, check out the source code from the
repository, compile it, and run the self-tests. Upon
completion, it emailed test results to a distribution list of
interested engineers and managers.
 This reduced the extent of the problem, since an error
would be detected by the next morning at the latest.
However, erroneous software committed early the in the day
could still interfere with other work during that day. The
engineers needed even more immediate feedback.
 Not surprisingly, Vanu engineers were not the first to
encounter this problem, and the solution—continuous
testing—was not new. In the fall of 2002, Vanu began to
develop and use a continuous automated testing system.

3.2 Tinderbox Architecture

The continuous automated testing system in use at Vanu,
called Tinderbox, is built on the tinderbox system originally
developed by the Mozilla open-source project [2]. This
section explains the system architecture of the Vanu
Tinderbox, as shown in Figure 1.
 In an environment of networked hosts, independent
build servers check out a project’s source code from the
central repository, compile, measure, and test it, then email
the results to a central database server and web display.
 The web display offers a number of summary and detail
views of the current test results. A summary is available as a
browser sidebar that shows one line for each software
configuration. This lets developers monitor an overview of
all tests. The primary detail display is a temporal “waterfall”
for each software module or project, as shown in Figure 2.
The page shows when each configuration was built and
tested, with a color code indicating success or failure. By
clicking on a specific configuration, a developer can view
the full compilation and test log for that build. This assists
in investigating failures.
 The central web server also maintains a database of test
results over time. Vanu, Inc. has developed an instant
messenger bot that monitors the build status database and
posts to an internal engineering chat room when the status
changes. An example is shown in Figure 3.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

3.3 Features of Automated Tests

By automating the build, test, and result collection process,
Vanu, Inc. has been able to amplify the benefits of the unit
tests that we develop along with every software module.
 Our tinderbox tests all software using the Valgrind [3]
memory checker (similar to Purify or Insure++). Valgrind
helps identify memory leaks and uninitialized memory
usage in C and C++ code, but imposes as much as a 10x
performance penalty at runtime. Valgrind runs by default as
part each developer’s own testing prior to committing
changes, but developers are free to selectively skip it if time
is short, knowing that the tinderbox will run the full test
suite soon enough.
 We also build and test our code under a variety of
different platforms and configurations. It would be
challenging and expensive to provide every developer with
10 different platforms on which they are expected to test; in
contrast, it is straightforward to configure 10 different
platforms for use as the tinderbox build servers, which all
projects can share. Using the tinderbox, we are able to test
on a mix of Linux distributions, kernel versions, compiler
versions, compiler and linker settings, and build system
tools (make, autoconf, etc.).
 We automatically test against a range of compilers and
compiler diagnostic settings. Our tinderbox currently
provides builds for the GNU compiler (GCC) versions 2.95
through 4.1, and the Intel compiler (ICC) from 6.0 through
9.1. We also vary the compiler diagnostic settings (such as
turning on additional warnings), optimization levels, and
CPU-specific compilation support (such as tuning for

PentiumPro vs. Pentium 4).
 Testing such a variety of compilers helps us ensure
portability. Traditional DSP software engineering
organizations select a single compiler tool chain for their
work. However, this approach usually results in very high
costs when porting to a new platform. By making multiple
tool chain compatibility part of everyday software
engineering, we avoid building incompatibilities deeply into
the source base.
 Similarly, enabling extra warnings helps us remove
questionable or non-portable constructs from our code. The
varied optimization levels help us avoid compilation-
specific bugs that may not be revealed if only full
debugging and full optimization levels were tested.
 To supplement the compiler diagnostics, we are also
able to automatically and continuously run a commercial
C/C++ static checker (Flexelint [4]) over our entire source
code base, reporting results through the same web page and
announcement system as a traditional compile-and-test
result. The static checker identifies over 800 kinds of
programming mistakes, most of which are not detected by
traditional complier diagnostics.
 We also configure builds to compile and test each
project’s code using the gcov test coverage tool [5]. As a
result the tinderbox automatically creates up-to-date test
coverage reports for all code in the repository. This is a
convenient way for developers to identify missing tests.
 The automated build-and-test system also makes it easy
to mix different versions of our source code modules. We
regularly build each waveform against both a stable,
verified suite of dependent libraries, as well as the newest

