

ACCELERATED SIMULATION OF COMMUNICATION WAVEFORMS USING

THE MATLAB DISTRIBUTED COMPUTING TOOLBOX

Brendan Garvey
(General Dynamics C4 Systems, Scottsdale, AZ, USA)

brendan.garvey@gdc4s.com

ABSTRACT

Developing new communication algorithms and waveforms
typically requires significant engineering effort and
extensive, time-consuming simulations. MATLAB and
Simulink are often used for this type of work. Although
these tools have proven valuable in developing and
simulating waveforms, designs of even modest complexity
can require long simulation times. The Mathworks now
offers a distributed computing solution, the MATLAB
Distributed Computing Toolbox, which has the potential to
address this problem.
 This paper presents a methodology and algorithm for
significantly accelerating the simulation of communication
waveforms using the MATLAB Distributed Computing
Toolbox running on a computer cluster. In the proposed
approach, a single Monte Carlo simulation is broken into
numerous smaller (shorter) Monte Carlo simulations,
running on multiple computers, and the results averaged
together to create the final answer. The parallel Monte Carlo
approach is already being used by researchers and engineers
in other technology areas [1, 2]. A MATLAB m-file,
dc_sim.m, has been developed to implement this approach
and is described in this paper. The proposed algorithm is
general purpose in nature which makes it easier to add
additional computers to the cluster if desired.

1. INTRODUCTION

The purpose of this paper is to show how the MATLAB
Distributed Computing Toolbox (DCT) can be used to
create a parallel Monte Carlo (PMC) waveform simulation
in order to significantly reduce simulation times. A
MATLAB function, dc_sim(), has been written to
implement the proposed approach. The core algorithm
within dc_sim() is described in detail in order to show how
a PMC waveform simulation can be implemented. One key
goal was to create a general purpose algorithm that would
allow additional computers to easily be added to the cluster
in order to attack complex waveform problems which
require significant simulation time.

 The approach proposed here is currently being
evaluated at General Dynamics C4 Systems on a cluster of
10 computers connected over the standard company
network.
 The outline of this paper is as follows. First, the basics
of the MATLAB Distributed Computing Toolbox are
covered, in order to provide the necessary background and
terminology. Next, the key concept and general
requirements for a parallel Monte Carlo (PMC) waveform
simulation are presented. This is followed by
implementation details of the dc_sim() MATLAB function.
Finally, performance results are presented, based on an IS-
95 MATLAB model which has been modified to run with
dc_sim().

2. OVERVIEW OF THE MATLAB DISTRIBUTED
COMPUTING TOOLBOX

There are two separate products that make up The
Mathworks distributed computing environment: 1) the
Distributed Computing Toolbox (DCT) and 2) the
MATLAB Distributed Computing Engine (MDCE or DCE).
DCT is a set of commands and functions that are executed
from the MATLAB command window, or from an m-file,
just like other toolboxes. The computer on which DCT is
running is defined here as the DCT client. MDCE is a
service that runs in the background on computers running
either worker or job manager processes.
 Figure 1 shows the basic MATLAB distributed
computing environment [3]. The DCT client defines and
submits jobs to the job manager. The job manager process,
which is controlled by MDCE, “coordinates the execution
of jobs and the evaluation of their tasks” [3]. The job
manager can run on any computer that has MDCE installed.
A worker is a separate process, also controlled by MDCE,
which evaluates a task assigned to it by the job manager,
and returns the results to the job manager. A worker
process is usually installed on its own computer, so that
multiple workers can operate simultaneously to complete a
job faster. However, for initial development and debugging
of a waveform, DCT, the job manager, and worker
processes can all be installed on the same computer. In the

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

rest of this paper, the term “worker” will be used to refer to
a computer running a worker process.
 Beginning with version 2, DCT now supports both
“distributed jobs” and “parallel jobs” (Mathworks’
terminology). In a distributed job, the tasks do not directly
communicate with each other; in a parallel job, the tasks can
communicate with each other. The algorithm described here
uses the simpler distributed job functionality. Going
forward, this paper uses the terms “distributed” and
“parallel” somewhat interchangeably, but remember that the
algorithm is using the distributed job approach.

