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ABSTRACT 
 
In reconfigurable systems very often a situation will occur 
where an application, unknown at the design time of 
equipment, will need to be deployed (integrated) onto 
hardware platform consisting of several and different 
processors. This deployment should be optimal or at least 
suboptimal in terms of speed of processing execution and 
power consumption. In this paper a process of optimal 
mapping of a software realisation of an application on EP

2
PR 

equipment heterogeneous hardware platform is described. 
 
 

1. INTRODUCTION 
 
In an equipment design time, when an application and 
hardware platform are known, it is possible to associate 
application’s modules with particular parts of the hardware 
platform in the best possible way in terms of certain 
performance metrics such as processing time, transport 
time, power consumption, etc. 
 However, in reconfigurable systems very often a 
situation will occur where an application, unknown at the 
design time of equipment, will need to be deployed 
(integrated) onto hardware platform consisting of several 
and different processors. Requirements for optimal or at 
least suboptimal mapping in terms of power consumption 
and performance will still be there. Applications like 
cellular phones draw their energy from a battery that has a 
limited amount of energy, and energy-conscious software 
mapping can lead to drastic reductions of energy dissipation 
of a whole mobile system. Therefore, there is a need for an 
entity that is capable of making the best possible integration 
of an application and its modules with processing fabrics of 
the available heterogeneous hardware platform. 
 Conceptually optimal software mapping entity consists 
of the elements as depicted in Figure 1. 
Where: 
• Input - System level description language, which is used 

throughout the whole design process, starting from 
algorithm design and evaluation to HW and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Functional Components of an Optimal Integrated 
Scheduler 
 
• SW implementation. The language has capability of a 

unified representation of a system that can be used to 
describe its functionality independent of type of 
processors employed in the hardware platform. 

• Concurrency analyses, which is capable of finding and 
utilizing the inherent parallelism in various applications, 

• Dependency analyses, which maintains the temporal 
scheduling, 

• Profiling, which provides estimated or cycle accurate 
calculation of performance metrics, 

• Mapping that evaluates different mapping solutions until 
it identifies the optimal one for the given working 
conditions, 

• Output – Optimal scheduler, which presents integrated 
both temporal and spatial schedulers 

In this paper a process of optimal mapping of a software 
realisation of an application onto EP

2
PR equipment 

heterogeneous hardware platform is described. Furthermore, 
performance investigation of optimisation algorithms 
utilised for E2R Optimal design mapper (Partitioner) is 
discussed. 
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2. EP

2
PR RECONFIGURABLE RADIO EQUIPMENT 

(RRE) ARCHITECTURE 
 
Reconfigurable Radio Equipments will be a key part of 
future End-to-End Reconfigurable systems [1]. Meeting the 
challenges imposed by the Seamless Experience vision of 
E²R will require radio devices with enhanced 
reconfiguration capabilities, to provide the customers (end-
user or network operators) with flexible, modular and 
evolutive connectivity solutions. 
 In this work, by “Equipment” reference is made to any 
concrete equipment that is taking part to the overall E²R 
system. This can indistinctively refer to User equipment 
(e.g. flexible mobile phone), or Network equipment (e.g. 
flexible base station or flexible core network devices). 
 Thus, “Equipment” is not to be understood as the user 
terminal, this terminology does encompass base stations 
and/or access points. 
 By “Radio Equipment” is meant more specifically 
equipments capable to provide a radio connectivity (this 
excludes from the previous list flexible core network 
devices). 
 
2.1. Three Architecture Areas 
 
The internal architecture of the equipment is divided into a 
three-tier model, which describes the key architecture areas 
to be addressed for Reconfigurable Radio Equipment: 

• Reconfiguration Management, 
• Reconfiguration Control, 
• Reconfigurable Elements. 

Figure 2 gives a graphical view of such a breakdown into 
architecture areas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: Aspect of Reconfigurable Radio Equipment 
Architecture 

 
2.1.1. Reconfiguration Management Definition 
Reconfiguration Management covers all the means inside an 
Equipment, enabling it to contribute to take the appropriate 
decision concerning the RAT reconfiguration to be applied. 
 In EP

2
PR context, those are the concepts that captured 

under the general wording of Configuration Management 
Module (CMM). 
 
