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ABSTRACT 
 

Developing new communication algorithms and waveforms 
typically requires significant engineering effort and 
extensive, time-consuming simulations. MATLAB and 
Simulink are often used for this type of work. Although 
these tools have proven valuable in developing and 
simulating waveforms, designs of even modest complexity 
can require long simulation times. The Mathworks now 
offers a distributed computing solution, the MATLAB 
Distributed Computing Toolbox, which has the potential to 
address this problem. 
 This paper presents a methodology and algorithm for 
significantly accelerating the simulation of communication 
waveforms using the MATLAB Distributed Computing 
Toolbox running on a computer cluster.  In the proposed 
approach, a single Monte Carlo simulation is broken into 
numerous smaller (shorter) Monte Carlo simulations, 
running on multiple computers, and the results averaged 
together to create the final answer. The parallel Monte Carlo 
approach is already being used by researchers and engineers 
in other technology areas [1, 2]. A MATLAB m-file, 
dc_sim.m, has been developed to implement this approach 
and is described in this paper.  The proposed algorithm is 
general purpose in nature which makes it easier to add 
additional computers to the cluster if desired. 
 

1. INTRODUCTION 
 

The purpose of this paper is to show how the MATLAB 
Distributed Computing Toolbox (DCT) can be used to 
create a parallel Monte Carlo (PMC) waveform simulation 
in order to significantly reduce simulation times. A 
MATLAB function, dc_sim(), has been written to 
implement the proposed approach. The core algorithm 
within dc_sim() is described in detail in order to show how 
a PMC waveform simulation can be implemented. One key 
goal was to create a general purpose algorithm that would 
allow additional computers to easily be added to the cluster 
in order to attack complex waveform problems which 
require significant simulation time.  

 The approach proposed here is currently being 
evaluated at General Dynamics C4 Systems on a cluster of 
10 computers connected over the standard company 
network.  
 The outline of this paper is as follows. First, the basics 
of the MATLAB Distributed Computing Toolbox are 
covered, in order to provide the necessary background and 
terminology. Next, the key concept and general 
requirements for a parallel Monte Carlo (PMC) waveform 
simulation are presented. This is followed by 
implementation details of the dc_sim() MATLAB function.  
Finally, performance results are presented, based on an IS-
95 MATLAB model which has been modified to run with 
dc_sim(). 
 

2. OVERVIEW OF THE MATLAB DISTRIBUTED 
COMPUTING TOOLBOX 

 
There are two separate products that make up The 
Mathworks distributed computing environment: 1) the 
Distributed Computing Toolbox (DCT) and 2) the 
MATLAB Distributed Computing Engine (MDCE or DCE). 
DCT is a set of commands and functions that are executed 
from the MATLAB command window, or from an m-file, 
just like other toolboxes. The computer on which DCT is 
running is defined here as the DCT client. MDCE is a 
service that runs in the background on computers running 
either worker or job manager processes.  
 Figure 1 shows the basic MATLAB distributed 
computing environment [3].  The DCT client defines and 
submits jobs to the job manager. The job manager process, 
which is controlled by MDCE,  “coordinates the execution 
of jobs and the evaluation of their tasks” [3].  The job 
manager can run on any computer that has MDCE installed. 
A worker is a separate process, also controlled by MDCE, 
which evaluates a task assigned to it by the job manager, 
and returns the results to the job manager.  A worker 
process is usually installed on its own computer, so that 
multiple workers can operate simultaneously to complete a 
job faster. However, for initial development and debugging 
of a waveform,  DCT, the job manager, and worker 
processes can all be installed on the same computer. In the 
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rest of this paper, the term “worker” will be used to refer to 
a computer running a worker process. 
 Beginning with version 2, DCT now supports both 
“distributed jobs” and “parallel jobs” (Mathworks’ 
terminology). In a distributed job, the tasks do not directly 
communicate with each other; in a parallel job, the tasks can 
communicate with each other. The algorithm described here 
uses the simpler distributed job functionality. Going 
forward, this paper uses the terms “distributed” and 
“parallel” somewhat interchangeably, but remember that the 
algorithm is using the distributed job approach. 
 

