
A COMPONENT FRAMEWORK FOR DEVELOPING SCA COMPONENTS

Dr. Stefan Burkhardt
(Rohde & Schwarz, Munich, Germany, stefan.burkhardt@rsd.rohde-schwarz.com);

Thomas Bleichner
(Rohde & Schwarz, Munich, Germany, thomas.bleichner@rsd.rohde-schwarz.com)

ABSTRACT

Developing SCA resources and devices for Software
Defined Radios requires to take care of a large number of
requirements regarding the components as such (SCA
resources and devices). Code generators producing the
framework code often lead to a large number of source code
lines, many of which are duplicated in many resources.
 In our approach, we are developing a set of
standardized building blocks which implement the given
SCA interfaces as well as data streaming and control
interfaces from the API supplement. Also, internal interfaces
which are required for the integration of waveform
algorithms are provided. In order to develop an SCA
component employing the proposed set of building blocks,
the developers have to customize the internal interface of the
components and select the corresponding building blocks for
the external interfaces from the set. Besides this, the
developer merely has to define names and types of the
component’s properties and the algorithms inside the
component. If new interfaces are required, templates are
provided which allow to include these interfaces into the set.
 Consequently, every SCA component (resource or
device) can be built from these building blocks. Only little
additional code is necessary to connect the components to
the actual assembly.
 In contrast to currently existing code generation
technologies we do not just generate the code from
templates. We provide a resource and device framework in
the form of libraries, which cover major common
functionality of the components.
 In the next step, we plan to extend the approach by
incorporating our component framework into an existing
SCA tool, so that it automatically generates the connecting
code and makes efficient use of the component framework.

1. INTRODUCTION

Developing a Software Defined Radio which incorporates
SCA components, i.e. SCA resources and SCA devices,
usually requires to consider a large number of requirements

for the components stated by the SCA. Developing a
component from scratch leads to a significant expense for
design, implementation and test.
 Existing code generators are able to produce the
framework code but also often lead to a large number of
lines of source code. Many of these lines are duplicated in
many resources.
 For example, the realization of an SCA component
requires to implement all methods which are defined in the
interface. Figure 1 shows the core framework Resource
interface for illustration of this point. All methods must be
filled with an implementation. Much of this functionality is
not component specific and hence also occurs in many other
components. By defining a suitable base class, the amount of
additional code that has to be written explicitly can be
strongly reduced (see Figure 2).
 Within the proposed component framework, the
functionality which is common to all components is
implemented in base classes and provided to the developer
as set of software building blocks. The usage of these
building blocks leads to a significant reduction of the effort
for component creation and testing.
 The software architecture of the component framework
allows for an easy extension and adaptation to new
requirements without the need to change the core component
implementation.

2. THE COMPONENT FRAMEWORK

Contents

The component framework includes a number of base
libraries for the development of SCA components as well as
support to test the resulting components.

Base Libraries

The current version of the base libraries is designed to speed
up the component development process. This is achieved by
providing a set of base classes which free the programmer
from coding common behaviour multiple times. This

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

mailto:thomas.bleichner@rsd.rohde-schwarz.com?subject=SDR-Forum%202006:%20A%20component%20framework%20for%20developing%20SCA%20components
mailto:stefan.burkhardt@rsd.rohde-schwarz.com?subject=SDR-Forum%202006:%20A%20component%20framework%20for%20developing%20SCA%20components

reduction in the amount of coding directly leads to a
reduction in coding errors.
 Today, the software of the libraries includes:

• An encapsulated abstraction of the POSIX process
and thread API.

• Standard component building blocks for the SCA
Resource and Device interfaces.

• An implementation of the general resource and
device behavior which includes:

o the registration for resources and devices
at the naming service and at the device
manager respectively.

o the start of the component core
implementation.

o the activation of the POA (portable object
adapter).

o and the correct shutdown after a
releaseObject() call.

• An implementation of frequently required ports,
including log and event port, and several data
stream ports.