2.1.2. Reconfiguration Control Definition 
Reconfiguration Control covers all the means inside an 
Equipment, enabling it to appropriately take advantage of 
the reconfigurable elements it is composed of. 
 In EP

2
PR context, these concepts were identified as being 

the Configuration Control Module (CCM). 
 As depicted in Figure 3 Optimal mapping (Spatial 
Scheduler) is a part of Configuration Control Module 
(CCM): 
 
2.1.3. Reconfigurable Elements Definition 
Two main categories of Reconfigurable Elements are 
distinguished: 
• Software programmable modules, which are processing 

units subject to host RAT software modules, 
• Parametrical modules, which are reconfigured thanks to 

parameters adjustments instead of software installation 
and execution. Those can be of two sub-categories: 
o Flexible hardware sub-systems (assembled with 

their driver software), 
o Flexible software components (autonomous 

software modules proposing by themselves a 
certain number of tuneable parameters). 

In EP

2
PR context, the corresponding concepts were identified 

as being the Configurable Execution Modules (CEM). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Positioning of Optimal mapping in EP

2
PR Architecture 
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3. OPTIMAL MAPPING ENVIRONMENT 
 
Reconfigurable systems have a hardware platform 
composed of a network of different architectural fabrics, 
such as ISA processor, DSP processor, FPGA, Accelerators 
and ASIC blocks. Instruction set architectures are often 
related to as soft programmable forms and field 
programmable logic as hard programmable forms. 
Therefore, spatial scheduling is frequently termed HW/SW 
partitioning and an entity performing partitioning is termed 
the Partitioner. 
 The Partitioner environment utilized in this work 
consists of three different commercially available 
development platforms representing a processor, DSP and 
FPGA. These platforms are briefly described below. 
 
3.1. Tigersharc / VisualDSP++ 
 
The Tigersharc processor is a static superscalar DSP chip 
that supports 1-, 8-, 16-, and 32-bit fixed- and floating-point 
data types on the same chip. It is available at speeds up to 
600MHz and with up to 24Mb of DRAM integrated. 
 VisualDSP++ is the integrated development 
environment from ADI. The environment contains an 
optimizing C/C++ compiler and a cycle-accurate simulator 
for the Tigersharc chip. 
 
3.2. ARM / Armulator 
 
The ARM is a processor core design that is available as IP 
from ARM Ltd. and exists in a wide range of different 
versions and packages from a number of manufacturers as 
well as for integration into custom silicon. There are also 
chips combining an FPGA with an ARM processor core 
available from Triscend. 
 The Armulator is a cycle-accurate simulator for the 
ARM cores available from ARM Ltd. 
 
3.3. Xilinx Virtex II/ iSE 
 
The Virtex II is Xilinx’s most advanced FPGA available at 
the moment, with a Virtex II Pro version available that 
contains embedded PowerPC processors. 
 

4. THE HARNESS 
 
4.1. Module Definitions 
 
4.1.1. Tigersharc 
In the case of the Tigersharc, the module is defined as a set 
of C files specified in the Partitioner program. A standalone 
test bench version of each module is required to get the 
initial performance data. After an initial partition and 

schedule has been determined the design can be run with 
full data interchange to verify the partitioning. 
 
4.1.2. ARM 
ARM modules are defined in exactly the same way as 
Tigersharc modules, allowing easy code sharing between 
these designs. 
 
4.1.3. Xilinx 
Xilinx modules are defined by creating the entire module as 
project in iSE. It is synthesized here and the Harness can 
execute the simulation in ModelSim and collect the data 
from it. Each Xilinx module will be contained in its own 
directory underneath the main project directory. 
 
4.2. Module Interface 
 
The module interface for C versions is in the file 
file_interface.c which has to be included in each module 
that makes use of the interface. 
 The template generation can be used to create an initial 
framework for each module with the necessary code for 
communicating on the channels used by the module. 
 Note that to allow simulation of each design module on 
multiple processing units it is necessary that there is only 
one module writing to each channel, though multiple 
modules may read from each channel. 
 
4.3. Data Acquisition 
 
4.3.1. C 
Data Acquisition for C versions is done through a set of 
preprocessor macros which enable acquisition of timing 
data and disable collection around certain areas, for example 
the interface functions which are estimated separately. 
 