Figure 1: Basic MATLAB Distributed Computing 
Environment 

 
3. KEY CONCEPT 

 
Most simulations of communication waveforms utilize the 
Monte Carlo method to create an estimate of the desired 
observable. Usually the desired observable is the bit-error-
rate (BER), the symbol-error-rate (SER), or, for acquisition 
simulations, the probability of detection or probability of 
false alarm.  Typically, when simulating new waveforms or 
algorithms, the system engineer repeatedly modifies 

different aspects of the design and monitors the impact on 
the observables in order to create a design that meets system 
requirements. 
 A Monte Carlo simulation can be broken into smaller 
(shorter) Monte Carlo simulations, running in parallel, and 
the results averaged together to create the final estimate. 
This is referred to as “parallel Monte Carlo”. For example, 
let us say that a particular waveform model requires the 
simulation of 10 million symbols in order to create an 
adequate estimate of the SER. The waveform model could 
be simulated on 10 computers, with each individual 
computer running 1 million symbols through the waveform 
model. The final estimate of the SER would be the sum of 
all symbol errors divided by 10 million.  The actual 
functionality of dc_sim() is more involved, but this is the 
main idea. Although this idea is conceptually 
straightforward, care must be taken in how the simulation is 
partitioned, and how the random noise sequences are 
generated, to ensure that the individual simulations are 
statistically independent. 
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  Figure 2 is a simple example which shows the key 
concept in picture form. A communications signal is 
generated, and a noise signal is added to it. The signal is 
partitioned into 4 blocks and each block is simulated on a 
different worker. There are 4 copies of the same waveform 
simulation, 1 per worker. The only thing different about 
each simulation is the noise sequence and the input data.  
The unique noise sequences are represented by Nj in the 
figure. The segments are simulated in parallel, and the 
results are averaged to form the final estimate (parallel 
Monte Carlo).   
  Figure 2 presents a convenient way to visualize the  
PMC process at a high level. However, several points need 
to be made concerning the actual implementation. 
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Figure 2: Key Concept – Partitioning a Monte Carlo Simulation into Parallel Pieces
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  First, figure 2 implies a one-time division of the input 
signal. Actually, the input waveform is divided into 
numerous simulation blocks that are continuously fed to 
the workers. Second, no attempt is made to maintain the 
state of the model at the signal block boundaries; each 
worker runs a semi-independent Monte Carlo simulation 
and does not receive input from any other worker. Third, 
in an actual simulation the number of symbols per block 
would be much larger than what is implied by figure 2. 
 

4. REQUIREMENTS / FEATURES FOR A PMC  
WAVEFORM SIMULATION 

 
Now that the key concept has been presented, this section 
presents general requirements and desirable features for a 
distributed waveform simulation using a PMC approach. 
 Parallel Random Number Streams - “Parallel 
random number generators should … have no correlations 
between the sequences on different processors, produce 
the same sequence for different numbers of processors, 
and not require any data communication between 
processors” [2, 4].  Although not a requirement, it is also 
desirable that the selected method for generating parallel 
random numbers build upon existing MATLAB 
functionality. Function dc_sim() meets these requirements 
by using “sequence splitting” [4], centrally controlling the 
noise seed table at the DCT client, and using MATLAB’s 
randn() function. 
 Repeatability - The simulation should produce 
identical results regardless of the number of computers 
used in the cluster. If a simulation is run on Friday with 5 
computers, and the same simulation run again on Monday 
with 10 computers, the results should be identical. This 
requirement is also met by centrally controlling the noise 
seeds at the DCT client. 
 Reliability - As the number of computers in the 
cluster goes up, the probability of having a computer 
problem also goes up. The simulation should provide a 
means to recover from a worker failure and remove the 
worker from the cluster. This functionality has not yet 
been added to dc_sim(). 
 Usability/Expandability - When engineers have 
multiple computers available for a simulation, an ad hoc 
approach is typically used. For example, each computer 
might run an Eb/No curve using a different value of a key 
parameter.  However, for increased usability, a PMC 
waveform simulation should provide a method of 
parallelization that is independent of the waveform 
model, so that computing resources can be easily added or 
subtracted from the simulation. Function dc_sim() has 
been designed to meet this requirement. 