Figure 1: Basic MATLAB Distributed Computing
Environment

3. KEY CONCEPT

Most simulations of communication waveforms utilize the
Monte Carlo method to create an estimate of the desired
observable. Usually the desired observable is the bit-error-
rate (BER), the symbol-error-rate (SER), or, for acquisition
simulations, the probability of detection or probability of
false alarm. Typically, when simulating new waveforms or
algorithms, the system engineer repeatedly modifies

different aspects of the design and monitors the impact on
the observables in order to create a design that meets system
requirements.
 A Monte Carlo simulation can be broken into smaller
(shorter) Monte Carlo simulations, running in parallel, and
the results averaged together to create the final estimate.
This is referred to as “parallel Monte Carlo”. For example,
let us say that a particular waveform model requires the
simulation of 10 million symbols in order to create an
adequate estimate of the SER. The waveform model could
be simulated on 10 computers, with each individual
computer running 1 million symbols through the waveform
model. The final estimate of the SER would be the sum of
all symbol errors divided by 10 million. The actual
functionality of dc_sim() is more involved, but this is the
main idea. Although this idea is conceptually
straightforward, care must be taken in how the simulation is
partitioned, and how the random noise sequences are
generated, to ensure that the individual simulations are
statistically independent.

(MDCE)

MATLAB
Worker

(MDCE)

MATLAB
Worker

(MDCE)

MATLAB
Worker

(MDCE)

Job
ManagerDCT

Client

 Figure 2 is a simple example which shows the key
concept in picture form. A communications signal is
generated, and a noise signal is added to it. The signal is
partitioned into 4 blocks and each block is simulated on a
different worker. There are 4 copies of the same waveform
simulation, 1 per worker. The only thing different about
each simulation is the noise sequence and the input data.
The unique noise sequences are represented by Nj in the
figure. The segments are simulated in parallel, and the
results are averaged to form the final estimate (parallel
Monte Carlo).
 Figure 2 presents a convenient way to visualize the
PMC process at a high level. However, several points need
to be made concerning the actual implementation.

0 20 40 60 80 100 120 140 160
-1

0

1
Communications Signal

0 20 40 60 80 100 120 140 160
-1

0

1
AWGN Noise

0 20 40 60 80 100 120 140 160
-2

0

2
Signal Plus Noise

Figure 2: Key Concept – Partitioning a Monte Carlo Simulation into Parallel Pieces

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 First, figure 2 implies a one-time division of the input
signal. Actually, the input waveform is divided into
numerous simulation blocks that are continuously fed to
the workers. Second, no attempt is made to maintain the
state of the model at the signal block boundaries; each
worker runs a semi-independent Monte Carlo simulation
and does not receive input from any other worker. Third,
in an actual simulation the number of symbols per block
would be much larger than what is implied by figure 2.

4. REQUIREMENTS / FEATURES FOR A PMC
WAVEFORM SIMULATION

Now that the key concept has been presented, this section
presents general requirements and desirable features for a
distributed waveform simulation using a PMC approach.
 Parallel Random Number Streams - “Parallel
random number generators should … have no correlations
between the sequences on different processors, produce
the same sequence for different numbers of processors,
and not require any data communication between
processors” [2, 4]. Although not a requirement, it is also
desirable that the selected method for generating parallel
random numbers build upon existing MATLAB
functionality. Function dc_sim() meets these requirements
by using “sequence splitting” [4], centrally controlling the
noise seed table at the DCT client, and using MATLAB’s
randn() function.
 Repeatability - The simulation should produce
identical results regardless of the number of computers
used in the cluster. If a simulation is run on Friday with 5
computers, and the same simulation run again on Monday
with 10 computers, the results should be identical. This
requirement is also met by centrally controlling the noise
seeds at the DCT client.
 Reliability - As the number of computers in the
cluster goes up, the probability of having a computer
problem also goes up. The simulation should provide a
means to recover from a worker failure and remove the
worker from the cluster. This functionality has not yet
been added to dc_sim().
 Usability/Expandability - When engineers have
multiple computers available for a simulation, an ad hoc
approach is typically used. For example, each computer
might run an Eb/No curve using a different value of a key
parameter. However, for increased usability, a PMC
waveform simulation should provide a method of
parallelization that is independent of the waveform
model, so that computing resources can be easily added or
subtracted from the simulation. Function dc_sim() has
been designed to meet this requirement.

