
ACHIEVING DYNAMIC INTEROPERABILITY OF COMMUNICATION:
Transfer of Ontology and Rules Between Nodes

Leszek Lechowicz (Department of Electrical and Computer Engineering, Northeastern University,

Boston, MA; llechowi@ece.neu.edu); Mieczyslaw M. Kokar (Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA; mkokar@ece.neu.edu)

ABSTRACT

In this paper we investigate the situation in which one of the
Cognitive Radio (CR) nodes wants to use an advanced
modulation scheme, which is not implemented in the other
node. Consequently, it needs to tell the other radio what it
means by that modulation scheme. Our approach assumes
that there exists a basic ontology and a set of rules shared
among the two CRs, as well as a basic communications
protocol, which enables the nodes to communicate and share
information between them. The node with the advanced
modulation scheme may transfer its knowledge (i.e.,
ontology and rules) to its peer. The other node is using a
reasoner and the transferred knowledge in order to construct
the algorithm from other functional blocks achieving the
interoperability at the modulation scheme level.

1. INTRODUCTION

Constructivism, a paradigm in cognitive science that
followed behaviorism and cognitivism [1], considers
knowledge as a structure that is constructed in the memory
of a learner, rather than a static (absolute) entity that is
common to all agents. The consequence of this theory is that
knowledge cannot just be copied from one cognitive agent
to another, but rather needs to be first communicated and
then re-constructed using the mental capabilities of the
learner. Here are some excerpts from [2] that outline the
basic ideas behind the three theories of cognition and
learning.

“Behaviorism; Based on behavioral changes. Focuses on a
new behavioral pattern being repeated until it becomes
automatic.

Cognitivism: Based on the thought process behind the
behavior. Changes in behavior are observed, but only as an
indicator to what is going on in the learner's head.

Constructivism; Based on the premise that we all construct
our own perspective of the world, based on individual
experiences and schema. Focuses on preparing the learner to
problem solve in ambiguous situations.”

The theory of cognitivism seems to be well suited to the
problem of transfer of structural knowledge between
cognitive radios. In this paper we analyze a scenario in

which one cognitive radio (the teacher) conveys knowledge
of its capabilities to another cognitive radio (the learner).
The important aspect of this exercise is that the learner’s
architecture differs from the architecture of the teacher.
Consequently, the learner has to interpret the teacher’s
knowledge and then re-construct it using its own
components and architecture.

In order to achieve this kind of capability, the radios must
be able to adapt their power levels, transmitting/receiving
frequencies, modulation schemes, coding and encryption
standards etc., according to the current needs and
conditions, subject to constrains like power limits, band
plans, supported modulation schemes and encryption
techniques.

This paper reports on the progress in our investigation of the
scenario described above. We concentrate on a case in
which one of the nodes wants to use an advanced
modulation scheme, which is not implemented in the other
node. Consequently, it needs to tell the other radio what it
means by a modulation scheme. Our approach assumes that
there exists a basic ontology and a set of rules shared among
the two CRs, as well as a basic communications protocol,
which enables the nodes to communicate and share
information between them. The node with the advanced
modulation scheme may transfer its knowledge (i.e.
ontology and rules) to its peer. The other node then uses a
reasoner and the transferred knowledge in order to construct
the algorithm from other functional blocks achieving the
interoperability at the modulation scheme level.

2. BACKGROUND AND PREVIOUS WORK

Self-awareness is one of the most important prerequisites
for the interoperability of Cognitive Radio nodes. The
nodes can only be truly interoperable with other radios if
they understand their own capabilities and limitations. In
our previous research [3] we proposed that CR nodes could
be made self-aware by using OWL ontologies and
appropriate reasoners. We further proposed that such a self-
aware node could use information about itself and additional
data retrieved from its peers through queries, to optimize
communication parameters with regard to certain predefined
metrics (i.e. channel throughput, bit-error rate, power
consumption etc.).

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

mailto:llechowi@ece.neu.edu
mailto:mkokar@ece.neu.edu

One of the possible methods of optimizing communications
is switching to different modulation schemes depending on
the quality and the bandwidth of the available channel. CR
nodes sharing the same ontology could negotiate to switch
to a particular algorithm. This kind of optimization however
can only be effective if all participating nodes have similar
capabilities so that the final modulation scheme chosen
depends only on the parameters of the channel and the
specifics of the communication to be conducted, rather than
on the technical capabilities of the least advanced CR node
participating in the exchange of data.