4.3.2. FPGA 
For the FPGA parts the data is collected in the test bench for 
each module. The test bench also provides the module 
interface. This allows timing from the harness code to be 
automatically excluded in the Xilinx environment. 
 Furthermore, the harness collects information on the 
number of FPGA elements used on the Virtex chip by 
parsing the output of the synthesis runs. 
 The partitioner can create a test bench file that sets up a 
clock with a counter; when the clock is disabled, the profile 
information is written out to the data file read by the 
harness. 
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5. THE PARTITIONER DESIGN 
 
Figure 4: Optimal partitioning steps 

 
5.1. Overall structure 
 
The partitioner uses an object oriented design using the 
following basic classes: processing units, communication 
channels, design modules and mappings.  
 A processing unit is a general purpose processor or 
FPGA device that code can be partitioned onto. Any 
number and type of these can be set up in the Partitioner. 
 A design module is a part of the program to be 
partitioned. It communicates with other modules on the 
communication channels specified for it. The Partitioner can 
create template code for the instantiation of a design module 
on a particular processing unit type.  
 A communication channel is a name for a channel that 
data can be exchanged on between different design 
modules. The Partitioner can create code for communicating 
on these channels as part of the template code generated for 
an instantiation of a design module on a processing unit 
type. 
 Mappings represent the implementation of a design 
module on a specific processing unit. 
 The Partitioner is separate from the Simulation harness 
and can be run independently once the simulation data has 
been acquired. Different scenarios can be tested without 
having to rerun the simulation. 
 
5.2. GUI 
 

The GUI allows entering the information on all the 
modules, their dependencies and different mappings. 
Several different mappings, even onto the same hardware 
part, can take place for each module in the design. 
The GUI also allows hardware and design parameters to be 
set, such as the clock speed, for each hardware module. 
 
5.3. Simulation 
 
The partitioner will automatically link and compile all 
mappings of all modules and execute them in the 
appropriate simulator. An optional cygwin-based 
environment is available to provide quick tests outside of 
the simulators to allow fast tests of the module code. 
 
5.3.1. Cost Function 
The cost function depends on the following variables: 
• Relative Power scale (set in the Partitioner's global 

settings dialog as “Power Cost Weighting”), determines 
how much value is given to the power consumption of a 
module in relation to the cost of the processing unit it is 
running on 

• Absolute power scale is calculated by first finding the 
maximum cost of any processing unit and the maximum 
power consumption of any module. This way of 
calculating the absolute power scale is used to insure a 
well distributed cost function (if the cost function is not 
well distributed, the ant colony optimization algorithm 
does not perform optimally). 

• The cost of instantiating a module on a processing unit is 
plus the cost of using the processing unit in the overall 
design (set in the processing unit properties) if it hasn't 
been used already. 

• The overall cost function is the cost of all the module 
instantiations plus a time and area penalty if either of 
these limits have been exceeded. 

 
5.3.2. FPGA 
The FPGA has a unit cost as well as an “infinite” cost for 
exceeding the number of FPGA elements available on the 
chip.  
 The cost function is a weighted sum of the power and 
“fixed” costs for each module with a (usually) infinite 
penalty for exceeding the time or area limits. 
 
5.3.3. ARM 
The arm has a cost function similar to the FPGA one but 
without penalty for exceeding area limits as there are none 
(however a similar limit could be conceivably imposed on 
memory image size. 
 
5.4. GA Partitioning Algorithm 
 

Set up 
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Add Mappings 
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The partitioning is performed using a genetic algorithm. 
Each possible partitioning is represented by a vector of 
numbers, where each number in each cell in the vector 
represents one possible mapping of the module represented 
by the cell onto a particular target device. The vector is 
called a “chromosome” in the language of genetic 
algorithms. 
 Initially a population of chromosomes is generated at 
random, then each chromosome is evaluated against the cost 
function. The most fit chromosomes are selected as parents 
for a new generation of chromosomes, and the cycle is 
repeated a chosen number of times. 
 The GA algorithm allows an almost completely free 
choice of cost function and tends to generate good results 
fairly quickly but does not give a guarantee of an optimal 
solution. 
 
5.5. Scheduler 
 
The scheduler finds the optimum schedule of design 
modules on processing units given a specified mapping of 
design modules onto processing units. It consists of a 
function to compute the execution time of a schedule and a 
recursive function to apply this function to all possible 
schedules in turn and determine the schedule with the 
shortest execution time. Given that the design modules are 
constrained to a single target processing unit the scheduling 
cost is not prohibitive. 
 
5.5. Ant Colony Optimization Algorithm 
 
The modified ant colony optimization algorithm created for 
this study combines partitioning and scheduling into one 
operation. The algorithm is based on the basic ant colony 
optimization algorithm described in [2]i.  
 The ant colony optimization algorithm works by 
simulating a colony of ants that attempts to find a path 
through the problem space, in our case attempt to find the 
optimum path (schedule) through the different instantiations 
of design modules onto processing units. 
 Unlike in the original algorithm each ant has two taboo 
lists, one for the design modules that have been scheduled 
and one for the particular mappings from design modules 
onto processing units that have been chosen. 

