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ABSTRACT 

 
In this paper we investigate the situation in which one of the 
Cognitive Radio (CR) nodes wants to use an advanced 
modulation scheme, which is not implemented in the other 
node. Consequently, it needs to tell the other radio what it 
means by that modulation scheme. Our approach assumes 
that there exists a basic ontology and a set of rules shared 
among the two CRs, as well as a basic communications 
protocol, which enables the nodes to communicate and share 
information between them. The node with the advanced 
modulation scheme may transfer its knowledge (i.e., 
ontology and rules) to its peer. The other node is using a 
reasoner and the transferred knowledge in order to construct 
the algorithm from other functional blocks achieving the 
interoperability at the modulation scheme level. 
   

1. INTRODUCTION 
 
Constructivism, a paradigm in cognitive science that 
followed behaviorism and cognitivism [1], considers 
knowledge as a structure that is constructed in the memory 
of a learner, rather than a static (absolute) entity that is 
common to all agents. The consequence of this theory is that 
knowledge cannot just be copied from one cognitive agent 
to another, but rather needs to be first communicated and 
then re-constructed using the mental capabilities of the 
learner. Here are some excerpts from [2] that outline the 
basic ideas behind the three theories of cognition and 
learning. 
 
“Behaviorism; Based on behavioral changes. Focuses on a 
new behavioral pattern being repeated until it becomes 
automatic.  
 
Cognitivism: Based on the thought process behind the 
behavior. Changes in behavior are observed, but only as an 
indicator to what is going on in the learner's head.  
 
Constructivism; Based on the premise that we all construct 
our own perspective of the world, based on individual 
experiences and schema. Focuses on preparing the learner to 
problem solve in ambiguous situations.”  
 
The theory of cognitivism seems to be well suited to the 
problem of transfer of structural knowledge between 
cognitive radios. In this paper we analyze a scenario in 

which one cognitive radio (the teacher) conveys knowledge 
of its capabilities to another cognitive radio (the learner). 
The important aspect of this exercise is that the learner’s 
architecture differs from the architecture of the teacher. 
Consequently, the learner has to interpret the teacher’s 
knowledge and then re-construct it using its own 
components and architecture. 
 
In order to achieve this kind of capability, the radios must 
be able to adapt their power levels, transmitting/receiving 
frequencies, modulation schemes, coding and encryption 
standards etc., according to the current needs and 
conditions, subject to constrains like power limits, band 
plans, supported modulation schemes and encryption 
techniques. 
 
This paper reports on the progress in our investigation of the 
scenario described above. We concentrate on a case in 
which one of the nodes wants to use an advanced 
modulation scheme, which is not implemented in the other 
node. Consequently, it needs to tell the other radio what it 
means by a modulation scheme. Our approach assumes that 
there exists a basic ontology and a set of rules shared among 
the two CRs, as well as a basic communications protocol, 
which enables the nodes to communicate and share 
information between them. The node with the advanced 
modulation scheme may transfer its knowledge (i.e. 
ontology and rules) to its peer. The other node then uses a 
reasoner and the transferred knowledge in order to construct 
the algorithm from other functional blocks achieving the 
interoperability at the modulation scheme level. 
 

2. BACKGROUND AND PREVIOUS WORK 
 
Self-awareness is one of the most important prerequisites 
for the interoperability of Cognitive Radio nodes.  The 
nodes can only be truly interoperable with other radios if 
they understand their own capabilities and limitations. In 
our previous research [3] we proposed that CR nodes could 
be made self-aware by using OWL ontologies and 
appropriate reasoners. We further proposed that such a self-
aware node could use information about itself and additional 
data retrieved from its peers through queries, to optimize 
communication parameters with regard to certain predefined 
metrics (i.e. channel throughput, bit-error rate, power 
consumption etc.).  
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One of the possible methods of optimizing communications 
is switching to different modulation schemes depending on 
the quality and the bandwidth of the available channel. CR 
nodes sharing the same ontology could negotiate to switch 
to a particular algorithm. This kind of optimization however 
can only be effective if all participating nodes have similar 
capabilities so that the final modulation scheme chosen 
depends only on the parameters of the channel and the 
specifics of the communication to be conducted, rather than 
on the technical capabilities of the least advanced CR node 
participating in the exchange of data.  
 