Therefore it appears that in order to maximize the benefits
of switching modulation algorithms, all nodes participating
in the communication should implement all modulation
techniques that could ever be used in any given set of
circumstances.

It is obvious that such an approach would not work very
well in practice. First of all, since the nodes are supposed to
share the same ontology, an extensive ontology covering all
aspects of radio communication and beyond (e.g.,
encryption techniques) would have to be developed and
accepted by all CR vendors. Additionally, any incremental
change in the functionality would require that an ontology
and operational code of the CR node be updated as part of
the introduction of the change. Even if only one of the nodes
on the network were not updated to the latest version, the
whole network would not be able to use the new features.
The logistics problems inherently present in the situation
where one is trying to upgrade a large number of devices
deployed in the field almost guarantee that a certain subset
of devices would not be upgraded. This would not allow for
a practical implementation of the idea negotiation and
selective use of different components and algorithms.

Base ontology is a complete set of basic facts and properties
such that all other facts and properties in any related
ontology can be derived from. If a given set of CR nodes
shares the same base ontology it is possible to transfer more
advanced concepts from one node to another simply by
expressing them in terms of the base ontology and adding
them to the knowledge base of the target node. In a more
complicated scenario, when the base ontology for node A is
not the same as the base ontology of node B, the transfer of
knowledge also involves ontology mapping which is beyond
the scope of this research, as we assume that participating
nodes share the same base ontology.

The successful transfer of knowledge, however, is only the
first step towards the interoperability between the nodes. In
order to make any practical use of that knowledge, the target
node has to be able to construct an algorithm from the facts
it has just learned.

Since most of the algorithms used in cognitive radios would
share a lot of the primitive subroutines (e.g., algorithms for
addition, multiplication, scaling, FIR filtering etc.), it seems
that component-based algorithm composition might be the
right approach to the problem.

The component-based approach to solving software
engineering problems is an established paradigm and is
widely discussed in the software engineering literature.
Some of the ideas are particularly suitable for
mobile/embedded systems with limited resources and
processing power, such as cognitive radios.

For example, Urting et al. [4] have developed an interesting
approach in which the system takes into consideration not
only functional requirements for the service that is supposed
to be composed from the simpler components, but also some
non-functional aspects, like memory size restrictions or
timing constraints. Their system can only use a particular
software component if it satisfies so called contract (if one
exists) i.e., an agreement with the system to limit the use of
system resource or require certain acceptable level of
service (e.g. latency). The contracts are used not only during
the service composition stage, but also in the runtime to
assure that imposed restrictions are not violated. It’s worth
noticing however that their framework doesn’t address the
problem of specifying which components are supposed to be
connected and in what way in order to achieve the required
functionality.

Preuveneers and Berbers [5] built upon the described above
approach and introduced some elements of automated
context-driven composition of the services. In their paper
they describe a service called Communication Service,
which, depending on the context (i.e., available network
bandwidth, available processing power, available memory),
can instantiate particular types of Video Filter and Video
Encoder components. Their framework uses an OWL [6]
ontology for the description of the component meta-model
concepts, like components, ports, parameters, connectors,
contracts etc. Since the component meta-model concepts are
described in terms of OWL classes, the particular services,
like Communication Service, can only be described in terms
of OWL individuals. While an automatic OWL reasoner,
like Pellet [7], can be used to prove that the particular
individual (e.g. Communication Service) is consistent with
the definition of the composite component, it cannot prove
that two separate individuals are equivalent, even though
they might be.

Clearly, if one could express composite components as
classes in OWL rather than individuals, it would enable the
use of automatic tools for reasoning giving a new level of
potential capabilities.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

3. PROPOSED INTEROPERABILITY
SCENARIO

Since the overwhelming majority of the functionality of the
software-defined radio is enclosed in its software,
potentially as long as two software-defined radios from two
different vendors don’t differ in terms of hardware
capabilities (e.g., the frequency they are able to use), they
could be made fully interoperable simply by modifying the
software behavior on any or both of the nodes. One way of
making that happen is a brute-force approach of upgrading
the radio’s firmware when it is moved from one network to
another. Of course that approach is an undesirable one as the
radio cannot be used in two incompatible networks at the
same time. Even more advanced techniques like automatic
updates through the network don’t solve the most
fundamental problem – the fact that the traditional software
defined radio can only operate in ways their designers
predicted.

This limitation would not apply if radios could learn their
behavior from one another. This notion is the foundation of
our proposal.