Figure 1: Tinderbox architecture in use at Vanu, Inc. Continuously-running build servers check out project source
code and configuration settings from a source repository, build and test the projects’ software, and email results to
an automated collection system. The collection system saves the results to disk, updates the projects’ status in a
results database, and generates HTML status pages. Engineers’ web browsers automatically reload the status pages
for updates. An instant messenger bot also monitors the results and posts real-time notifications to a chat room.

�
�

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

developmental versions of those libraries. This continuous
integration testing helps find integration problems earlier,
thus reducing their cost to fix.
 Finally, we are able to continuously integrate with new
platforms and configurations. We maintain a separate
pseudo-project where our current software is built on new or
newly-integrated platforms (for example, release candidates
put out for testing by Linux distributions). As developers
have a free moment or slack time, they can take a break and
experiment with the new platform, incrementally fixing any
porting issues or test failures reported by the tinderbox.

4. NETWORK CHANNEL SIMULATOR

The Network Channel Simulator (NCS) application
facilitates end-to-end tests of Vanu waveform applications.
The NCS is a simulator written in C++ that leverages
existing and mature software technologies to emulate
communication channels between multiple radios. The NCS
supports pluggable channel models for testing a range of
over-the-air environments, including noise, fading,
interference, distance variations, and other effects.

 A key enabler for the NCS is the use of RF Over
Ethernet (RFOE) [6] in Vanu systems. RFOE uses Ethernet
to exchange streams of RF samples between the baseband
signal processing unit and an RF Front End (FE) that
contains all the analog components of the radio. The
“Network” in NCS refers to the role of Ethernet in the
simulator architecture.
 Vanu waveform implementations send and receive
ethernet packets containing RF samples. The waveforms
normally connect directly to a packet socket bound to a
physical ethernet port. To insert the NCS, we instead bind to
virtual ethernet devices provided by Linux’s tap facility, so
the waveform software is unchanged. (Most OSs support a
similar mechanism.)
 Typically, the NCS is used as part of end-to-end
communications tests exercising all waveform software
modules and layers. These system tests complement the unit
tests built for each module. We begin system test as early in
the development cycle as possible, often before coding on
most software modules or features has even been started.
Early and continuous end-to-end system test:
• exposes integration complexities early;

Figure 2: Web status “waterfall” display of current builds. Each build configuration is its own column. Shaded cells
indicate that a build was active at the given time; the cells are colored to indicate success, test failure, or build failure.
Links in each shaded region lead to the corresponding build logs. Links at the top of the page provide the latest test
coverage reports and generated project documentation.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

• tests waveform load, startup, and shutdown functions;
• develops a suite of tests that can exercise the actual SDR

hardware as soon as it is available; and
• often discovers unexpected and untested code paths.
An obvious limitation of all-software system tests is the
quality and maturity of the NCS itself. NCS faults can be
hard to isolate, since it is frequently unclear whether a
particular behavior (e.g., excessive bit errors) comes from
an NCS issue or from immature waveform software.
Furthermore, accurately emulating FE behavior and timing
makes the NCS complex. An SDR development
organization that starts using NCS-style tests should expect
to make an ongoing investment in iterative improvements.

4.1 Timing-independent testing

The Vanu RFOE protocol includes a timestamp in each
packet of RF samples. Waveform applications are
insensitive to their wallclock execution rate; they pay
attention only to the RFOE timestamps. As a result,
simulations are able to run faster or slower than real time.
 To demonstrate this, we performed an experiment in
which the same system test was repeated on multiple
platforms with different execution rates. One of the
platforms was a workstation with a single Intel Celeron
CPU at 2.6 GHz. The other was a server with two Dual-
Core Intel Xeon 5100 Series CPUs at 2.66 GHz, for a total
of four processing cores.
 The system test consisted of two instances of a
waveform application, configured as the two ends of a

point-to-point radio link simulated by the NCS. All
processes including the NCS ran on a single machine.
 The waveform was designed for a real-time sample rate
of 400 kilosamples per second. The actual rate of execution
varied depending on the test platform, as shown in the table.