Therefore it appears that in order to maximize the benefits 
of switching modulation algorithms, all nodes participating 
in the communication should implement all modulation 
techniques that could ever be used in any given set of 
circumstances.  
 
It is obvious that such an approach would not work very 
well in practice.  First of all, since the nodes are supposed to 
share the same ontology, an extensive ontology covering all 
aspects of radio communication and beyond (e.g., 
encryption techniques) would have to be developed and 
accepted by all CR vendors. Additionally, any incremental 
change in the functionality would require that an ontology 
and operational code of the CR node be updated as part of 
the introduction of the change. Even if only one of the nodes 
on the network were not updated to the latest version, the 
whole network would not be able to use the new features. 
The logistics problems inherently present in the situation 
where one is trying to upgrade a large number of devices 
deployed in the field almost guarantee that a certain subset 
of devices would not be upgraded. This would not allow for 
a practical implementation of the idea negotiation and 
selective use of different components and algorithms.  
  
Base ontology is a complete set of basic facts and properties 
such that all other facts and properties in any related 
ontology can be derived from. If a given set of CR nodes 
shares the same base ontology it is possible to transfer more 
advanced concepts from one node to another simply by 
expressing them in terms of the base ontology and adding 
them to the knowledge base of the target node. In a more 
complicated scenario, when the base ontology for node A is 
not the same as the base ontology of node B, the transfer of 
knowledge also involves ontology mapping which is beyond 
the scope of this research, as we assume that participating 
nodes share the same base ontology. 
 
The successful transfer of knowledge, however, is only the 
first step towards the interoperability between the nodes. In 
order to make any practical use of that knowledge, the target 
node has to be able to construct an algorithm from the facts 
it has just learned.  
 

Since most of the algorithms used in cognitive radios would 
share a lot of the primitive subroutines (e.g., algorithms for 
addition, multiplication, scaling, FIR filtering etc.), it seems 
that component-based algorithm composition might be the 
right approach to the problem.  
  
The component-based approach to solving software 
engineering problems is an established paradigm and is 
widely discussed in the software engineering literature. 
Some of the ideas are particularly suitable for 
mobile/embedded systems with limited resources and 
processing power, such as cognitive radios.  
 
For example, Urting et al. [4] have developed an interesting 
approach in which the system takes into consideration not 
only functional requirements for the service that is supposed 
to be composed from the simpler components, but also some 
non-functional aspects, like memory size restrictions or 
timing  constraints. Their system can only use a particular 
software component if it satisfies so called contract (if one 
exists) i.e., an agreement with the system to limit the use of 
system resource or require certain acceptable level of 
service (e.g. latency). The contracts are used not only during 
the service composition stage, but also in the runtime to 
assure that imposed restrictions are not violated. It’s worth 
noticing however that their framework doesn’t address the 
problem of specifying which components are supposed to be 
connected and in what way in order to achieve the required 
functionality.  
 
Preuveneers and Berbers [5] built upon the described above 
approach and introduced some elements of automated 
context-driven composition of the services.  In their paper 
they describe a service called Communication Service, 
which, depending on the context (i.e., available network 
bandwidth, available processing power, available memory), 
can instantiate particular types of Video Filter and Video 
Encoder components. Their framework uses an OWL [6] 
ontology for the description of the component meta-model 
concepts, like components, ports, parameters, connectors, 
contracts etc. Since the component meta-model concepts are 
described in terms of OWL classes, the particular services, 
like Communication Service, can only be described in terms 
of OWL individuals. While an automatic OWL reasoner, 
like Pellet [7], can be used to prove that the particular 
individual (e.g. Communication Service) is consistent with 
the definition of the composite component, it cannot prove 
that two separate individuals are equivalent, even though 
they might be.  
  
Clearly, if one could express composite components as 
classes in OWL rather than individuals, it would enable the 
use of automatic tools for reasoning giving a new level of 
potential capabilities. 
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3. PROPOSED INTEROPERABILITY 
SCENARIO 

 
Since the overwhelming majority of the functionality of the 
software-defined radio is enclosed in its software, 
potentially as long as two software-defined radios from two 
different vendors don’t differ in terms of hardware 
capabilities (e.g., the frequency they are able to use), they 
could be made fully interoperable simply by modifying the 
software behavior on any or both of the nodes. One way of 
making that happen is a brute-force approach of upgrading 
the radio’s firmware when it is moved from one network to 
another. Of course that approach is an undesirable one as the 
radio cannot be used in two incompatible networks at the 
same time. Even more advanced techniques like automatic 
updates through the network don’t solve the most 
fundamental problem – the fact that the traditional software 
defined radio can only operate in ways their designers 
predicted.  
  
