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ABSTRACT 
 
This paper explores the idea of predictive dynamic spectrum 
access (PDSA).  Modern spectrum resource allocation 
research typically divides users into two classes: primary 
users and secondary users.  Primary users own licenses to 
particular frequency bands and are allowed to use it 
whenever they wish.  Secondary users can reuse the 
frequencies when they are not being used by a primary user. 
 The goal of PDSA is to gather statistical information 
about a primary user in an effort to predict when the 
channel will be idle.  This allows us to better plan secondary 
use of the spectrum without the cooperation of the primary 
user. 
 We explore two approaches to PDSA in this paper.  
The first uses cyclostationary detection on the primary 
users’ channel access pattern to determine expected channel 
idle times.  These techniques are simulated with both 
TDMA and CSMA networks.  The second briefly examines 
the use of Hidden Markov Models (HMMs) for use in 
PDSA. 
 

1. INTRODUCTION 
 
Many dynamic and opportunistic spectrum access 
techniques search for gaps in frequency and time where 
spectrum is not being utilized by a primary license holder 
[2,4]. Typically they sense the RF spectrum, and transmit if 
it is idle. However, between the sense time and the end of 
the packet transmission, the licensed device could begin 
transmitting, resulting in interference to both the licensed 
signal and the unlicensed cognitive transceiver. 
 This paper proposes a learning technique for cognitive 
radios that will allow prediction of spectral vacancy called 
predictive dynamic spectrum access (PDSA). In order for it 
to be effective, the licensed signal must have periodic 
properties. An ideal signal would be TDMA, since it has 
inherent periodicity in its PHY. While CSMA networks are 
not natively periodic, many higher-layer protocols such as 
TCP induce periodicity into the traffic and consequently 
into its PHY. 
 The learning algorithm assumes frequency vacancy can 
be represented by a cyclostationary random process, and 
from historic data it searches for a period length that 
maximizes the autocorrelation function. Once the cognitive 

radio has measured the channel access statistics of the 
licensed signal, it can compute the expected length of 
channel vacancy conditioned on the current channel state. 
Using this data, cognitive radios can make intelligent 
decisions that minimize possible interference while 
maximizing achievable capacity. 
 We simulate these algorithms in the presence of generic 
TDMA and CSMA networks, measuring cognitive radio 
capacity as a function of interference. We also simulate 
predictive dynamic spectrum access sample recordings of an 
IEEE 802.11 signal. Overall, using predictive techniques 
can greatly increase our ability to coexist with bursty 
licensed signals that do multiplexing in the time domain. 
 Additionally, we provide an initial look at using Hidden 
Markov Models (HMMs) for the same task.  The models 
can be trained using historic data, and then used to predict 
future behavior of the primary user. 
 Section two outlines the basic algorithms used in 
cyclostationary detection for predictive dynamic spectrum 
access.  Section three simulates these algorithms in 
conjunction with a TDMA network.  Section four simulates 
them again for a CSMA network.  Section five provides 
some interesting study for future work on using Hidden 
Markov Models for predictive dynamic spectrum access.  
Section six concludes. 
 

2. CYCLOSTATIONARY DETECTION 
 
A cyclostationary random process R is one where the 
process statistics are stationary over some period τ.  That is, 
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An example would be a Gaussian random process whose 
mean or variance changes periodically over time.  For 
example,  is a Gaussian random process 
whose mean varies as .  In this case the period is 

)),(sin( 2σtN
)sin(t

πτ 2= . 
 Cyclostationary detection has frequently been used for 
feature detection in cognitive radios [3,5].  It can provide 
very powerful algorithms for identifying the presence of a 
modulated signal within noise, and can therefore be used to 
determine if a channel is busy or idle.  Note that for our 
application, we assume such a detector already exists 
(possibly cyclostationary in nature as well).  Our aim is to 
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perform further analysis on the primary users’ channel 
accesses to locate periodic patterns that will allow us to 
predict when to transmit. 
 For our application, we model the primary users’ 
channel access patterns as cyclostationary random 
processes. Let  be a Bernoulli random variable such 
that 
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 Our goal is to determine the distribution of  with 
respect to period length τ, and use that information to 
determine optimal transmission times.  Our first step is to 
compute τ.  This can be accomplished using the 
autocorrelation function: 
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 Our next goal is to extract some useful statistics from 