Hardware Optimizations KSamples/sec
workstation -O0 72.5
workstation -O2+sse 151.6

server -O0 650.1
server -O2+sse 2,584.6

 The waveform test results were identical in all runs.
This illustrates that the wallclock execution speed can vary
significantly without affecting the behavior of the software.
 Timing-independent testing has been highly valuable
for our SDR development. It reduces test duration for tests
that can run faster than real time, enables use of
sophisticated channel models that run slower than real time,
and supports functional testing of early software versions
that have not yet been optimized to run in real time.
 Of course, errors due to timing races in the SDR
software may be masked by executing it at a non-real-time
speed. However, execution at a range of speeds is often an
effective way to expose timing errors that may occur only
rarely when operating at the target speed.

4.2 Hardware-independent testing

An additional benefit of NCS testing is that the test system
itself is hardware-independent. It can run on any of a range

[16:30:15] <tinderbox> === Status BUILD_FAILED from Halifax x-sarge24-gcc34-dbg-inp-dep build ===
[16:37:47] <percent> halifax is me
[17:01:15] <tinderbox> === Status TEST_FAILED from Halifax sarge26-ndbg-inp-dep build ===
[17:18:15] <tinderbox> === Status TEST_FAILED from Halifax x-sarge24-icc81-inp-dep build ===
[17:44:15] <tinderbox> === Status TEST_FAILED from Halifax sarge26-dbg-sep-clbr-gcov build ===
[18:12:15] <tinderbox> === Status TEST_FAILED from Base sarge26-dbg-inp-dep build ===
[18:15:15] <tinderbox> === Status TEST_FAILED from Halifax sarge26-dbg-inp-dep build ===
[18:26:15] <tinderbox> === Status TEST_FAILED from Base sarge24-dbg-inp-dep build ===
[18:28:51] <jnimmer> tinderbox: Base break is vichronio TimeConverter
[18:30:05] <rico> that’ll be me...
[18:31:03] <rico> ah, I’ve run afoul of sigc 2
[18:35:54] <jnimmer> rico: you want ’*this’, not ’this’
[18:37:15] <tinderbox> === Status SUCCESS from Halifax x-sarge24-gcc34-dbg-inp-dep build ===
[18:38:00] <percent> yay!
[18:51:15] <tinderbox> === Status TEST_FAILED from Base sarge24-ndbg-inp-dep build ===
[18:51:15] <tinderbox> === Status SUCCESS from Halifax sarge26-ndbg-inp-dep build ===
[18:51:47] <rico> tinderbox: Base fix landed
[19:04:15] <tinderbox> === Status SUCCESS from Base sarge26-dbg-inp-dep build ===
[19:04:44] <rico> tinderbox: whee.

Figure 3: Excerpt from a Vanu, Inc. internal chat room log. An automated system monitors build status and posts
announcements of significant events under the username tinderbox; the other postings are by engineers. In this case,
the build failure of the “Halifax” project was caused when an engineer accidentally omitted one file from a commit.
His personal build worked, but the tinderbox caught the discrepancy in a fresh checkout of the source code. In the
“Base” project, the tinderbox uncovered a portability problem between versions 1.0 and 2.0 of the sigc++ API.
Version 1.0 (as used by the engineer’s own testing) provided a pair of overloaded functions, but version 2.0 removed
one. The tinderbox compiled against all versions in turn, and the error was uncovered�

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

of platforms. The obvious benefit is testing in advance of
target SDR device availability. There are other advantages:
• Assigning testing tasks to machines is simplified.
• Older hardware can perform testing. We have found it

cost-effective at the company level to reuse workstations
retired from developer desktops as test servers.