• Support for the creation of new uses- and provides-
ports with interfaces using the SCA building
blocks.

• Support for the creation of user-defined uses- and
provides-ports which implement a freely defined
IDL. In this context, a freely defined IDL is an
interface definition that neither consists of nor
contains SCA building blocks. Such IDLs may
stem from the import of already existing interfaces,
for example.

 The implementation of the base libraries also takes care
of SCA specific requirements of the components which
comprise:

• Restriction to the SCA AEP for SCA resources.
• the SCA requirements for the base application

interfaces and the device interface.

Hull and worker of a component

The libraries follow the notion that each SCA component
consists of two parts: the component hull and the worker.
 The component hull includes the overall component
management, i.e. starting and stopping the component,
managing ports, taking care of configuration and lifecycle
etc. The definition of the hull is fully supported and
provided by the framework.
 In contrast, the worker only takes care of the
implemented algorithm as well as the definition of the
component specific properties. SCA properties like, for
example, the property PRODUCER_LOG_LEVEL for a log
producer are automatically inserted when using a log port
inside the component. For the definition of the worker, the
framework provides at least a base class for the worker.
Furthermore, property classes are provided which facilitate
the definition of various property types (simple properties,
simple sequence properties, struct properties and struct
sequence properties) by defining names, access rights and
value ranges. Since the base component libraries adhere to
the SCA AEP and also cover a large part of the component
implementation, programmers only have to concentrate on
the remaining parts to be SCA AEP compliant.
 As a prerequisite for component development, the
existence of the definition of the component type, the ports

Figure 1: Implementation of the Resource interface
without base component

Figure 2: Implementation of the Resource interface
with base components Figure

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

and port types as well as the component properties (type,
name, access right, value range) is assumed. This definition
is part of the design and leads to the implemented SCA
component as well as to its XML descriptors.
 Given a component definition, the component
development consists of the following steps:

• Selecting the correct component base class. There
are different base classes for resource and the
various device types.

• Selecting the correct ports. If a required port type
does not exist within the framework, the port must
be implemented by the developer and can be added
to the framework.

• Definition of the worker including the
implementation of the component specific
properties and the connection between hull and
worker.

• The development of devices includes the definition
of the capacity properties. These are automatically
used by the device’s capacity management and state
machine.

• At last, the actual worker code has to be
implemented. This implementation is supported by
the worker encapsulation which provides the
function prototypes of the SCA AEP.

 The handling of the resource methods start(), stop(),
initialize() and releaseObject() is provided by the component
framework. If a component requires specific actions during
these calls, the worker provides the possibility to implement
the desired functionality.
 The handling of the device methods allocateCapacity()
and deallocateCapacity() as well as the state machines is
also provided by the framework. The device’s worker only
has to define the capacity properties.

Support for user-defined enhancements

From our experience, an user-defined enhancement of the
framework usually consists of the definition of a new port
IDL and the creation of the corresponding blocks.
 As denoted in the previous section, this task is
supported by:

• Using a common base class for each port. This
base class takes care of the inclusion of the port in
the component’s internal management structure
and the handling of the port in the component
framework. By handling we mean the publication
of the port name outside the component for the

PortSupplier::getPort() method and the return of
the correct object references to the CORBA
servant. Furthermore, the handling includes correct
activation and deactivation of the CORBA servant
at the corresponding POA (portable object
adapter).

• Using a base class for each uses-port. The base
class is itself derived from the common port base
class (as described above) which ensures that the
uses-port is handled as an external port.
Furthermore, the base class implements the
CF::Port interfaces and thus handles connection
and disconnection, checks the object references for
correctness during connections, and handles
multiple connections. Also an iteration is
implemented with which method calls can be
forwarded to all currently active connections. With
all these pre-implemented features, the creation of
an uses-port just requires the instantiation of the
uses-port base class together with the
corresponding connection type (CORBA interface
pointer).