Given a set of n design modules that have possible 
instantiations onto the processing units, we try to find the 
lowest cost schedule and instantiations of design modules 
onto the processing units available. That is, we try to find a 
path between all the possible mappings of design modules 
onto processing units such that each design module is only 
instantiated once. We call d Bij Bthe cost of scheduling mapping 
j after mapping i was previously scheduled. In general, we 
use cost instead of the length of paths used in the original 
algorithm.  

 For each move of each ant in the algorithm, the ant 
considers all the possible mappings of all the possible 
design modules that haven't been scheduled yet. It 
determines the cost of scheduling each mapping given the 
already instantiated mappings. From this cost and the 
pheromone trail of each possible transition we determine the 
transition probability for each possible mapping, using 
equation (4) in [2].  
 After all ants have completed their tour the pheromone 
trails between possible mappings are updated based on the 
total cost of the tour each ant took.  
 An elitist strategy with 2 elitist ants according to 
section V.B in [2] is used; this means that the best path is 
given 3 times the usual intensity. 
 

6. RESULTS 

 
Figure 5: Turbo coder example 
 
6.1. 3GPP channel coding example 
 
The 3 P

rd
P generation mobile phone channel coding example 

uses the turbo coder as it is the most computationally 
challenging parts of the channel coding.  
 The Turbo coder is made up of a splitter, an interleaver, 
two constituent encoders and a combiner. 
 Unfortunately only limited scope for parallelism exists 
in this example as the only possibility for parallel execution 
is “constituent1” in parallel with “interleaver” and 
“constituent2”. This limits the complexity of calculating the 
partitioning (the more options for executing code paths in 
parallel exist in the design, the bigger the solution space). 
 
Optimizer Best Result In Round Time 
GA 100.26 1 0.05 
ACO 100.3 1 0.11 
Best: 100.26 1 0.05 
 
In the simple 3GPP example little difference exists between 
the two partitioning algorithms. This example also 
illustrates that the ant colony optimization may not always 
find the very best result quickly (in fact, it will find a result 
very close to the optimal result very quickly but it can take a 
long time to find improvements to a near-optimal result as 

splitter constituent1 

constituent2 interleaver 

combiner 
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new potential solutions are chosen with a probability 
proportional to the potential change to the current best 
result). 
 
6.2. Synthetic Benchmarks 
 
6.2.1. Simple Synthetic Example 
The “simple” example contains of 6 modules, 5 of which 
have mappings onto 3 possible ARM processing units and 1 
which has a mapping onto a Tigersharc target. No 
dependencies are set between the modules. 
 
Optimizer Best Result In Round Time 
GA 386.47 1 14.3 
ACO 386.47 2 0.7 
Best: 386.47 1 0.7 
 
As can be seen, the GA is at a disadvantage in this case as it 
has to run the scheduler for each chromosome being 
evaluated, a lengthy process where a large number of 
possible schedules need to be evaluated.  
 The ACO converges on a good solution very quickly 
due to the good match of the ACO heuristic to the problem 
space. 
 
6.2.2. Complex Synthetic Example 
The “complex” example is the same as the “simple” 
example but it has dependencies between the different 
modules. 
 
Optimizer Best Result In Round Time 
GA 469.35 11 8.9 
ACO 469.35 6 1.7 
Best: 469.35 6 1.7 
 
In this case the GA is better able to explore the complete 
problem space and is able to come up with a solution in less 
time than for the previous example. It is also much faster 
than on the simple example as far fewer different schedules 
need to be evaluated for each chromosome. 
 The ACO still finds a good solution though more 
slowly than on the simple example. It is still faster than the 
GA as it performs scheduling as part of the optimization. 
 
6.2.3. Variable Synthetic Example 

A synthetic example with a variable number of modules that 
need to be scheduled was created to compare the scalability 
of the ant colony versus genetic algorithm optimization 
algorithms. Figure 6 shows the results from this experiment: 
 
Figure 6: Scalability comparison 

 
The execution time for the genetic algorithm version of the 
partitioner takes exponential time to calculate a partitioning 
and it was prohibitively expensive to run it for more than 9 
modules (this is as a result of the exhaustive search 
scheduler used in the genetic algorithm version of the 
Partitioner).  
 The ant colony optimization version of the partitioning 
algorithm executed in nearly linear time and should scale to 
very large problem sets. Both algorithms produced identical 
results for each problem tested in this example. 
 
6.3. Conclusions 
 
The ACO algorithm provides equally good results as the 
GA in a much more scalable fashion; however it is more 
sensitive to bad choices in the Partitioner parameters.  
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