

STRATEGIC ADAPTATION OF SCA FOR STRS

Todd Quinn1 (ZIN Technologies/NASA GRC, Brook Park, Ohio, USA;

todd.quinn@zin-tech.com);
Thomas Kacpura1 (ZIN Technologies/NASA GRC, Brook Park, Ohio, USA;

thomas.kacpura@zin-tech.com

1 This work is performed under NASA contract NAS3-99155

ABSTRACT

The Space Telecommunication Radio System (STRS)
architecture is being developed to provide a standard
framework for future NASA space radios with greater
degrees of interoperability and flexibility to meet new
mission requirements. The space environment imposes
unique operational requirements with restrictive size,
weight, and power constraints that are significantly smaller
than terrestrial-based military communication systems.
With the harsh radiation environment of space, the
computing and processing resources are typically one or
two generations behind current terrestrial technologies.
Despite these differences, there are elements of the SCA
that can be adapted to facilitate the design and
implementation of the STRS architecture.

1. INTRODUCTION

Space Telecommunication Radio Systems (STRS) is an
open architecture specification based on software defined
reconfigurable technologies and is being developed by
NASA for its future space-radio communications and
navigation systems. Software defined radios (SDRs) offer
advanced operational capabilities which will result in
reduced mission life cycle costs for space platforms. The
objective of the open architecture for NASA space SDRs is
to provide a consistent and extensible environment on
which to develop, manage and operate the increasingly
complex software radios used in NASA space missions.
The open STRS architecture provides a framework for
leveraging earlier efforts by reusing various architecture
compliant system components developed previously in
NASA programs.

The United States Department of Defense (DoD) has
developed an open architecture for their next generation of
military radio communication systems. With the
participation of a large number of companies, the
government has spent a considerable amount of effort, time,
and expense on the development of the Software

Communications Architecture (SCA). The STRS
architecture and the SCA share many of the same goals;
however, the constraints of space-based systems currently
prevent full utilization of the SCA by NASA.
 To leverage the work accomplished by the DoD, this
paper examines aspects of the SCA that can be applied to
facilitate the design and implementation of the STRS
architecture. STRS compatibility with the SCA would
allow NASA to utilize commercial development and testing
tools, share waveform components which may reduce
programmatic costs of maintaining an architecture. Highly
effective commercial software development tools are
reducing the time and cost of developing SCA compliant
waveforms and platforms. STRS adoption of these
commercial tools would provide a consistent set of
standards and practices possibly lowering the costs of
platform and waveform development.

2. SOFTWARE COMMUNICATIONS
ARCHITECTURE

The DoD Joint Tactical Radio System (JTRS) program
created the SCA to provide a specific framework on which
to build their next generation of military radios. Mandating
compliance to the SCA, JTRS is ensuring that components
of military communication systems developed by various
manufacturers will seamlessly operate together. This
interoperability also promotes hardware/software
component reuse, faster technology insertion, and expands
participation of companies with new and innovative ideas.
The SCA is the foundation for cost effective and flexible
communication systems that can adapt and evolve over time
as military operational capabilities change and expand to
meet future DoD requirements.
 The SCA stipulates how various hardware and software
components form the structure of a radio communication
system. The specification of the SCA constrains software
development at component interfaces and does not limit the
functional implementation within the components.
Innovative intellectual property can still be protected while

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

achieving benefits of software re-use on other platform
implementations of the SCA.
 The SCA was developed with an objected-oriented
approach and is graphically represented with the Unified
Modeling Language (UML). Details and complete
technical specification of the architecture can be found in
the Software Communications Architecture Specification
document [1].

2.1 SCA Operating Environment

Figure 1 shows the SCA separation of application software
from the underlying hardware. The SCA operating
environment consists of a :

• Core Framework,
• CORBA Middleware
• POSIX Real-Time Operating System

CORBA

General Processing
Hardware

Applications / Waveforms

Core Framework

Specialized
Hardware

D
r
i
v
e
r
s

D
e
v
i
c
e

Operating System

Figure 1. SCA Application / Hardware Separation

The core framework provides a set of interfaces
between the application layer (SCA compliant waveform)
and the operating system associated with the underlying
processing hardware. These interfaces provide access to the
various application building blocks, application control
mechanisms, and core framework services. Core
framework services are common functionality used by a
majority of waveform application such as file management,
logging, and timing.

Middleware is a data transport layer that provides
communications among software components. CORBA
(Common Object Request Broker Architecture) [2] is a
multi-platform distributed communication system developed
by the Object Management Group. CORBA is independent
of programming languages, processing hardware, and
operating systems. This contributes to easier software re-
use, better software portability and increased productivity.

