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ABSTRACT 
 
A cognitive radio (CR) must be aware of its radio 
environment and able to recognize the waveforms that are 
present. In this paper, we present a global view of the 
waveform recognition problem and explore the challenges 
of designing a general receiver architecture that can 
recognize various modulated waveforms. We present a 
design for an adaptive signal classification system and 
analyze its performance with data from real over-the-air 
waveforms. The whole system is implemented on a GNU 
Radio SDR platform and an Anritsu™ Signature signal 
analyzer.  
 

1. INTRODUCTION 
 
Although much of the research interest in cognitive radio 
(CR) focuses on its potential use for dynamic spectrum 
access and cognitive network applications, the principles 
of cognition in the radio node have not been deeply 
explored. Other CR related work is largely devoted to 
developing radio hardware platforms to support 
anticipated cognitive functionalities. However, it is 
difficult to make an optimal platform design without a full 
understanding of the required algorithms. There is an 
urgent need to look into the fundamentals that make a 
radio cognitive: knowing the radio’s environment and 
optimizing its performance. “Knowing the radio’s 
environment” is the focus of this paper.  
 In Section 2 we explore the concept of radio 
environment awareness and its role in cognitive radio 
systems; Section 3 discusses signal recognition and 
presents a system level design of a cognitive receiver; 
Section 4 highlights the design challenges of such a 
system; and Section 5 shows how the theoretical work may 
be implemented on a real software defined radio (SDR) 
platform.  
 
 
 

2. RADIO ENVIRINMENT AWARENESS 
 
A cognitive radio is aware of its own capabilities, the 
needs of its user, the radio environment, and the governing 
regulations in ways that allow it to configure itself 
intelligently to optimize its performance in response to 
novel and rapidly changing environment. For purposes of 
analysis, it is convenient to represent the world of 
cognitive radio technology as three domains in order to 
provide a functional structure. These are the user 
(performance preferences), policy (spectral regulations) 
and radio domains. 
 The radio domain is defined to include both the radio 
environment and the radio hardware. Our group, the 
Center for Wireless Telecommunications (CWT) at 
Virginia Tech, is developing a software cognitive engine 
(CE) system that can work with a variety of SDR 
platforms [1, 2]. Middleware is developed between the CE 
and SDR, which transfers both the radio hardware 
information and radio environment information to the 
cognitive algorithms.  
 The radio environment is further formulated as the 
superset of waveforms and propagation channel data. 
Because parametric representation of both the waveform 
and channel is essential to machine reasoning and 
learning, the waveform is defined by PHY and MAC layer 
parameters. We use the term “signal” for the PHY layer 
parameter set, which includes carrier frequency, channel 
bandwidth, symbol rate, pulse shape, modulation, error-
correction coding, etc. The signal recognition is the 
starting point of radio cognitive behavior. The design 
challenges arise because it is inseparable from the signal 
reception procedure and therefore bears all the challenges 
of receiver design [3] and adds more because now the 
signal is to be received “cognitively”.  
 

3. SIGNAL RECOGNITION 
 
Signal recognition is often assumed or abstracted in link or 
network level algorithm design and simulations. However, 
it is extremely important to understand the problems in 
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recognizing a signal before it can be successfully 
demodulated. Key challenges include energy detection, 
signal classification, and general carrier recovery and 
symbol timing for any modulation scheme. These are not 
discrete issues. Due to the lack of prior knowledge, joint 
recognition by multiple stages through the receiver chain 
is needed as shown in Figure 1. 

Figure 1. Multi-standard Cognitive Receiver 
 
 In signal recognition, there are two system-level 
challenges: the first is to design a bootstrap process to 
cycle and refine the knowledge of different input signals, 
and the second is to design a general-purpose receiver that 
can provide synchronization and demodulation for all 
these signals. Signal recognition also needs to adapt to 
time varying channel characteristics. 
 The need for sensing a wide bandwidth and reliably 
detecting the presence of different signals imposes severe 
requirements on receiver sensitivity, linearity, and 
dynamic range. Conventional signal detection techniques 
include matched filtering and energy detection [4]. 
However, matched filtering requires prior signal 
knowledge; and energy detection lacks spectral 
differentiation. Cyclostationarity detection is getting a lot 
of attention due to its noise suppression [5]; however, the 
computational cost of bi-frequency domain correlation is 
prohibitive of real time processing [6]. Given the current 
improvements in processor technology, a good balance is 
to use wideband fast Fourier transform (FFT) for coarse 
energy detection and then run hierarchical FFT with finer 
resolution in the band of interest.  
 In a cognitive receiver, key PHY-layer signal 
parameters, including carrier frequency, baseband 
bandwidth, modulation, symbol rate and pulse shape, need 
to be recognized rather than assumed as in a conventional 
standards-based one. Without such information, the signal 
cannot be synchronized correctly. It is important to point 
out that in real receivers, hardware issues like local 
oscillator (LO) drift, DC bias, and cross-talk all prevent 
the  “accurate” carrier estimate that many simulation-based 
papers assume. The heart of a radio receiver is carrier 
phase lock, necessary to make the complex baseband 
signal available to feed the symbol timing loop. It is 
actually meaningless to investigate signal recognition after 
carrier phase lock, because all the signal information is 