5. IMPLEMENTATION DETAILS

In this section we will explain how a PMC waveform
simulation can be implemented by using dc_sim() and the
modified IS-95 MATLAB model as an example. We will
assume that there are k workers available, and that the
goal is to generate an Eb/No vs. BER curve. Let L be the
block size in packets (definition of block size is below),
and let M be the quantity of random numbers needed per
block. Before presenting a detailed description of
dc_sim(), several supporting topics are discussed below.

 Computer Cluster – Strictly speaking, this usually
means a dedicated group of computers networked
together, somewhat isolated from the company network.
In this paper we will use the term in a looser sense to also
include a group of computers connected over the
company LAN via DCT and MDCE.
 Dynamic Cluster Size – Although a job manager
may have access to k workers, a simulation may limit
itself to j workers, where j < k. The amount of computing
resources actually used in a simulation will be called the
dynamic cluster size.
 Jobs and Tasks – In DCT, a job is essentially a
group of tasks that need to be performed. Function
dc_sim() only uses 1 task per job. A task has a function
handle and input arguments associated with it; the
function handle points to the function that the task is
supposed to evaluate when the parent job is submitted.
 Packet Size - for the IS-95 forward channel, each
packet is 20 ms in duration and represents 184
information bits. Eight tail bits are added, the packet is
R=1/2 encoded and then spread by a factor of 64. There
are therefore 24576 chips per 20 ms packet, which is a
chipping rate of 1.2288e6.
 Simulation Block Size - The input signal is chopped
up into blocks. Each worker simulates a block at a time,
and returns the results to dc_sim() via the job manager.
The simulation block size is the granularity of the PMC
waveform simulation. The block size is somewhat
arbitrary – it should be large enough so that the workers
are not constantly interacting with the DCT client, but
should be small enough so that progress can be seen by
the user when the simulation is run interactively. For the
IS-95 simulation, the block size was typically set between
2 and 10 packets. As will be seen in the section on
performance results, the efficiency of the cluster is a
direct function of the simulation block size.
 Random Numbers per Simulation Block - Each
simulation block requires M random numbers. The
chipping rate is 1.2288e6 complex chips/sec, and the IS-
95 model uses an analog (oversample) rate of 5. The
random number requirement is therefore:

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

M = (1.2288e6)(2)(5)(20 ms)*L = 245760*L random
numbers per simulation block.
 Noise State Table - One of the fundamental
challenges for the PMC waveform simulation is the
generation and coordination of random numbers - each
block of random numbers must be uncorrelated from
every other block. Because of the network bandwidth it
would require, we certainly wouldn’t want to pass the
random numbers from the client to the workers; the k
workers should generate their own random numbers.
However, the resulting k streams of random numbers
must be uncorrelated.
 One straightforward technique to create uncorrelated
random number streams is to take a single random
number sequence and repeatedly divide it up into non-
overlapping sub-sequences. In the technical literature, this
is sometimes referred to as “sequence splitting” [2, 4].
The assignment of these sub-sequences to workers is
centrally controlled by function dc_sim() via the noise
state table. This table holds an array of noise seeds, each
noise seed represents the start of a sub-sequence. When
dc_sim() creates a job, one of the input parameters to the
job is a noise seed taken from the noise state table.
 Sequence splitting can be accomplished in a
straightforward manner using the MATLAB randn()
function. The MATLAB command state1=randn(‘state’)
returns the current internal state of the randn() generator.
Later, the randn() generator can be re-initialized to state1
using the command randn(‘state’, state1).
 To generate the noise state table, we create a loop
which generates M random numbers at a time. After each
block of M random numbers has been generated, we
throw away the generated numbers, but save the state
(a.k.a. the noise seed) into the noise state table. Later,
each time dc_sim() submits a new job to a worker, one of
the parameters passed to the worker is a noise seed out of
the noise state table. The noise state table is generated
once, saved to a MAT file, and loaded when dc_sim() is
initialized.
 Now that the supporting concepts have been
presented, let’s discuss in detail the functionality of
dc_sim() and how it is used within a PMC waveform
simulation. Figure 3 is a simplified block diagram that
will be used to explain the overall functionality.
 Top-Level Driver - The top-level driver first calls
dc_sim() to load the noise state table. Then, from within
a “for” loop, it repeatedly calls dc_sim() for each Eb/No
point to be evaluated. The top-level driver passes in to
dc_sim() the model parameters needed to evaluate the
model, simulation parameters needed by dc_sim(), and a
pointer to the waveform evaluation function.
 dc_sim() – Function dc_sim() submits jobs to the
workers (via the job manager) and collects results. It
continues to do this until the target number of errors has