With the use of CORBA, data transportation and remote
procedure calls do not have to be created from scratch and
are standardized from system to system. The software
developer does not have to know about the communication
details of the underlying hardware on all possible platforms
and can concentrate on the higher level issues of platform
and application development.

Another aspect of the SCA is the requirement for a real
time operating system (RTOS). Radio systems have real
time requirements; frequently data has to be moved from
one point to another or converted from one format to
another in a certain fixed amount of time. The SCA
satisfies real time requirements by using an RTOS that
provides tight control over software execution timing. The
choice of an RTOS for an SCA compliant platform is up to
the hardware platform provider. However to support
portability, the chosen RTOS is required to be compliant
with a POSIX (Portable Operating System Interface)
standard.

2.2 Software Components and Interfaces in the SCA

A software component is an organized unit of program
instructions that provide a small set of related functional
capabilities normally called the component’s behavior. The
behavior of a component can only be accessed through its
open public interfaces. Each instance of a software
component maintains a set of private internal variables
commonly referred to as the component’s properties. The
SCA defines a variety of components and their associated
public interfaces. The rest of this section briefly describes
the major components defined in the SCA that may be
leveraged by STRS. Detailed descriptions of all SCA
components can be found in the SCA specification.

At the application layer, an SCA compliant waveform
is comprised of one or more Resource components which
have specific interfaces. The Resource interfaces provide
common control and configuration functions for waveform
components; these interfaces are used by the SCA core
framework. The waveform developer can extend Resource
by adding new behaviors and interfaces to create specialized
Resource components. As an example, the Device
component in the SCA core framework is an extension of
Resource and acts as a software proxy for actual hardware.

System control is accomplished through the core
framework components defined as DomainManager,
ApplicationFactory, Application, Device, and
DeviceManager. The DomainManager provides control and
configuration of the overall system domain. The
DomainManager interfaces are grouped into three
categories: human computer interaction, registration, and
core framework administration. The ApplicationFactory,
also part of domain management, provides an interface to
request the creation of a specific type of application within

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

the domain. For each instantiated application, an
Application component is created by the
ApplicationFactory. The Application component controls,
configures, and returns status of the instantiated application.
A Device component is an extension of Resource and has
additional behaviors for abstracting the control and
functionality of physical hardware elements. A
DeviceManager manages a set of logical Devices.

2.3 SCA for Space

It is important to focus on minimizing the required
resources of the system (e.g. size, power, and mass) for the
constrained space environment. Processors and other
electronic devices used in space require radiation hardening.
These components lag at least a generation or two behind
the processing capabilities of their terrestrial-based
equivalents. Due to slower processors and limited memory
footprint, these reduced capabilities constrain the operating
environments of space radios compared to radios using
commercial components.

Space waveform applications requiring digital signal
processing have historically been executed in specialized
Application Specific Integrated Circuits (ASICs). ASICs
have the lowest power requirements and greatly satisfy
radiation requirements for space, however they are not
reprogrammable. Reconfigurable signal processing is
slowly gaining in acceptance within NASA with the
availability and use of space qualified DSPs and FPGAs.
Critical applications sometimes use DSPs, FPGAs, and
other specialized hardware during the design process, but
for deployment in space the circuit is implemented in an
anti-fuse FPGA or an ASIC. The use of DSPs and FPGAs
are treated as special cases in SCA 2.2. The present focus
of the SCA has not addressed specialized hardware
abstraction, but is on-going as JTRS continues to develop
radios for various military applications.
 There are other challenges that are factors for an SCA
that supports space radios. The SCA compliant core
framework must fit on the space qualified platform in terms
of resources, footprint, and features. If the SCA is used to
provide an environment where radio capabilities can be
reprogrammed, the necessary core framework will take up
resources that would normally be dedicated directly to
signal processing. Smaller amounts of already limited
resources will be left for signal processing. The SCA in
space also has to address concerns with the added software
complexity and the affect on system reliability.

3. SPACE TELECOMMUNICATION RADIO
SYSTEMS

The STRS architecture provides the foundation for a new
generation of NASA communication systems with greater

system interoperability, increased hardware/software
component reuse, faster technology insertion and the ability
to adapt and evolve to changing to changing requirements.
Figure 2 shows the STRS architecture separation of
waveform application software from the underlying
hardware. The basic premise of STRS architecture is that
the STRS infrastructure and waveform application execute
on a combination of general purpose processing hardware
and specialized processing hardware.