5. IMPLEMENTATION DETAILS 
 
In this section we will explain how a PMC waveform 
simulation can be implemented by using dc_sim() and the 
modified IS-95 MATLAB model as an example.  We will 
assume that there are k workers available, and that the 
goal is to generate an Eb/No vs. BER curve. Let L be the 
block size in packets (definition of block size is below), 
and let M be the quantity of random numbers needed per 
block. Before presenting a detailed description of 
dc_sim(), several supporting topics are discussed below. 
 
 Computer Cluster – Strictly speaking, this usually 
means a dedicated group of computers networked 
together, somewhat isolated from the company network.  
In this paper we will use the term in a looser sense to also 
include a group of computers connected over the 
company LAN via DCT and MDCE. 
 Dynamic Cluster Size – Although a job manager 
may have access to k workers, a simulation may limit 
itself to j workers, where j < k. The amount of computing 
resources actually used in a simulation will be called the 
dynamic cluster size. 
 Jobs and Tasks – In DCT, a job is essentially a 
group of tasks that need to be performed. Function 
dc_sim() only uses 1 task per job. A task has a function 
handle and input arguments associated with it; the 
function handle points to the function that the task is 
supposed to evaluate when the parent job is submitted. 
 Packet Size - for the IS-95 forward channel,  each 
packet is 20 ms in duration and represents 184 
information bits.  Eight tail bits are added, the packet is 
R=1/2 encoded and then spread by a factor of 64. There 
are therefore 24576 chips per 20 ms packet, which is a 
chipping rate of 1.2288e6. 
 Simulation Block Size - The input signal is chopped 
up into blocks. Each worker simulates a block at a time, 
and returns the results to dc_sim() via the job manager. 
The simulation block size is the granularity of the PMC 
waveform simulation. The block size is somewhat 
arbitrary – it should be large enough so that the workers 
are not constantly interacting with the DCT client, but 
should be small enough so that progress can be seen by 
the user when the simulation is run interactively. For the 
IS-95 simulation, the block size was typically set between 
2 and 10 packets. As will be seen in the section on 
performance results, the efficiency of the cluster is a 
direct function of the simulation block size. 
 Random Numbers per Simulation Block - Each 
simulation block requires M random numbers. The 
chipping rate is 1.2288e6 complex chips/sec, and the IS-
95 model uses an analog (oversample) rate of 5. The 
random number requirement is therefore:                      
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M = (1.2288e6)(2)(5)(20 ms)*L = 245760*L random 
numbers per simulation block. 
 Noise State Table - One of the fundamental 
challenges for the PMC waveform simulation is the 
generation and coordination of random numbers - each 
block of random numbers must be uncorrelated from 
every other block.  Because of the network bandwidth it 
would require, we certainly wouldn’t want to pass the 
random numbers from the client to the workers; the k 
workers should generate their own random numbers. 
However, the resulting k streams of random numbers 
must be uncorrelated.  
 One straightforward technique to create uncorrelated 
random number streams is to take a single random 
number sequence and repeatedly divide it up into non-
overlapping sub-sequences. In the technical literature, this 
is sometimes referred to as “sequence splitting” [2, 4]. 
The assignment of these sub-sequences to workers is 
centrally controlled by function dc_sim() via the noise 
state table. This table holds an array of noise seeds, each 
noise seed represents the start of a sub-sequence. When 
dc_sim() creates a job, one of the input parameters to the 
job is a noise seed taken from the noise state table. 
 Sequence splitting can be accomplished in a 
straightforward manner using the MATLAB randn() 
function. The MATLAB command state1=randn(‘state’) 
returns the current internal state of the randn() generator.  
Later, the randn() generator can be re-initialized to state1 
using the command randn(‘state’, state1).  
 To generate the noise state table, we create a loop 
which generates M random numbers at a time. After each 
block of M random numbers has been generated, we 
throw away the generated numbers, but save the state 
(a.k.a. the noise seed) into the noise state table.  Later, 
each time dc_sim() submits a new job  to a worker, one of 
the parameters passed to the worker is a noise seed out of 
the noise state table.  The noise state table is generated 
once, saved to a MAT file, and loaded when dc_sim() is 
initialized. 
 Now that the supporting concepts have been 
presented, let’s discuss in detail the functionality of 
dc_sim() and how it is used within a PMC waveform 
simulation. Figure 3 is a simplified block diagram that 
will be used to explain the overall functionality. 
 Top-Level Driver - The top-level driver first calls 
dc_sim() to load the noise state table.  Then, from within 
a “for” loop, it repeatedly calls dc_sim() for each Eb/No 
point to be evaluated.  The top-level driver passes in to 
dc_sim() the model parameters needed to evaluate the 
model, simulation parameters needed by dc_sim(), and a 
pointer to the waveform evaluation function. 
 dc_sim() – Function dc_sim() submits jobs to the 
workers (via the job manager) and collects results. It 
continues to do this until the target number of errors has 