available in the complex baseband information. The 
difficulty lies in phase lock: certain features of the signal 
need to be recognized to guide the adaptation of carrier 
recovery and phase lock.  
 Carrier phase lock depends on modulation. It is 
difficult and not necessary to make a “universal” 
modulation classifier that can classify arbitrary signals. A 
practical modulation classifier design depends on the 
target modulations, receiver structure, available processing 
resource, and signal quality (e.g., SNR). Note that the 
signal is frequency shifted to some small IF, or complex 
quasi-baseband where residual LO drifting exists due to 
unlocked phase. From here, signal modulation-dependent 
features are to be extracted and classified. It is important 
to obtain the complex signal because carrier-independent 
information becomes available in complex form.  
 Signal synchronization consists of carrier and symbol 
timing recovery. The design philosophy of carrier 
recovery is based on nonlinear energy extraction for 
distinct frequency components, and synchronization is 
maintained by feedback of phase error [3, 7]. Carrier 
recovery typically depends on one of two assumptions, 
using a pilot signal or having a symmetric spectrum (to 
enable carrier regeneration through nonlinear operations). 
In the pilot-aided case, the receiver should know the 
modulation standard to recognize the pilot tone; in the 
carrier regeneration case, the receiver also has to know the 
modulation scheme in advance to apply an appropriate 
nonlinear operation. In our approach to the cognitive 
receiver, a quadrature structure is selected that can be 
reconfigured for both linear and nonlinear modulation 
signals. Symbol timing is also essential for coherent 
demodulation. Although various symbol synchronization 
and timing algorithms are available [8], most rely on prior 
knowledge of signal parameters like modulation, symbol 
rate, pulse shaping filter, etc. To maximize generality, an 
early-late gate symbol timing loop is incorporated in our 
cognitive receiver design.   
 

4. MODULATION CLASSIFICATION 
 
A short overview of the pattern classification approach is 
provided by Nagy [9]. Maximum Likelihood (ML) 
classifiers [10, 11] require certain prior knowledge, and 
only MPSK waveforms can be classified in a coherent 
receiver. Methods based on higher-order nonlinear 
statistics are also proposed, but only to classify frequency 
modulation waveforms [12]. These have a  huge 
computational cost for non-coherent cases [13]. Zero-
crossing was found effective for non-coherent 
classification, but is sensitive to SNR [14]. Other 
approaches include using histograms of the phase, 
envelope, and instantaneous frequency of the analytic-
signal representation of the input signal [15-18]. For the 
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classifier design, using an Artificial Neural Network 
(ANN) is the most popular choice for a pattern recognition 
approach [19-21]. More complicated ANN and feature set 
designs are provided by [22, 23].  
 Unfortunately, most of the previous works’ results are 
biased on ideal computer simulation environments, thus 
the validity and robustness remains questionable. Also, the 
fundamental assumptions in building the classifier system, 
such as prior signal knowledge, synchronization condition, 
and timing logic, are usually not explained clearly. 
However, these are the most important parts of signal 
recognition design. In this paper we emphasize the system 
level design principles of modulation classification. We 
stress that the purpose of modulation classification is to 
enable adaptive synchronization for the cognitive 
receiver.  
 The proposed modulation classifier structure is shown 
in Figure 2. The complex IF signal obtained from the 
analog-to-digital converter (ADC) is quasi-baseband and 
centered near DC, not phase locked. The modulation 
classification process consists of three steps: (1) 
preprocessing, (2) feature extraction, and (3) feature 
pattern classification. 

Figure 2. Modulation Classification System 
 
4.1 Preprocessing  
 
Preprocessing is very important in providing stable and 
clean signal samples. The tasks involved in preprocessing 
include: (1) centering and normalization against 
propagation bias and variation, (2) extracting clean signal 
segments to feed the following feature extraction block, 
and (3) providing useful estimates of carrier to noise ratio, 
carrier frequency, etc.  
 A 20 kbps DBPSK air waveform generated by a GNU 
Radio SDR and collected by Anritsu™ Signature spectrum 
analyzer is shown in Figure 3. The received signal has an 
SNR about 20 dB and has strong envelope variation 
during the one-second collection time. After block-mean 
normalization, all signal segments have a four volt peak-
to-peak swing.  
 

4.2 Feature Extraction 
 

The signal features lie in temporal, spectral, and vector 
spaces. A temporal feature-based classification using 
OCON-ANN was detailed in [24]. This paper extends the 
signal feature extraction to complex quasi-baseband. Both 
the feature extraction and the classifier are adaptive to 
varying incoming signal SNR.  
 When the incoming signal consists of real data 
samples, a Hilbert transform [3] is applied to obtain the 
complex envelope and analytical instantaneous phase. 
Figure 4 shows the complex spectrum and features of the 
DBPSK signal from Figure 3. 