.  In particular, we need sufficient statistics that will 
help us decide optimal times to transmit such that we 
minimize the probability of interfering with the primary 
user.  Depending on the type of statistic, differing amounts 
of data must be compiled to support it. 
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 The first statistic we introduce is called , and let 
it be defined as 
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This statistic gives us the probability that the channel is 
busy given a time index t, mod τ.  Let C(t) be a recorded 
sample path from our channel with discrete samples 1 
through n.  Then S0(t) can be computed using the 
following algorithm: 
 
  for i=1:n 
    S0(i mod tau) += C(i)*tau/n; 
  end 
 
 Given knowledge of , and we know our 
secondary transmission requires  units of time, we can 
select:  
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This will select a transmission time that minimizes the 
probability that the primary user will be transmitting during 
the secondary transmission. 
 One significant shortcoming of  is that it makes 
no use of the current time or channel state.  In most radio 
transceivers, at any given time we can measure the current 
channel state to determine if it is busy or idle.  Thus, we 
introduce our next statistic .  First, let us define: 
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Thus, it defines a function that is zero if and only if the 
channel is idle between times  and .  And then: 1t 2t
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In words, this statistic tells us, assuming the channel just 
became idle, the probability that during the time between 
now 0  and some future time t , the channel will remain 
idle.  This statistic can be created using the following 
algorithm: 

t

 
  idle_count=0; 
  i=2; 
  while (i<n) 
    if C(i) && !C(i-1) 
      idle_start(++idle_count)=i; 
    end 
    if !C(i) && C(i-1) 
      d=i-idle_start(idle_count); 
      idle_len(idle_count)=d; 
    end 
  end 
 
  c=zeros(idle_count,1); 
  for i=1:idle_count 
    s = idle_start(i) mod tau; 
    t(s,++c(s)) = idle_len(i); 
  end 
 
  for i=1:tau 
    p(:,i) = histogram(t(i,1:c(i)),[1:tau])/c(i); 
    for j=1:tau 
      S1(j,i) = sum(p(j:tau,i)) 
    end 
    mean = mean(t(i,1:c(i))); 
    std = sqrt(variance(t(i,1:c(i)))); 
    S1_ci(i) = mean – 2*std; 
  end 
 
 The output of our algorithm is the statistic S1(t, t0), 
which gives us the desired statistic.  Incidentally, it also 
gives us another useful piece of information, namely 
S1_ci(t0).  This value is a confidence interval telling us 
that with 98% probability, the channel will be idle for 
S1_ci(t0) units of time, assuming at time t0 the channel 
became inactive. 
 In the next two sections, we simulate both a TDMA and 
a CSMA network, and apply the derived algorithms to those 
simulations. 
 

3. COEXISTING WITH TDMA 
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TDMA is the perfect application for predictive dynamic 
spectrum access because of its inherent periodicity. 
 
 
 
 
 
 

 
Fig 1. Diagram of TDMA channel accesses as a function 
of time. 
 
 As the above figure illustrates, TDMA is broken up 
into time slices.  At the start of each time slice, a 
transmission occurs.  The length of the transmission is a 
function of the amount of data that needs to be exchanged 
between devices in the network.  More data means a longer 
channel access.  The key feature that makes TDMA work 
well PDSA is that once the channel is idle, we know 
precisely how long it will be before the next transmission. 
 Due to the inherent periodicity, the autocorrelation 
function will yield the TDMA slice time as the time period 
τ.  However, our time modulo τ might not be synchronized 
with the TDMA period.  This generally is not a problem, as 
our algorithms don’t require such synchronization. 
 Our TDMA simulation consists of d devices that have 
packets to transmit according to a rate r Poisson process that 
each require some fraction p of the time slice to transmit.  
During each time slice we compute the fraction of the slice 
necessary to transmit all the data, and from that determine 
the channel busy and idle times. 
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Fig 2. Plot of the basic statistic  for a TDMA 
network. 
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 The above figure plots 0 .  We can see that as a 
function of time, modulo τ, the start of the TDMA time slice 
is at t = 65.  This gives us valuable information about 
possible transmission times to minimize the probability of 

interference.  In particular, from t = 40 to t = 64, we are 
nearly guaranteed to not interfere.  However, as described in 
the last section, conditioning on the current channel state 
can further improve our performance. 

)(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3. Plot of the extended statistic  for a 
TDMA network. 
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 This figure plots 01 , depicting the probability 
that the channel will still be idle at a future time , given 
the current time is 0t  and the channel has just become idle.  
We can see this significantly increase our knowledge and 
ability to plan transmissions. 

),( ttS
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 Using these techniques, with the exception of some 
overhead and guard time intervals, we can fully utilize all 
available secondary bandwidth, maximizing our capacity 
and causing absolutely no interference to the primary 
license holder. 
 

4. COEXISTING WITH CSMA 
 
Carrier Sense Multiple Access (CSMA) is another technique 
for multiplexing data from multiple users in the time 
domain.  However, rather than having a very organized, 
slotted time system, devices have much more freedom in 
when they can transmit.  The simplest technique is called 
“listen before talk” where you first make sure the channel is 
free, and if so you can transmit.  Modern protocols such as 
IEEE 802.11 still use this basic philosophy, but have many 
added safeguards to minimize the probability of two people 
transmitting simultaneously, causing a collision. 
 For CSMA, our simulation is based on the IEEE 
802.11b logs from IETF 62 [6].  Extracted from the logs 
were packet capture times and packet lengths.  From that, 
channel access times were computed, and as a result we 
derived idle_start and idle_len. 
 
 
 

time τ 2τ 3τ 4τ 5τ 
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Fig 4. Plot of extended statistic for a CSMA network.  
 