There are several assumptions in our scenario:

1. The CR nodes share the same base ontology i.e. the
same set of basic concepts that all other concepts in
CR domain can be derived from.

2. The CR nodes have a way of communicating with
each other. They should also have a fall back
procedure, in case that for some reason the
communication between them fails.

3. The CR nodes can query for and can respond to
queries for specific facts in their knowledge bases.

4. The CR nodes can reason about the facts in their
knowledge base and the facts learned from the
other nodes through queries. The results of that
reasoning can be used to modify their internal data
structures.

5. A CR node can query for an arbitrary ontology
concept. Its peer responds by transferring a
fragment of its ontology base related to that
concept. The first node can then incorporate that
knowledge into its own ontology and can generate
a composite software component based on that
knowledge. In case an unknown concept is defined
in terms of other unknown concepts, the node will
have to query for those concepts as well. That
recurrent process ends only when all the necessary
concepts are known.

Any specific node configuration (peer-to-peer, one master –
many slaves, hierarchical structure) can be used; the
selection of a particular one is beyond the scope of this
research.

Table 1 illustrates an example of the exchange during a
hypothetical negotiation between the nodes.

Table 1. An example of an interaction sequence

NODE A NODE B
<query>error bit rate, channel
equalizer coefficients</query>

 < response> error bit rate = …,
channel equalizer coefficients =
{….. } </response>

[Node A uses the data received from
Node B and its own communication
parameters to make a decision to
send a request to switch to QAM16]

<request> change modulation to
QAM16 </request>

 <query>QAM16 modulator
</query>

<response> QAM16 modulator is a
composite component which consists
of ……, quadrature modulator, …
etc. </response>

 <query> quadrature modulator
</query>

<response> quadrature modulator is
a composite component which
consists of 2 multipliers, 1 adder, 1
phase shifter, connected in the
following way;… </response>

 [Node B builds the model of
QAM16 modulation using
collected facts and facts in it’s
knowledge base. Uses the
reasoner to prove that such
constructed component is
consistent with the transferred
facts.]

 <ack>changing to QAM16</ack>
or
<nack>cannot change to QAM16
</nack>

In this example Node A queries Node B for various
communication parameters. Based on that information and
its own communication parameters it makes the decision
that in order to maximize the quality of the transmission,
both nodes should switch to QAM16. It sends the request to
Node B, which doesn’t recognize the modulation scheme so
it replies to Node A with the request for the description of
QAM16 modulator. After receiving the description, Node B
notices that it doesn’t know what quadrature modulator is so
it sends another query to Node A. After the definition of the
quadrature modulator has been transferred, Node B has the
full description of QAM16 modulator so it can try to build a
model of that component. If that is successful, Node B uses
a reasoner to prove that whatever it built is indeed the
QAM16 modulator. If the building step was successful
Node B can respond with a positive acknowledgement for

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

the modulation change request. Otherwise it responds with
negative acknowledgement.

4. CURRENT EXPERIMENT

One of the most important problems that need to be solved
before the proposed interoperability scenario could be
implemented is the process of constructing the composite
component from the facts learned from other nodes. Such an
algorithm would have to include at certain point a phase in
which a candidate for the constructed component is
scrutinized by the reasoner in order to verify if it is
consistent with the fact base. Our initial research efforts
have been directed towards that crucial phase.

In our experiment we were trying to find a way to define an
OWL class for a composite component (quadrature
modulator) in terms of other OWL classes representing
basic components (e.g. adder, multiplier, etc.). The
limitations of what can be expressed in OWL have become
obvious very quickly.

Figure 1. Quadrature modulator

For example the quadrature modulator (see Fig. 1) has two
multipliers. We can express in OWL the fact that a
particular class (such as QuadratureModulator) is in a
relationship with other class (such as Multiplier) using a
property (in our case hasSubComponent). We cannot
however distinguish the relationship with one of the
multipliers from relationship with the other one. Similarly
we can express in OWL the fact that the
QuadratureModulator is in the relationship with InputPort,
but again there’s no way to distinguish between particular
relationships for input ports I, Q and C.

It became clear that we need to augment OWL ontology
with rules in order to be able to express more complicated
relationships. One of the options was to augment OWL with
SWRL rules. We rejected however this idea because of the
lack of efficient reasoning engines supporting SWRL and to
the fact that SWRL is undecidable. As an alternative we
decided to use BaseVISor rules in the experiment.