been reached. It sums all of the bit/symbol errors, and
returns this data to the top-level driver. Function dc_sim()
acts as an interface between the top-level driver and the
job manager. The top-level driver doesn’t contain any
distributed computing toolbox commands and doesn’t
know about the job manager; dc_sim() takes care of all
that. The main components within dc_sim() are the noise
state table, the run queue, and the results queue. The
noise state table has already been described. The run
queue is an array that contains an object for each active
simulation job. Function dc_sim() continuously monitors
the run queue. When a job finishes, dc_sim() records the
results in the results queue, removes the old job from the
run queue, and submits a new job in order to keep all k
workers busy.

Top-level Driver

model params
sim params

job manager

dc_sim()

Results Queue

Run Queue

Noise
State
Table

job
assignments results

wf_eval()wf_eval()wf_eval()

k Workers

model params
noise seed bit error count

symbol error count

results

Figure 3: PMC Simulation Architecture

 The results queue is implemented as a MATLAB cell
array. Since the individual workers may have different
performance levels, the jobs may not finish in the same
order that they were submitted. However, regardless of
the number of workers, the results are stored in the cell
array in the same order as the jobs were submitted.
 Now let’s take a more detailed look at dc_sim();
figure 4 on the next page is an outline of the core portion
of dc_sim() using MATLAB syntax. There are three
main loops in the algorithm, an outer loop and two inner
sub-loops.
 Let’s start with the outer “while” loop. Variable done
is set to “1” when the simulation end conditions have
been met. The end conditions are usually a target number
of bit or symbol errors, and a perhaps a minimum number
of simulated symbols. Variable job_cnt is the number of
jobs that have been submitted. Variable done_jobs is the
number of jobs that have finished. The function of the
outer loop is to continue running the session until the

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

target end conditions have been reached (done goes high).
After done goes high, the outer loop continues the session
until all of the submitted jobs have been completed (until
done_jobs no longer less than job_cnt).

Figure 4: Function dc_sim() Core Functionality

 Now let’s look at sub-loop #1. This loop examines
all of the current jobs in the run queue. If a job has
finished, the results are extracted. If the job is still
running, the job object is added to the new run queue
new_run. The specific duties of sub-loop #1 are:
1) get results from recently finished jobs, and store them

in the results queue,
2) update the bit and symbol error counters,
3) if target end conditions are met, set done to 1,
4) create a new run queue which contains a reference to

jobs that are still running.