STRS APIsPOSIX APIs

Applications / Waveforms

Infrastructure
(reusable libraries)

General
Processing
Hardware

Specialized
Hardware

HAL APIs

Operating
System

Board Support Package

Figure 2. STRS Application Software / Hardware
Separation

The STRS application programming interfaces (APIs)
layer located between the waveform application and the rest
of the radio system is a key concept to the STRS
architecture. These APIs abstract the waveform application
from the rest of the radio’s operating environment and
provide a set of interfaces for high portability and reuse of
waveforms and their application components. The STRS
APIs provides interfaces to manage the radio platform and
waveforms, control logical devices and use available
platform services.

The layers below the STRS APIs comprise the STRS
operating environment consisting of three elements: 1) the
infrastructure, 2) a real time operating system, and 3) a
Hardware Abstraction Layer (HAL). The STRS
infrastructure implements the STRS APIs which supports
system management, device control and data transfer
functions. The infrastructure interacts through the APIs
with both the waveform application and the computing
hardware elements. The infrastructure provides an
abstracted path from the waveform application to the
hardware, independent of the particular hardware elements.

STRS requires that the real time operating system for
the radio platform be commercially available and also
implement portions of POSIX (Portable Operating System
Interface). POSIX provides industry standard functionality

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

across a variety operating systems to help increase the
portability of applications.

The HAL is the third element of the operating
environment providing interfaces for board support
packages necessary to run waveform application
components on specialized hardware. The HAL resources
include device drivers, published APIs to access specialized
hardware board support packages and documented interface
definitions released by the platform developer. A complete
description of the STRS architecture can be found in the
STRS Architecture Description [3] and STRS Architecture
Standard document [4].

3.1 JTRS and NASA Space-Based Radio Differences

There are several differences other than size, weight and
power constraints, as well as reliance on specialized signal
processing for NASA space-based radios compared to JTRS
communication systems. NASA radios generally operate at
higher frequencies and higher data rate transmissions than
the current SCA compliant radios. Also extensive testing is
conducted in order to assure proper operation and
characterization of operation. Access during NASA
missions is generally limited to remote uploads for changing
the behavior of the radios. Security concerns are not as
stringent, although authentication may be required. High
reliability requirements stem from safety concerns, as well
as from the need to have the capability to contact and
control the spacecraft through the radio as the mission
requires.

Design aspects that drive the STRS architecture also
come from an operational perspective. The SCA is
designed to support dynamic deployment and/or
reconfiguration of waveform applications for a variety of
hardware platforms. NASA mission operations are pre-
planned in advance and limited to a specific hardware
platform, and full SCA capabilities for dynamic deployment
and reconfiguration on different platforms are not needed.

3.2 SCA / STRS Commonality

Despite the environmental and operational differences
described above there are many aspects of the SCA that can
be leveraged for the STRS architecture. There are several
elements of the SCA that have commonality with the STRS
architecture approach and are shared between the two
architectures:

• Seeks to separate the software waveform
applications from the hardware

• Requires operating environments consisting of real
time POSIX compliant operating systems.

• Describes an infrastructure within the operating
environment that provides system management and

communication services for waveform application
and platform components.

• Configuration files are used for platform
description and application deployment.

 The middleware specification is one difference between
the two architectures at the architecture level, but can be
viewed as common at the implementation level. The SCA
operating environment requires CORBA middleware for
component communication and STRS does not specify any
particular communication mechanism within its operating
environment. Since the mechanism for component
communication is non-specific for STRS, the use of
CORBA for implementation of STRS operating
environment communications is not precluded.

4. STRS INFRASTRUCTURE AND THE SCA

Domain management, application management and device
management within the STRS infrastructure could leverage
the SCA for greater compatibility between the two
architectures. The STRS infrastructure is composed of
multiple subsystems which include Radio Control, System
Management, Device Control, and a Message Center. The
SCA core framework defines components that provide
related functionality. Some functionality in the STRS
subsystems may be differently distributed across
components when compared to the SCA components. An
implementation of the STRS architecture based on SCA
components would help evaluate differences between the
two architectures and help evolve greater compatibility.

A mapping between STRS infrastructure components
and corresponding SCA components can be made. Radio
Control in the STRS infrastructure provides the interface
exchange between the STRS Radio and the Spacecraft Bus.
All command and telemetry processing is handled by the
Radio Control subsystem. Within the SCA core framework,
the DomainManager component is responsible for
interfacing to the various subsystems interacting with the
SCA software defined radio. The STRS infrastructure
System Management subsystem controls the instantiation
and teardown of applications and services within the STRS
Radio. This activity includes keeping track of what
resources in the radio are being used and when new
functionality can be installed. The SCA core framework
has ApplicationFactory and Application components that
provide similar functionality. The Device component in the
SCA core framework is comparable to the Device Control
capabilities required in the STRS infrastructure.