been reached.  It sums all of the bit/symbol errors, and 
returns this data to the top-level driver. Function dc_sim() 
acts as an interface between the top-level driver and the 
job manager. The top-level driver doesn’t contain any 
distributed computing toolbox commands and doesn’t 
know about the job manager; dc_sim() takes care of all 
that. The main components within dc_sim() are the noise 
state table, the run queue, and the results queue.  The 
noise state table has already been described. The run 
queue is an array that contains an object for each active 
simulation job.  Function dc_sim() continuously monitors 
the run queue. When a job finishes, dc_sim() records the 
results in the results queue, removes the old job from the 
run queue, and submits a new job in order to keep all k 
workers busy.  
 

Top-level Driver

model params
sim params

job manager

dc_sim( )

Results Queue

Run Queue

Noise
State 
Table

job
assignments results

wf_eval( )wf_eval( )wf_eval( )

k Workers

model params
noise seed bit error count

symbol error count

results

 
Figure 3: PMC Simulation Architecture 

 
 The results queue is implemented as a MATLAB cell 
array. Since the individual workers may have different 
performance levels, the jobs may not finish in the same 
order that they were submitted. However, regardless of 
the number of workers, the results are stored in the cell 
array in the same order as the jobs were submitted. 
 Now let’s take a more detailed look at dc_sim();  
figure 4 on the next page is an outline of the core portion 
of dc_sim() using MATLAB syntax.  There are three 
main loops in the algorithm, an outer  loop and two inner 
sub-loops.  
 Let’s start with the outer “while” loop. Variable done 
is set to “1” when the simulation end conditions have 
been met. The end conditions are usually a target number 
of bit or symbol errors, and a perhaps a minimum number 
of simulated symbols. Variable job_cnt is the number of 
jobs that have been submitted. Variable done_jobs is the 
number of jobs that have finished. The function of the 
outer loop is to continue running the session until the 
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target end conditions have been reached (done goes high). 
After done goes high, the outer loop continues the session 
until all of the submitted jobs have been completed (until 
done_jobs no longer less than job_cnt). 

  
Figure 4: Function dc_sim() Core Functionality 

 
 Now let’s look at sub-loop #1.  This loop examines 
all of the current jobs in the run queue.  If a job has 
finished, the results are extracted. If the job is still 
running, the job object is added to the new run queue 
new_run. The specific duties of sub-loop #1 are: 
1) get results from recently finished jobs, and store them 

in the results queue, 
2) update the bit and symbol error counters, 
3) if target end conditions are met, set done to 1, 
4) create a new run queue which contains a reference to 

jobs that are still running. 
 