This limitation would not apply if radios could learn their 
behavior from one another. This notion is the foundation of 
our proposal. 
 
There are several assumptions in our scenario: 
 

1. The CR nodes share the same base ontology i.e. the 
same set of basic concepts that all other concepts in 
CR domain can be derived from. 

2. The CR nodes have a way of communicating with 
each other. They should also have a fall back 
procedure, in case that for some reason the 
communication between them fails. 

3. The CR nodes can query for and can respond to 
queries for specific facts in their knowledge bases. 

4. The CR nodes can reason about the facts in their 
knowledge base and the facts learned from the 
other nodes through queries. The results of that 
reasoning can be used to modify their internal data 
structures. 

5. A CR node can query for an arbitrary ontology 
concept. Its peer responds by transferring a 
fragment of its ontology base related to that 
concept. The first node can then incorporate that 
knowledge into its own ontology and can generate 
a composite software component based on that 
knowledge. In case an unknown concept is defined 
in terms of other unknown concepts, the node will 
have to query for those concepts as well. That 
recurrent process ends only when all the necessary 
concepts are known.  

 
Any specific node configuration (peer-to-peer, one master – 
many slaves, hierarchical structure) can be used; the 
selection of a particular one is beyond the scope of this 
research. 

Table 1 illustrates an example of the exchange during a 
hypothetical negotiation between the nodes. 
 

Table 1. An example of an interaction sequence 
 
NODE A NODE B 
<query>error bit rate, channel 
equalizer coefficients</query> 

 

 < response> error bit rate = …, 
channel equalizer coefficients = 
{….. } </response> 

[Node A uses the data received  from 
Node B and its own communication 
parameters to make a decision to 
send a request to switch to QAM16]  

 

<request> change modulation to 
QAM16 </request> 

 

 <query>QAM16  modulator 
</query> 

<response> QAM16 modulator is a 
composite component which consists 
of ……, quadrature modulator, … 
etc. </response> 

 

 <query> quadrature modulator 
</query> 

<response> quadrature modulator is 
a composite component which 
consists of 2 multipliers, 1 adder, 1 
phase shifter, connected in the 
following way;… </response> 

 

 [Node B builds the model of 
QAM16 modulation using 
collected facts and facts in it’s 
knowledge base.  Uses the 
reasoner to prove that such 
constructed component is 
consistent with the transferred 
facts.] 

 <ack>changing to QAM16</ack>  
or 
<nack>cannot change to QAM16 
</nack> 
 

 

In this example Node A queries Node B for various 
communication parameters. Based on that information and 
its own communication parameters it makes the decision 
that in order to maximize the quality of the transmission, 
both nodes should switch to QAM16. It sends the request to 
Node B, which doesn’t recognize the modulation scheme so 
it replies to Node A with the request for the description of 
QAM16 modulator. After receiving the description, Node B 
notices that it doesn’t know what quadrature modulator is so 
it sends another query to Node A. After the definition of the 
quadrature modulator has been transferred, Node B has the 
full description of QAM16 modulator so it can try to build a 
model of that component. If that is successful, Node B uses 
a reasoner to prove that whatever it built is indeed the 
QAM16 modulator. If the building step was successful 
Node B can respond with a positive acknowledgement for 
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the modulation change request. Otherwise it responds with 
negative acknowledgement. 
 

4. CURRENT EXPERIMENT 
 
One of the most important problems that need to be solved 
before the proposed interoperability scenario could be 
implemented is the process of constructing the composite 
component from the facts learned from other nodes. Such an 
algorithm would have to include at certain point a phase in 
which a candidate for the constructed component is 
scrutinized by the reasoner in order to verify if it is 
consistent with the fact base. Our initial research efforts 
have been directed towards that crucial phase. 
 
In our experiment we were trying to find a way to define an 
OWL class for a composite component (quadrature 
modulator) in terms of other OWL classes representing 
basic components (e.g. adder, multiplier, etc.). The 
limitations of what can be expressed in OWL have become 
obvious very quickly.  