5. BASEVISOR REASONER

BaseVISor ia a forward-chaining inference engine
developed by VIStology, Inc [8]. It is based on the Rete
network optimized for the processing of RDF triples, it also
incorporates axioms and consistency checks for R-
entailment which supports all of the RDF/RDFS and a part
of OWL-DL semantics. In exchange for the price of not
supporting all of the OWL-DL elements, BaseVISor
provides P-SPACE performance for ground RDF graphs [9].

BaseVISor uses a rule language based on XML syntax. The
facts defined by triples consist of subject, predicate and
object elements as it is shown below:

<triple>
 <subject resource=”ll:QuadratureModulator/>
 <predicate resource=”ll:hasComponent”/>
 <object resource=”ll:Multiplier”/>
</triple>

BaseVISor’s rules consist of body and head elements. The
body usually contains one or more triples, which have
syntax similar to the syntax of the facts, except that triples
in the rule bodies can contain variables. The head portion of
the rule is used to assert or retract facts into the knowledge
base. An example of a simple rule is shown below:

<rule name="hasMultiplier rule">
 <body>
 <triple>
 <subject variable="comp" />
 <predicate resource="ll:hasSubComponent" />
 <object variable="mul" />
 </triple>
 <triple>
 <subject variable="mul" />
 <predicate resource="rdf:type" />
 <object resource="ll:Multiplier" />
 </triple>
 </body>
 <head>
 <assert>
 <triple>
 <subject variable="comp"/>
 <predicate resource="#hasMultiplier "/>
 <object variable="mul" />
 </triple>
 </assert>
 </head>
</rule>

The fact that the object comp is in a relationship
#hasMultipler with the object mul will be asserted only if
mul is a subcomponent of comp and mul is of type
Multipler.

6. ONTOLOGY

The ontology we constructed for this experiment is shown in
Figure 2, Figure 3 and Figure 4. The ontology includes only
two top-level classes: Component and Port. As shown in
Figure 2, Component includes two subclasses – Basic
Component and Module. The intention here is to say that an
instance of Basic Component is a primitive component that

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

cannot be constructed out of simpler components. Module,
on the other hand, can be constructed out of Basic
Components. The building blocks for Module are
Multiplier, Phase Shifter, Adder and Filter. Obviously, this
is a very limited selection – the minimum that we needed to
demonstrate the main idea in this paper.

Figure 2. Subclasses of Component

In addition to Component, we also provide the Port class.
As shown in Figure 3, Port includes two subclasses – Input
Port and Output Port.

Figure 3. Subclasses of Port

Modules will be described by the components they are built
from and by the Ports that are connected to them.
Connections among components and ports are captured by
the four properties represented in Figure 4: hasPort,
isPortOf, isSubcomponentOf, hasSubcomponent and
isConnected to. The domains and ranges of these properties
can be inferred from Figure 4 by looking at the arrows
representing the properties.

Figure 4. Properties

7. CONSTRUCTING RULES WITHIN
OPEN WORLD REASONING MODEL

RDF and OWL use the open world assumption model. In
that model facts that have not been explicitly asserted to be
true are not presumed to be false, they simply are unknown.
That kind of reasoning while beneficial for the
expressiveness of OWL increased the complexity of rules
that needed to be written in our experiment, because we
needed to state in those rules not only what components and
in what way should be connected with each other, but also
the fact that there are no other components or connections.

Figure 5. Graphical representation of the quadrature
modulator structure expressed in BaseVISor rules

The diagram above presents a visualization of the
quadrature modulator rules as they were implemented in our
experiment. The relationships (thin solid lines) between
ports are equivalent to isConnectedTo properties defined in
OWL with additional restrictions stating that except those
connections that have been explicitly stated in the rules no
other connections can exist. Similarly relationships between
components and their ports have similar restrictions as to the
number of ports as well as the exclusivity of their
relationship with their designated components. The last set
of restrictions is necessary to avoid an erroneous situation in
which the same input port is in a relationship with different
component. The following BaseVISor rules is an example of
the definition of the exclusive relationship between input
port and the component.