 Sub-loop #2 contains the code that actually uses DCT
commands to submit jobs to workers. If the end
conditions have not been met (done still equal to 0), then
this loop will execute as long as the number of active jobs
is less than the number of workers allotted for this

session. Each time this loop is executed, another job is
submitted to a worker.
 Let’s take a look at the insides of sub-loop #2. First,
the createJob command creates a job object job within
job manager jm1. Second, the next noise seed is retrieved
from the noise state table. Third, the createTask command
creates a task in the job that will evaluate the waveform
function using the retrieved noise seed. The first three
parameters passed in to createTask are the job object, a
pointer to the waveform evaluation function, and the
number of return arguments expected. The variables in
parentheses are the variables that will be passed on to the
waveform function which executes on the worker.
Finally, the job is submitted to the job manager using the
submit command, and the run queue is updated to include
this job.

wf_eval() – This is the waveform evaluation function
which runs on each worker. For our example, this
function evaluates the performance of the IS-95 forward
channel for L packets (which is the simulation block
size). The main inputs to this function are the necessary
model parameters, the noise seed, and the number of
packets to simulate. The output is the number of bit and
symbol errors. The output is returned to dc_sim() via the
job manager. Note that wf_eval() does not contain any
distributed computing toolbox commands, it only contains
the necessary code to model the IS-95 forward channel.
 There is some additional complexity required in
order to execute a Simulink model from the waveform
evaluation function. The sim_set, load_system, and sim
commands are required to execute a Simulink model from
the wf_eval() MATLAB script.
 Implementation Summary – The top-level driver
first calls dc_sim() to load the noise state table, and then
calls dc_sim() for each Eb/No point to be evaluated. The
top-level driver passes in all of the model and simulation
parameters to dc_sim(), including a pointer to the
waveform evaluation function to be simulated. When
writing the top-level driver, the engineer doesn’t need to
know about DCT; the main constraint is interfacing
correctly to the dc_sim() script.
 When dc_sim() is executed, it monitors its internal
run queue and strives to keep the run queue loaded with k
jobs. Each job contains the information necessary for a
worker to evaluate one simulation block. Function
dc_sim() will continue to submit jobs and record results
in the results queue until the target end conditions have
been reached; it then returns the accumulated error counts
to the top-level driver. Finally, the top-level driver
calculates the BER or SER.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

6. PERFORMANCE RESULTS

A MATLAB script which models a forward channel in
the IS-95 system has been modified to work with
dc_sim(). The original model was written by Gennady
Zilberman of Ben-Gurion University in Israel and was
downloaded from the MATLAB central file exchange.
The modified model was used to characterize the
performance of the cluster.

Figure 5: Cluster Performance Results

 Perhaps the most important characteristic of the
cluster to evaluate is its efficiency. By efficiency, we
mean how closely the actual performance of the cluster
matches the ideal performance. For example, if the
computing resources of the cluster are doubled, what is
the performance increase of the cluster? Ideally, the
performance of the cluster would also double.
 The efficiency of the cluster was measured by
repeatedly simulating a fixed number of packets while
varying the number of workers allotted to the cluster.
Figure 5 shows the results of this test. The solid line
represents the ideal performance of the cluster; the two
other curves show the cluster performance for simulation
block sizes of 2 packets and of 10 packets.
 Note that the efficiency of the cluster is a direct
function of the simulation block size; as the simulation
block size increases, the efficiency of the cluster
improves. This result is significant – if the block size is
large enough, the cluster performance is fairly close to
ideal.
 Upon reflection, this result makes intuitive sense. For
larger block sizes, the workers spend more time
processing simulation blocks, and less time

communicating with the DCT client. Remember that the
workers run semi-independently, only interacting with the
job manager when they need new input or when they are
returning results. In our IS-95 model, each packet takes
about 5 seconds to simulate. Thus a block size of 10
packets means that each worker runs independently for
about 50 seconds between interactions with the DCT
client. If there are 10 computers in the cluster, the cluster
would then be providing feedback to the DCT client
every 5 seconds.