 
Figure 1. Quadrature modulator 
  
For example the quadrature modulator (see Fig. 1) has two 
multipliers. We can express in OWL the fact that a 
particular class (such as QuadratureModulator) is in a 
relationship with other class (such as Multiplier) using a 
property (in our case hasSubComponent). We cannot 
however distinguish the relationship with one of the 
multipliers from relationship with the other one. Similarly 
we can express in OWL the fact that the 
QuadratureModulator is in the relationship with InputPort, 
but again there’s no way to distinguish between particular 
relationships for input ports I, Q and C.  
 
It became clear that we need to augment OWL ontology 
with rules in order to be able to express more complicated 
relationships. One of the options was to augment OWL with 
SWRL rules. We rejected however this idea because of the 
lack of efficient reasoning engines supporting SWRL and to 
the fact that SWRL is undecidable. As an alternative we 
decided to use BaseVISor rules in the experiment.  
 
 

5. BASEVISOR REASONER 
 
BaseVISor ia a forward-chaining inference engine 
developed by VIStology, Inc [8]. It is based on the Rete 
network optimized for the processing of RDF triples, it also 
incorporates axioms and consistency checks for R-
entailment which supports all of the RDF/RDFS and a part 
of OWL-DL semantics.  In exchange for the price of not 
supporting all of the OWL-DL elements, BaseVISor 
provides P-SPACE performance for ground RDF graphs [9]. 
  
BaseVISor uses a rule language based on XML syntax. The 
facts defined by triples consist of subject, predicate and 
object elements as it is shown below: 
 
<triple> 
  <subject resource=”ll:QuadratureModulator/> 
  <predicate resource=”ll:hasComponent”/> 
  <object resource=”ll:Multiplier”/> 
</triple> 
 

BaseVISor’s rules consist of body and head elements. The 
body usually contains one or more triples, which have 
syntax similar to the syntax of the facts, except that triples 
in the rule bodies can contain variables. The head portion of 
the rule is used to assert or retract facts into the knowledge 
base. An example of a simple rule is shown below: 
 
<rule name="hasMultiplier rule"> 
  <body> 
    <triple> 
      <subject variable="comp" /> 
      <predicate resource="ll:hasSubComponent" /> 
      <object variable="mul" /> 
    </triple> 
    <triple> 
      <subject variable="mul" /> 
      <predicate resource="rdf:type" /> 
      <object resource="ll:Multiplier" /> 
    </triple> 
  </body> 
  <head> 
    <assert> 
      <triple> 
        <subject variable="comp"/> 
        <predicate resource="#hasMultiplier "/> 
        <object variable="mul" /> 
      </triple> 
    </assert> 
  </head> 
</rule> 

 
The fact that the object comp is in a relationship 
#hasMultipler with the object mul will be asserted only if 
mul is a subcomponent of comp and mul is of type 
Multipler. 
 

6. ONTOLOGY 
 
The ontology we constructed for this experiment is shown in 
Figure 2, Figure 3 and Figure 4. The ontology includes only 
two top-level classes: Component and Port. As shown in 
Figure 2, Component includes two subclasses – Basic 
Component and Module. The intention here is to say that an 
instance of Basic Component is a primitive component that 
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cannot be constructed out of simpler components. Module, 
on the other hand, can be constructed out of Basic 
Components. The building blocks for Module are 
Multiplier, Phase Shifter, Adder and Filter. Obviously, this 
is a very limited selection – the minimum that we needed to 
demonstrate the main idea in this paper. 

 
Figure 2. Subclasses of Component 
 
In addition to Component, we also provide the Port class. 
As shown in Figure 3, Port includes two subclasses – Input 
Port and Output Port. 

 
Figure 3. Subclasses of Port 

 
Modules will be described by the components they are built 
from and by the Ports that are connected to them. 
Connections among components and ports are captured by 
the four properties represented in Figure 4: hasPort, 
isPortOf, isSubcomponentOf, hasSubcomponent and 
isConnected to. The domains and ranges of these properties 
can be inferred from Figure 4 by looking at the arrows 
representing the properties. 

 
Figure 4. Properties 

 
 

7. CONSTRUCTING RULES WITHIN 
OPEN WORLD REASONING MODEL 

 
RDF and OWL use the open world assumption model. In 
that model facts that have not been explicitly asserted to be 
true are not presumed to be false, they simply are unknown. 
That kind of reasoning while beneficial for the 
expressiveness of OWL increased the complexity of rules 
that needed to be written in our experiment, because we 
needed to state in those rules not only what components and 
in what way should be connected with each other, but also 
the fact that there are no other components or connections.  