 Sub-loop #2 contains the code that actually uses DCT 
commands to submit jobs to workers. If the end 
conditions have not been met (done still equal to 0), then 
this loop will execute as long as the number of active jobs 
is less than the number of workers allotted for this 

session. Each time this loop is executed, another job is 
submitted to a worker. 
 Let’s take a look at the insides of sub-loop #2. First, 
the createJob command creates a job object  job within 
job manager jm1. Second, the next noise seed is retrieved 
from the noise state table. Third, the createTask command 
creates a task in the job that will evaluate the waveform 
function using the retrieved noise seed.  The first three 
parameters passed in to createTask are the job object, a 
pointer to the waveform evaluation function, and the 
number of return arguments expected. The variables in 
parentheses are the variables that will be passed on to the 
waveform function which executes on the worker. 
Finally, the job is submitted to the job manager using the 
submit command, and the run queue is updated to include 
this job. 

wf_eval() – This is the waveform evaluation function 
which runs on each worker. For our example, this 
function evaluates the performance of the IS-95 forward 
channel for L packets (which is the simulation block 
size). The main inputs to this function are the necessary 
model parameters, the noise seed, and the number of 
packets to simulate. The output is the number of bit and 
symbol errors. The output is returned to dc_sim() via the 
job manager. Note that wf_eval() does not contain any 
distributed computing toolbox commands, it only contains 
the necessary code to model the IS-95 forward channel.  
 There is some additional complexity required in 
order to execute a Simulink model from the waveform 
evaluation function.  The sim_set, load_system, and sim 
commands are required to execute a Simulink model from 
the wf_eval() MATLAB script. 
 Implementation Summary – The top-level driver 
first calls dc_sim() to load the noise state table, and then 
calls dc_sim() for each Eb/No point to be evaluated.  The 
top-level driver passes in all of the model and simulation 
parameters to dc_sim(), including a pointer to the 
waveform evaluation function to be simulated. When 
writing the top-level driver, the engineer doesn’t need to 
know about DCT; the main constraint is interfacing 
correctly to the dc_sim() script. 
 When dc_sim() is executed, it monitors its internal 
run queue and strives to keep the run queue loaded with k 
jobs.  Each job contains the information necessary for a 
worker to evaluate one simulation block. Function 
dc_sim() will continue to submit jobs and record results 
in the results queue until the target end conditions have 
been reached; it then returns the accumulated error counts 
to the top-level driver. Finally, the top-level driver 
calculates the BER or SER. 
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6. PERFORMANCE RESULTS 

 
A MATLAB script which models a forward channel in 
the IS-95 system has been modified to work with 
dc_sim(). The original model was written by Gennady 
Zilberman of Ben-Gurion University in Israel and was 
downloaded from the MATLAB central file exchange. 
The modified model was used to characterize the 
performance of the cluster.  

  
Figure 5:  Cluster Performance Results 

 
 Perhaps the most important characteristic of the 
cluster to evaluate is its efficiency. By efficiency, we 
mean how closely the actual performance of the cluster 
matches the ideal performance. For example, if the 
computing resources of the cluster are doubled, what is 
the performance increase of the cluster? Ideally, the 
performance of the cluster would also double. 
 The efficiency of the cluster was measured by 
repeatedly simulating a fixed number of packets while 
varying the number of workers allotted to the cluster.  
Figure 5 shows the results of this test.  The solid line 
represents the ideal performance of the cluster; the two 
other curves show the cluster performance for simulation 
block sizes of 2 packets and of 10 packets.   
 Note that the efficiency of the cluster is a direct 
function of the simulation block size; as the simulation 
block size increases, the efficiency of the cluster 
improves. This result is significant – if the block size is 
large enough, the cluster performance is fairly close to 
ideal. 
 Upon reflection, this result makes intuitive sense. For 
larger block sizes, the workers spend more time 
processing simulation blocks, and less time 