The Message Center subsystem manages the inter-
process messaging and queue allocations for the STRS
Radio. It has the responsibility of processing requests made
by applications and also controls communications between
subsystems in STRS infrastructure. The SCA uses CORBA
for its inter-component communications. CORBA adds a

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

layer of complexity, however CORBA is well implemented
and tested, and the added complexity is out weighed by the
benefits derived by simplifying distributed application
development while at the same time providing a standard
for consistent and interoperable systems. If the
implementation of a STRS infrastructure included CORBA,
then compatibility with SCA would be increased. Since the
STRS architecture views CORBA as an implementation
detail, an implementation of the STRS architecture could be
built with current high speed, small footprint CORBA
products to investigate resource, performance and reliability
issues associated with the middleware.

5. STRS WAVEFORM DEPLOYMENT
AND THE SCA

The SCA uses a set of files called the Domain Profile to
describe the components and the connections between
components. These files, in XML format, describe the
identity, capabilities, properties, and inter-dependencies of
the hardware devices and software components that make
up the system. Appendix D of the SCA specification [1]
has detail descriptions and format specifications of the
various XML files that comprise a domain profile.
 It is the parsing of the XML data and its interpretation
by the SCA core framework that loads software components
and creates the connections between them. The STRS
infrastructure could use the XML domain profile formats to
describe its radio platforms and waveforms. A waveform
can be described with SCA domain profile XML semantics
and syntax but deployed by a STRS infrastructure.

Under the SCA, an XML parser dynamically retrieves
information from the domain profile as the waveform is
loaded onto the software radio platform. For STRS, since
the platform and device resources are known before the time
of waveform deployment, the XML files can be parsed
ahead of time and pre-processed to save resources by not
having an XML parser as part of the infrastructure. There
are two options for pre-processing the XML domain profile
for the STRS architecture:

1. The domain profile pre-processor could generate
actual code to deploy the waveform onto the
specific hardware.

2. Convert the XML domain profile into a static
binary format that would be input to a STRS
waveform deployment routine that loads the
waveform.

The first option has the benefit of deploying the
waveform as fast as possible, since the deployment code is
specific to the waveform on the specific platform. The
disadvantage of this approach would be that the deployment
code would have to be regenerated for all waveforms that
move to a different platform. The second option provides a
more flexible approach, such that the XML files are

translated into a standard binary format used by all
waveforms and platforms. If the platform changes for a
group of waveforms, only a new deployment routine has to
be created for each new platform and nothing has to be
generated for each specific waveform.
 Following either option, the use of the SCA domain
profile for STRS allows the use of existing SCA testing
software to verify waveform and platform configurations.
Commercial tools for SCA development can also be used to
automatically generate accurate STRS configurations files
increasing productivity and reliability while reducing
waveform development time. Keeping the domain profile
common between the SCA and the STRS architecture will
help to continue the focus on closing the gaps between SCA
and STRS as each architecture evolves.

6. CONCLUSION

NASA is in the process of developing STRS as an open
architecture for software defined radios in space. The STRS
objective is to provide a consistent and extensible
environment on which to construct and operate future
NASA space communication systems. STRS shares many
of the goals and attributes of the SCA already developed by
the JTRS program. However, requirements and constraints
associated with space-based systems prevent NASA from
utilizing the current SCA specification, primarily due to the
large footprint and resources, as well as the complexity due
to dynamic deployment capability of SCA waveform
applications. For a NASA SDR architecture to be
sustainable, it must carefully consider the unique constraints
and needs of the space environment.
 There is commonality in a number of areas between the
two architectures that NASA could potentially leverage
from the considerable assets derived from the military and
commercial application of the SCA. STRS compatibility
with the SCA would allow NASA to utilize tools, share
waveform components and reduce programmatic costs of
maintaining a separate architecture. Today distinct
differences between the STRS architecture and the SCA are
related to the differences in available technologies and
operational requirements. However, as technologies for the
space environment evolve, they should allow the STRS
architecture to incorporate more features and capabilities of
the SCA.

7. REFERENCES

[1] Modular Software-programmable Radio Consortium,

Software Communications Architecture Specification,
MSRC-5000SCA V2.2, Joint Tactical Radio System
(JTRS) Joint Program Office, November 17, 2001

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

[2] Object Management Group, Common Object Request
Broker Architecture: Core Specification, Version 3.0.3,
March 12, 2004

[3] Space Operations Mission Directorate, Space
Telecommunications Radio System STRS Open
Architecture Description, Phase 1 Architecture
(Revision 1.0), NASA Headquarter, Washington DC
20546-0001, April 2006

[4] Space Operations Mission Directorate, Space
Telecommunications Radio System STRS Open Architecture
Standard, Phase 1 Architecture (Revision 1.0), NASA
Headquarter, Washington DC 20546-0001, April 2006

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