 
Figure 5. Graphical representation of the quadrature 
modulator structure expressed in BaseVISor rules 
 
The diagram above presents a visualization of the 
quadrature modulator rules as they were implemented in our 
experiment. The relationships (thin solid lines) between 
ports are equivalent to isConnectedTo properties defined in 
OWL with additional restrictions stating that except those 
connections that have been explicitly stated in the rules no 
other connections can exist. Similarly relationships between 
components and their ports have similar restrictions as to the 
number of ports as well as the exclusivity of their 
relationship with their designated components. The last set 
of restrictions is necessary to avoid an erroneous situation in 
which the same input port is in a relationship with different 
component. The following BaseVISor rules is an example of 
the definition of the exclusive relationship between input 
port and the component. 
 
<rule name="NonExclInput Rule"> 
  <body> 
    <triple> 
      <subject variable="inp" /> 
      <predicate resource="#inputPortOf" /> 
      <object variable="comp1" /> 
    </triple> 
    <triple> 
      <subject variable="inp" /> 
      <predicate resource="#inputPortOf" /> 
      <object variable="comp2" /> 
    </triple> 
    <not> 
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      <triple> 
        <subject variable="comp1" /> 
        <predicate resource="owl:sameAs" /> 
        <object variable="comp2" /> 
      </triple> 
    </not> 
  </body> 
  <head> 
    <assert> 
      <triple> 
        <subject variable="inp" /> 
        <predicate resource="#isNonExclusiveInputPortOf" /> 
        <object variable="comp1" /> 
      </triple> 
      <triple> 
        <subject variable="inp" /> 
        <predicate resource="#isNonExclusiveInputPortOf" /> 
        <object variable="comp2" /> 
      </triple> 
    </assert> 
  </head> 
</rule> 
 
<rule name="ExclInput Rule"> 
  <body> 
    <triple> 
      <subject variable="inp" /> 
      <predicate resource="#inputPortOf" /> 
      <object variable="comp" /> 
    </triple> 
    <not> 
      <triple> 
        <subject variable="inp" /> 
        <predicate resource="#isNonExclusiveInputPortOf" /> 
        <object anonVar="true" variable="__c" /> 
      </triple> 
    </not> 
  </body> 
  <head> 
    <assert> 
      <triple> 
        <subject variable="inp" /> 
        <predicate resource="#isExclusiveInputPortOf" /> 
        <object variable="comp" /> 
      </triple> 
    </assert> 
  </head> 
</rule> 

 
Predicates #isNonExclusiveInputPortOf and 
#isExclusiveInputPortOf are complementary i.e., one of 
them cannot be true if the other one is true. Due to the open 
world assumption, however, they cannot be expressed as a 
simple logical negation of each other. In the above example 
that leads to the necessity of adding a clause enclosed in 
<not>  </not> tags, which specifically states that in order for 
the input port inp to be an exclusive port of component 
comp it cannot be in non-exclusive port relationship with 
any other component. 
 

8. CONCLUSIONS AND FUTURE WORK 
 
In this paper we proposed that the constructivism paradigm 
in cognitive science could be applied to the problem of 
interoperability between Cognitive Radio nodes. In the 
scenario we proposed, the node with richer knowledge base 
can transfer portion of that knowledge to another node 
which can further use it to construct composite software 
services it previously didn’t know. We reported on progress 
in our research efforts which initially have been 
concentrated on problems of expressing complex software 
components as OWL classes and logical rules under the 
open world assumption reasoning model. 

Our current and future efforts will concentrate on problems 
related to knowledge transfer and component composition, 
which are essential to the success of the proposed approach.  
The use of reasoners in the Cognitive Radios opens many 
other interesting research problems. One of the topics that 
would be very interesting to explore is the use of the local 
knowledge, which is not shared with other nodes to reason 
about the facts the node learned from other nodes. It is 
especially important if the node has a specialized hardware 
that could and should be used whenever possible to help 
with the data processing. For example, if the node learns 
about a composite component that includes multipliers and 
adders (like quadrature modulator), and if the node has a 
specialized hardware implementing multiply-accumulate 
operation, it could potentially use that hardware in the 
implementation of that composite component.      
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