7. COST BENEFIT ANALYSIS

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

Dynamic Cluster Size

P
er

fo
rm

an
ce

 (S
ym

bo
ls

/s
ec

)

Ideal
BLK Size = 10 Packets
BLK Size = 2 Packets

The performance results look fairly promising; the next
step would be to perform a cost benefit analysis. In this
section we take a brief look at some of the issues involved
in such an analysis, although a complete analysis is not
presented – the material presented here is only meant to
be a starting point.
 The purpose of a cost benefit analysis would be to
quantify the benefit of the MATLAB DCT software, and
compare this to the software cost. In this section we only
discuss the issues on the benefits side; a more complete
analysis will be done internal to the company. For this
discussion we assume a computer cluster of 16 computers
running the MATLAB DCT software, resulting in a speed
improvement of 10x to 15x.
 A MATLAB computer cluster would benefit a
waveform development project in two ways. First, the
main benefit would be a direct reduction in the system
engineering hours required to create a functional
MATLAB/Simulink model of the waveform. Since the
system engineer gets his/her simulation results faster, the
waveform model can be completed faster. Of course,
there is not a 1-to-1 relationship between reduced
simulation times and reduction in overall system
engineering hours - a speed improvement of 10x does not
result in a reduction of 10x in hours allotted for system
engineering activities. The system engineer works on a
variety of tasks, only some of them are related to
waveform simulation. Discussions with several project
leaders and system engineers resulted in an estimate of
2.5% for the reduction in overall system engineering
hours. Specifically, the team estimated that a speed
improvement of 10x to 15x results in a 2.5% reduction in
required system engineering hours to develop a system
waveform model. Table 1 below shows, for 3 recent
projects within our company, the estimated hours that
could have been saved using the MATLAB DCT
software.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Table 1: Estimate of Hours Saved

Project SYS ENG HRS
for

WF Development

SYS ENG
HRS
Saved

A 2352 59
B 3696 92
C 2350 59

 There is also arguably a secondary benefit to
employing a MATLAB computer cluster. Since the
system engineering tasks occur on the front end of a
project, they impact all of the subsequent tasks. The final
system model is needed by the FPGA, hardware and
software engineers to do their job. So improvements in up
front system engineering will benefit the entire
development program by allowing the system engineer to
perform various “what if” scenarios prior to having them
implemented by the engineering team. A final point to
consider is that if a MATLAB computer cluster is
purchased it can be shared between multiple programs to
further defer the project unique cost.

8. CONCLUSIONS

This paper has presented an approach for significantly
accelerating the simulation of communication waveforms
using the MATLAB Distributed Computing Toolbox. It
has been shown that, for reasonable simulation block
sizes, a parallel Monte Carlo waveform simulation
efficiently utilizes computer resources - doubling the size
of the computer cluster can come close to doubling the
performance of the cluster.

Performance of the cluster was verified using a MATLAB
(script-based) model. A Simulink model is currently
being modified to confirm that the proposed approach
also works with Simulink (model-based) simulations.
 So far, work has focused on creation and
implementation of the PMC algorithm; further work is
needed to validate the simulation results of the modified
models. At General Dynamics C4 Systems this approach
has gone through an initial evaluation; we believe that it
provides justifiable benefits to programs to offset its
initial investment.

9. REFERENCES

[1] J.S. Kim, S.J. Byun, “A Parallel Monte Carlo Simulation

on Cluster Systems for Financial Derivatives Pricing”, The
2005 IEEE Congress on Evolutionary Computation, Vol. 2,
pp. 1040-1044, 2-5 Sept. 2005.

[2] Y.K. Dewaraja et al., “A Parallel Monte Carlo Code for
Planar and SPECT Imaging …”, The 2005 IEEE Nuclear
Science Symposium Conference Record, Vol. 3, 15-20 Oct.
2005.

[3] Distributed Computing Toolbox User’s Guide, Version 2,
The Mathworks.

[4] P.D. Coddington, “Random Number Generators for Parallel
Computers”, Syracuse University, pp. 2, April 28 1997.

10. ACKNOWLEDGEMENTS

Special thanks to Stuart Williams and Dave Harrison of
General Dynamics C4 Systems for supporting this effort.
Also, thanks to David Orenstein and Idin Motedayen-
Aval of The Mathworks for licensing and technical
assistance.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session
	PowerPoint Presentation