• Providing a base implementation for the servants
which can be created from the SCA building
blocks. Hereby, the possible customization of the
building block IDL with, for example, different
payload and control type is handled. E.g., the
SimplePacket building block knows two template
parameters: ControlType and DataType. A
customization of the same building block with
different types is possible and hence different
servant implementations are required. The
developers of the framework should not assume
anything about the customization by the user.
Thus, the implemented and provided servant must
consider that several types are possible. This leads
to a servant implementation in form of a C++
template.

 For the creation of user-defined ports only a few steps
have to be carried out:

• If the new port IDL only consists of building block
IDLs, the corresponding base implementations
have to be assembled.

• If the new port IDL consists of existing building
blocks as well as user-defined IDL types, the port
implementation can be done by choosing the
corresponding building block base
implementations, and enhancing them by an
implementation for the user-defined IDL.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

• For the case that the IDL is freely defined, the new
port shall be assembled from the port base class by
implementing the IDL methods.

Support for the assembly controller

Each SCA waveform application contains a special
component, the assembly controller. This assembly
controller can be one of the functional resources or a
separate resource.
 The development of the assembly controller is also
supported by the framework.
 A special port which is a uses-port for the core
framework’s resource interface is defined. This port
seamlessly integrates into the framework, and takes care of
the handling and distribution of method calls to the assembly
controller’s resource interface. The methods start and stop
are distributed. Property handling is possible by distributing
the properties to the affected components (resources and/or
devices). Furthermore, an internal interface for defining a
specific mapping between properties and the checking and
adaptation of property dependencies between several
components is provided.

Support for testing

Together with the component framework, a test framework
has been developed.
 Each component hull is built upon previously tested
building blocks. Possible source of errors can arise from:

• Errors during the implementation of user-defined
ports with new interfaces.

• Inconsistencies between the component and its
XML descriptors. These inconsistencies may occur
between the property types, names and access
rights as well as the port types, names and
implemented IDL.

 For the test against the first error source (errors during
implementation of a port with an user-defined IDL), the
definition of unit tests is suggested. These unit tests can be
derived from the tests of the port base implementation and
have to be enhanced by special tests dedicated to this port.
 For ensuring the consistency between the component
and its XML descriptors, a test suite is provided. This suite
reads the XML descriptors, checks the appearance and
functionality of ports as well as the appearance, correct type
and correct access rights of properties. Furthermore, the
correct external behavior of the component is verified.

Figure 3: Example design of an SCA resource with base components. Base component parts are with grey
background.

ResourceBase

WorkerBase

<<virtual>> start()
<<virtual>> stop()
<<virtual>> initialize()
<<virtual>> release() SimpleBytePacket

<<virtual>> pushPacket()

<<Interface>>

WorkerImpl
m_dProperty1 : Property< double >
m_iProperty2 : Property< int >

WorkerImpl()
<<virtual>> ~WorkerImpl()
<<virtual>> pushPacket()

1-m_pOutput 1

SimpleBytePacketOutPort

ResourceImpl

ResourceImpl()
<<virtual>> ~ResourceImpl()

11

SimpleBytePacket

<<virtual>> pushPacket()

<<Interface>>

SimpleBytePacketInPort

11

1-m_pOutput 1

With the interface data
input and worker are
connected

For the connection
between worker and
data output

start, stop, initialize and release of
WorkerBase shall only be overwritten
by WorkerImpl if an action is required

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

3. RESULTS

The above described framework has been used during the
development of a Software Defined Radio platform and a
waveform application in a number of components. This
section will summarize the benefits of and experience with
the framework.

Example Component

Figure 3 shows an example for the implementation of an
SCA resource with the base component framework. Classes
with grey background are part of the base component
framework. It can be seen that much of the required
implementation is already covered by the components
provided by the framework. For the implementation, the
developer only needs to take care of the worker
implementation and the specific resource implementation. In
the worker implementation, just the specification of the
properties and the implementation of the data processing
(here: pushPacket) must be done. The implementation of the
specific resource is restricted to the creation of the required
ports and the correct connections for the data flow (data
input → worker → data output). If worker-specific actions
during initialize(), start(), stop() or releaseObject() are
required, one will have to add the corresponding methods to
the worker overwriting the methods of the class
WorkerBase.