• Developers can repeat any test using their desktop.

5. SOFTWARE RADIO SYNERGIES

The continuous automated test system has been particularly
effective at Vanu because of the way we implement
SDR [7]. Vanu Software Radio minimizes the use of
embedded devices such as DSPs or FPGAs. We execute
most or all of the high speed signal processing functions of
the radio as portable application-level software running on a
general purpose processor and standard OS.
 Our focus on software portability enables rapidly
exploiting Moore’s Law improvements in hardware
components. This is important because alternate engineering
approaches, which employ less portable firmware
technologies, result in hardware lock-in and hence rapid
obsolescence. Our focus on general-purpose processors and
standard operating systems enables use of off-the-shelf
components. This allows customers to acquire exactly the
hardware that matches their requirements without paying
expensive NRE for hardware design. Depending on the
market, Vanu, Inc. customers have selected low-cost high-
volume rackmount servers, high-reliability NEBS compliant
blades, flight-qualified avionics units, and small-size
battery-powered devices.
 The all-software approach makes continuous automated
testing both easier and more effective.
• The test system can leverage off-the-shelf servers while

still providing the exact operational environment that the
radio software will experience in the field. For radio
designs with significant firmware components, test
systems must use either slow simulators or expensive
hardware-in-the-loop setups.

• A wide range of sophisticated test, analysis and logging
tools are available for these standard platforms. These
tools were easily incorporated into the automated test
system as described in Section 3.

• When automated testing detects a problem, any test can
be repeated on an engineer’s desktop workstation with
full fidelity. This dramatically reduces the pressure on
the test equipment. In engineering organizations where
all tests must be run on a small number of dedicated
systems, engineers normally must sign up for a time slot
and then wait before being able to repeat a test. This
ongoing contention reduces engineering productivity for
critical analysis and debugging activities.

As a result of these effects, a tinderbox-style test system
would provide somewhat lesser benefits to most other SDR

developers than it does to Vanu, Inc. However, the benefits
could still be significant, particularly if care is taken in a
few areas when setting up the engineering environment.
• The waveform software should be stored in a source

code repository, so the test system can regularly check
out the latest versions transparently to the engineers.

• The tools used to build and deploy the waveform
software must be scriptable. Integrated Development
Environments (IDEs) sometimes require that GUIs be
used for certain operations, which is highly undesirable
in this setting.

• A hardware-in-the-loop test system, if used, must
support power-cycling of the target hardware under
software control.

• Any other hardware devices used, such as channel
simulators or oscilloscopes, must support remote
software control of their configuration and access to
their status reports.

6. CONCLUSION

Continuous automated testing, if used effectively, reduces
development cost and time while improving software
quality. However, achieving these benefits requires
sustained investment by an engineering organization. The
tools must be developed and iteratively improved. At the
same time, the engineering culture must evolve to make best
use of the tools.
 The test system described in this paper evolved over
many years. Our tinderbox system, Network Channel
Simulator, RF over Ethernet, and all-software waveform
designs work together to support a high-efficiency
engineering and test process. While each of the components
are useful, it is the way they interact that truly accelerates
software development. This testing approach has been a key
contributor to effective SDR engineering at Vanu, Inc.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. CNS 0435452 and 0110460.

REFERENCES

[1] J. Miller. SDR Development Realities. In AIE Military
Radios Conference, April 2006.

[2] Tinderbox 2.0. http://www.mozilla.org/projects/tinderbox/.
[3] Valgrind home. http://www.valgrind.org/.
[4] Flexelint for C/C++. http://www.gimpel.com/html/flex.htm.
[5] gcov. http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[6] G. Britton, B. Kubert, and J. Chapin. RF over Ethernet for

Wireless Infrastructure. In Software Defined Radio Technical
Conference, Nov. 2005.

[7] J. Chapin and V. Bose. The Vanu Software Radio System. In
Software Defined Radio Technical Conference, Nov. 2002.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