 Since the complex envelope remains the same when 
center frequency varies, it becomes a key information 
source before phase lock. As illustrated in the block 
diagram of  Figure 2, both the FFT and the analytical 
phase derivative can provide instant frequency estimation, 
but the phase derivative is very susceptible to noise, It is 
also difficult to extract a clean nonlinear part from the real 
air signal as shown in Figure 4c. Therefore FFT-based 
Welch periodogram is preferred to provide carrier 
estimate. The FFT can also be used in generating the 
Hilbert transform. 
 Among the features extracted from the complex quasi-
baseband, the normalized standard deviation of envelope, 

)(/)( envenv PV , is the most stable and separable 
feature characterizing modulation signal groups. On the 
other hand, most complex amplitude and envelope based 
features, even with high order statistics like kurtosis, are 
strongly correlated. 
 The feature extraction is designed adaptive to the 
input signal SNR. White noise is effectively suppressed by 
variable block averaging. Shown in Figure 5, even with 5 
dB SNR, the feature sets from different modulations are 
still fully separable. In fact, as far as the feature is defined 
to be theoretically separable, feature processing in the 
temporal domain can also get good results at low SNR. 
The reason is that the envelope is not as noise-sensitive as 

Figure 3. DBPSK Signal, 20kbps, 20dB SNR 
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phase, thus envelope-based features perform better than 
phase statistics, which is shown relying on high SNR many 
times in the literature.  
 Although the envelope-based feature is robust and 
does not require carrier synchronization, it has limits when 
classifying higher-order modulations (like QAM8, QAM 

16, etc). In the signal recognition process, it is enough for 
the envelope information to tell the carrier synchronizer 
what the modulation group is, i.e., is it real or quadrature, 
analog or digital? Such information is almost enough to 
configure the phase lock loop. Once the carrier is locked 
and the complex baseband signal is obtained, refined 
modulation recognition is trivial in the constellation 
display [24].  
 
4.3 Feature Pattern Classification 
 
Since the features used here are only two dimensional, the 
classifier is also simplified from pattern recognition 
OCON-ANN [24] to feature slicer, which is a threshold 
grid separating different modulation signals apart. An 
example AM slicer for various incoming SNR is shown in 
Figure 6. Due to the noise suppression in feature 
extraction, the slicers are trained very easily, taking 
subseconds to train all four modulations in Matlab. The 
convergence curve is shown in Figure 7.  
 The classification correction rate directly depends on 
processing gain from the block averaging feature 

Figure 5. Envelope and Amplitude Feature Space 

Figure 6. Modulation Feature Slicer 
Separating AM Signal from Others 

 

Figure 4a. Complex Low IF DBPSK Signal FFT 

Figure 4b. Complex Envelope of DBPSK Signal 

Figure 4c. Phase Derivative of DBPSK Signal 
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extraction block. The main tradeoff is between processing 
delay and accuracy for different incoming signal quality. 
The feature extraction processing is currently configured 
to carry block-based accumulating averaging; therefore, as 
collection length extends, the classification result is more 
accurate. With in-lab collected public safety air waveforms 
(15~20 kHz bandwidth) with SNR varying between 5 dB 
and 30 dB, and with a unit block size of 100 symbols, the 
modulation is always classified correctly within 10 ~ 20   
blocks, which is less than 0.1 seconds.  
 

5. TEST BED IMPLEMENATION 
 
The signal classification testbed system consists of two 
parts: a GNU Radio with USRP as the signal transmitter 
and an Anritsu™ Signature vector signal analyzer as the 
receiver and classifier.  
 
5.1. GNU Radio and USRP 
 
The GNU Radio project is an open source project to build 
a software defined radio. GNU Radio uses a RF board 
called universal software radio peripheral (USRP) as the 
air interface adaptor. Front-ends with different RF 
frequency range can be connected to the USRP; together 
with the GNU Radio software package, they form a 
flexible multi-band SDR platform.  
 
5.2. Public Safety Waveform Implementation 
 
CWT is currently developing a cognitive radio platform 
for the public safety community. The radio needs to be 
able to recognize different public safety waveforms with 
different frequency bands and different modulations. The 
modulation signals generated in this paper are compliant 
with public safety modulation signals, such as AM large 
carrier and suppressed carrier (12 kHz ~ 15 kHz), FM 
narrowband (15 kHz ~ 20 kHz), and possible digital 

modulations such as narrowband DBPSK (10 kbps ~ 20 
kbps).  They are all within 25 kHz public safety channel 
bandwidth. The future plan is to integrate the P25 [25] 
standard waveform into this testbed. This signal 
classification testbed will be demonstrated at SDR06. 
 
5.2. Waveform Measurement Platform 
 
The Anritsu™ Signature vector signal classifier is a multi-
functional signal analyzer. It has built-in Matlab to 
seamlessly connect signal acquisition with signal 
processing.  
 

6. CONCLUSTION 
 
In this paper, we demonstrated a system design of signal 
recognition for cognitive radios. Design challenges are 
analyzed in detail, and classification results with real 
public safety air waveform are presented. The next step is 
to combine this pre-sync signal recognition module with 
post-sync module [24] and integrate both into a GNU 
Radio testbed to form a complete cognitive receiver.  
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