<rule name="NonExclInput Rule">
 <body>
 <triple>
 <subject variable="inp" />
 <predicate resource="#inputPortOf" />
 <object variable="comp1" />
 </triple>
 <triple>
 <subject variable="inp" />
 <predicate resource="#inputPortOf" />
 <object variable="comp2" />
 </triple>
 <not>

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 <triple>
 <subject variable="comp1" />
 <predicate resource="owl:sameAs" />
 <object variable="comp2" />
 </triple>
 </not>
 </body>
 <head>
 <assert>
 <triple>
 <subject variable="inp" />
 <predicate resource="#isNonExclusiveInputPortOf" />
 <object variable="comp1" />
 </triple>
 <triple>
 <subject variable="inp" />
 <predicate resource="#isNonExclusiveInputPortOf" />
 <object variable="comp2" />
 </triple>
 </assert>
 </head>
</rule>

<rule name="ExclInput Rule">
 <body>
 <triple>
 <subject variable="inp" />
 <predicate resource="#inputPortOf" />
 <object variable="comp" />
 </triple>
 <not>
 <triple>
 <subject variable="inp" />
 <predicate resource="#isNonExclusiveInputPortOf" />
 <object anonVar="true" variable="__c" />
 </triple>
 </not>
 </body>
 <head>
 <assert>
 <triple>
 <subject variable="inp" />
 <predicate resource="#isExclusiveInputPortOf" />
 <object variable="comp" />
 </triple>
 </assert>
 </head>
</rule>

Predicates #isNonExclusiveInputPortOf and
#isExclusiveInputPortOf are complementary i.e., one of
them cannot be true if the other one is true. Due to the open
world assumption, however, they cannot be expressed as a
simple logical negation of each other. In the above example
that leads to the necessity of adding a clause enclosed in
<not> </not> tags, which specifically states that in order for
the input port inp to be an exclusive port of component
comp it cannot be in non-exclusive port relationship with
any other component.

8. CONCLUSIONS AND FUTURE WORK

In this paper we proposed that the constructivism paradigm
in cognitive science could be applied to the problem of
interoperability between Cognitive Radio nodes. In the
scenario we proposed, the node with richer knowledge base
can transfer portion of that knowledge to another node
which can further use it to construct composite software
services it previously didn’t know. We reported on progress
in our research efforts which initially have been
concentrated on problems of expressing complex software
components as OWL classes and logical rules under the
open world assumption reasoning model.

Our current and future efforts will concentrate on problems
related to knowledge transfer and component composition,
which are essential to the success of the proposed approach.
The use of reasoners in the Cognitive Radios opens many
other interesting research problems. One of the topics that
would be very interesting to explore is the use of the local
knowledge, which is not shared with other nodes to reason
about the facts the node learned from other nodes. It is
especially important if the node has a specialized hardware
that could and should be used whenever possible to help
with the data processing. For example, if the node learns
about a composite component that includes multipliers and
adders (like quadrature modulator), and if the node has a
specialized hardware implementing multiply-accumulate
operation, it could potentially use that hardware in the
implementation of that composite component.

9. REFERENCES

1 Ference Marton and Shirley Booth. Learning &
Awareness. Hillsdale, N.J.: Lawrence Erlbaum Associates,
1997.

2 CSCL (Computer Supported Collaborative Learning),
Pedagogical Information Science at the University of
Bergen, Norway. Avaialble at:
http://www.uib.no/People/sinia/CSCL/web_struktur-4.htm.

3 J. Wang, D. Brady, K. Baclawski, M. Kokar, L.Lechowicz.
The Use of Ontologies for the Self-Awareness of the
Communication Nodes. In Proceedings of the Software
Defined Radio Technical Conference SDR’03, 2003.

4 D. Urting, S. Van Baelen, T. Holvoet, Y. Berbers.
Embedded software development: Components and
contracts. In Proceedings of the IASTED International
Conference Parallel and Distributed Computing and
Systems, 2001, pp. 685-690.

5 D. Preuveneers, Y. Berbers. Automated Context-Driven
Composition of Pervasive Services to Alleviate Non-
Functional Concerns. International Journal of Computing &
Information Sciences, Vol. 3, No.2, August 2005, pp. 19-28

6 W3C. Web Ontology Language Reference OWL, 2004.
http://www.w3.org/2004/OWL/.

7 Pellet homepage: http://www.mindswap.org/2003/pellet/

8 VIStology, Inc. http://www.vistology.com/

9 C. Matheus, K. Baclawski and M. Kokar. BaseVISor: A
Triples-Based Inference Engine Outfitted to Process
RuleML and R-Entailment Rule. To appear in Proceedings
of the 2nd International Conference on Rules and Rule
Languages for the Semantic Web, Athens, GA, Nov. 2006

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

http://www.uib.no/People/sinia/CSCL/web_struktur-4.htm
http://www.w3.org/2004/OWL/
http://www.mindswap.org/2003/pellet/
http://www.vistology.com/

	Search by Author
	Search by Session