Benefit for component development

Because of the building block structure, the development of
a standard component hull can be done in little time which
is, depending on the number of ports and properties,
typically less than two days. Table 1 shows the number of
source code lines for components with different numbers of
ports and properties. These components do not contain any
functional code, only the runnable component hull is
measured. For convenience, both the total number of lines of
code are shown as well as the number of lines for the frame
and the number of lines for user-defined ports. As shown in
the table, the resulting C++ code of such a standard

Component # 1 2 3 4 5 6
Number of
ports 2 3 3 10 5 0

Number of
properties 1 2 54 13 26 19

User-defined
port types 0 0 2 6 4 0

SLOC overall
(frame and
user-defined
port types)

74 81 335 345 292 97

SLOC for
user-defined
port types

0 0 118 251 180 0

SLOC for
hull 74 81 217 94 112 97

SLOC without

PortBase ISimpleBytePacket
(from POA)

SimpleBytePacket
<<Interface>>

SimpleBytePacketInPort

-m_pOutput 11

ISimpleBytePacket
(from IDL)

<<Interface>>

IDL Compiler

Interface with which data can be
fowarded to a consumer

Figure 4: Design of a provides-port

SimpleBytePacketOutPort

PortBase

ConnectionType

ConnectionListSimpleBytePacket
<<Interface>>

[ConnectionType=ISimpleBytePacket]

ISimpleBytePacket
generated by IDL compiler

Interface which takes
data to send via the
connections

Figure 5: Design of a uses-port

Table 1: Lines of source code for a number of SCA
components without functional code.
component hull usually has a total size of only a few
hundred lines of source code which have to be written by the
programmer. The term “standard component” describes a

framework
(for
comparision)

200 245 - - - -

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

component which is built upon already existing port types.
As one can see in the table, the implementation of user-
defined IDLs leads to additional lines of code.
 If it is necessary to define ports with user-defined
interfaces, then the time needed to implement the ports for
such an interface with a given IDL is usually below half a
day. This includes the time for designing and implementing
the provides- as well as the uses-port, as shown in Figure 4
and Figure 5 respectively. Additional effort has to be spent
if the mapping between port and worker includes the
conversion of data types, e.g. between CORBA structures
and C++-defined structures.
 Table 1 shows also the resulting lines of code for two
component hulls in case that no component framework is
used. For both components, the number of code lines
decrease by a factor of about 2.7-3.0 if the framework is
used. However, it has to be noted that individual decrease in
the number of source code lines may change from
component to component.

Component test

The tests have to be carried out after finalizing the
development of the component and the creation of its XML
descriptors.
 It has been experienced that a major part of the coding
errors belongs to spelling errors and wrong types.
 After the tests, the correct functionality of the
component hull and the consistency between profile and
component is ensured. Further tests are necessary after the

implementation of the worker. However, since the worker
implementation shall not change the component hull, the
consistency between component and domain profile can be
prooven again with the provided tests.

4. FUTURE DEVELOPMENT

In the future, the component framework shall be integrated
into an automatic code generation process which also
includes an automatic consistency check between
component hull and the XML descriptors of the component.
Since consistency errors between component hull and the
XML descriptors consume time for correction and mostly
the sources are either spelling errors or forgotten and wrong
properties or ports, this consistency assurance will lead to a
further increase in efficiency. Furthermore, if all ports are
implemented, the creation of the component hull is usually a
simple step which can be automated.
 As a first step, we plan the customization of an existing
SCA tool: our framework shall be incorporated in the SCA
tool to generate code which effectively uses the component
framework. This automatically leads to the consistency
between the component and its XML descriptors, since SCA
tools generate the descriptors and the component from the
same input.
 Further steps are necessary to automate the definition of
ports with user-defined interfaces, which either consist of
building blocks or have a completely new-defined IDL.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session
	PowerPoint Presentation