communicating with the DCT client. Remember that the 
workers run semi-independently, only interacting with the 
job manager when they need new input or when they are 
returning results.  In our IS-95 model, each packet takes 
about 5 seconds to simulate. Thus a block size of 10 
packets means that each worker runs independently for 
about 50 seconds between interactions with the DCT 
client. If there are 10 computers in the cluster, the cluster 
would then be providing feedback to the DCT client 
every 5 seconds. 
 

7. COST BENEFIT ANALYSIS 
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The performance results look fairly promising; the next 
step would be to perform a cost benefit analysis. In this 
section we take a brief look at some of the issues involved 
in such an analysis, although a complete analysis is not 
presented – the material presented here is only meant to 
be a starting point. 
 The purpose of a cost benefit analysis would be to 
quantify the benefit of the MATLAB DCT software, and 
compare this to the software cost. In this section we only 
discuss the issues on the benefits side; a more complete 
analysis will be done internal to the company. For this 
discussion we assume a computer cluster of 16 computers 
running the MATLAB DCT software, resulting in a speed 
improvement of 10x to 15x. 
 A MATLAB computer cluster would benefit a 
waveform development project in two ways. First, the 
main benefit would be a direct reduction in the system 
engineering hours required to create a functional 
MATLAB/Simulink model of the waveform. Since the 
system engineer gets his/her simulation results faster, the 
waveform model can be completed faster.  Of course, 
there is not a 1-to-1 relationship between reduced 
simulation times and reduction in overall system 
engineering hours - a speed improvement of 10x does not 
result in a reduction of 10x in hours allotted for system 
engineering activities. The system engineer works on a 
variety of tasks, only some of them are related to 
waveform simulation. Discussions with several project 
leaders and system engineers resulted in an estimate of 
2.5% for the reduction in overall system engineering 
hours. Specifically, the team estimated that a speed 
improvement of 10x to 15x results in a 2.5% reduction in 
required system engineering hours to develop a system 
waveform model. Table 1 below shows, for 3 recent 
projects within our company, the estimated hours that 
could have been saved using the MATLAB DCT 
software. 
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Table 1:  Estimate of Hours Saved 
 

Project SYS ENG HRS 
for 

WF Development 

SYS ENG 
HRS 
Saved 

A 2352 59 
B 3696 92 
C 2350 59 

 
 There is also arguably a secondary benefit to 
employing a MATLAB computer cluster. Since the 
system engineering tasks occur on the front end of a 
project, they impact all of the subsequent tasks. The final 
system model is needed by the FPGA, hardware and 
software engineers to do their job. So improvements in up 
front system engineering will benefit the entire 
development program by allowing the system engineer to 
perform various “what if” scenarios prior to having them 
implemented by the engineering team. A final point to 
consider is that if a MATLAB computer cluster is 
purchased it can be shared between multiple programs to 
further defer the project unique cost. 

 
8. CONCLUSIONS 

 
This paper has presented an approach for significantly 
accelerating the simulation of communication waveforms 
using the MATLAB Distributed Computing Toolbox.  It 
has been shown that, for reasonable simulation block 
sizes, a parallel Monte Carlo waveform simulation 
efficiently utilizes computer resources - doubling the size 
of the computer cluster can come close to doubling the 
performance of the cluster. 

Performance of the cluster was verified using a MATLAB 
(script-based) model. A Simulink model is currently 
being modified to confirm that the proposed approach 
also works with Simulink (model-based) simulations. 
 So far, work has focused on creation and 
implementation of the PMC algorithm; further work is 
needed to validate the simulation results of the modified 
models. At General Dynamics C4 Systems this approach 
has gone through an initial evaluation; we believe that it 
provides justifiable benefits to programs to offset its 
initial investment.  
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