 Using our algorithm, we can compute safe times 
directly after a transmission where a channel is guaranteed 
to be free.  This is a common trait of modern CSMA 
networks because of their various timers to prevent 
collisions.  As we can see, as time increases, the probability 
of the channel being idle decreases, as expected. 
 An interesting thing to notice in this example is we no 
longer see the diagonal cutting structure that we did for the 
TDMA network.  The behavior is similar for any current 
time 0 .  This is because at this level there is little 
periodicity in the network. 

t

 As we can see, our approach does not work as well 
with CSMA networks because they are inherently more 
random and cyclostationary analysis does not significantly 
increase our statistical understanding of the channel.  
However, the same algorithms can still find us good 
transmission times. 
 

5. EXTENSIONS USING HIDDEN MARKOV 
MODELS 

 
The analysis in this paper has focused mainly on the 
analysis of small-scale periodic patterns inside the length τ 
intervals.  Another approach, that could be either an 
alternative or complementary to the approach in this paper, 
is to model the patterns of channel usage from one time 
period to another.  This could involve allowing the period 
lengths to vary, which would lead to a more realistic model 
for non-TDMA protocols. 
 One approach that we expect to explore is using Hidden 
Markov Models (HMMs) to model channel usage patterns 
in a manner similar to that used to model speech production 
in speech processing applications [7].  HMMs have been 
used in speech processing for over a decade, and have 
already found many uses in the SDR world; for instance 
channel, agent, and burst error modeling and emulation 
[8,9]. 
 
 Hidden Markov Models are statistical classification 
tools which model a process which is assumed to be 
approximated by a finite state Markov Model.  The 
transition probabilities, states, and output probabilities are 

all assumed to be hidden.  The Baum-Welch algorithm uses 
just the observable outputs of the system to compute values 
for the hidden model parameters which maximize: 
 

)model | model observed(P  
 
5.1. Single model approach 
 
 In the simplest possible channel usage modeling 
situation we would have TDMA slots that either contain 
traffic or are essentially idle.  In this case we could 
represent the channel usage as a stream of 1’s and 0’s, with 
1’s representing a busy slot and 0’s an idle slot.  We would 
want to train a Markov model whose states could output 
either a 0 or 1.  Using the model in real time, in every slot 
we could determine which state the system is in.  Some 
states with high probability of 0 (idle) would be considered 
safe to transmit in, while others with high probability of 1 
(busy) would be considered unsafe. 
 

1 2 3 4 5

 
Fig 5. A simple circular feed-forward Markov model.  
Here states 1 and 3 would be considered safe to 
transmit, and states 2, 4, and 5 would be unsafe. 
 
 The choice of model (number of states) and any 
restrictions on topology could be crucial to the success of a 
system like this and is something that should be studied.  
Realistically one would not build a model with binary state 
outputs.  More realistic outputs would be multi-dimensional 
feature vectors containing (not necessarily discrete) 
information extracted from monitoring the channel during 
some time period.  If, as in the TDMA analysis in this 
paper, the activity during a time slot has an exponential 
distribution, the state outputs might correspond to 
parameters of an exponential distribution associated with 
the state. 
 
5.2. Multiple model approach 
 Another approach that would be more analogous to 
speech processing would be to have several different 
models, some representing a mostly busy channel and some 
representing a mostly idle channel.  The models could be 
pre-trained on training data and adapted in-service [1], or 
randomly initialized and trained using some unsupervised 
clustering method.   Just as in continuous speech 
recognition, the most likely state in the most likely model at 
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any given moment would be computed using the Viterbi 
algorithm.  This approach would be easier to process in 
real-time than a large HMM, but would probably not work 
as well because it treats the busy and idle periods in 
isolation.  It would be a generalization on the method 
evaluated in this study in the sense that it allows the periods 
τ  to vary with each transmission, which is a more 
reasonable assumption for non-TDMA systems. 
 

6. CONCLUSION 
 
In this paper, we have introduced the idea of predictive 
dynamic spectrum access.  The basic goal is to predict when 
the channel will be idle based on observations of the 
primary channel user.  If we can predict idle periods, we can 
better plan our secondary channel accesses. 
 We developed algorithms for selecting channel access 
times using cyclostationary detection.  Subsequent 
simulations using actual network data show that 
cyclostationary techniques work very well for protocols 
with inherent periodicity in their channel access patterns, 
such as TDMA.  Other more random channel access 
techniques like CSMA can still benefit, but not to the extent 
of TDMA. 
 Lastly, we introduce the concept of using HMMs for 
modeling large-scale changes in channel access patterns.  
With further development, these could significantly increase 
our ability to predict channel accesses in CSMA-like 
networks.  For example, many higher-level network 
protocols such as TCP operate on the basis of a state 
machine, the behavior of which could be learned by a 
HMM.  Once the behavior is learned, it can be better 
predicted. 

 Overall, predictive techniques to dynamic spectrum 
access offer an interesting new research field.  The ideas 
presented here offer a starting point for significant further 
research. 
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