

OPTIMAL FUNCTIONAL MAPPING ONTO END-TO-END

RECONFIGURABLE (EP

2
PR) EQUIPMENT HARDWARE PLATFORM

Mirsad Halimic (Panasonic Broadband Communications Development Laboratory,

Wokingham, Berkshire, United Kingdom; HTUMirsad.Halimic@eu.panasonic.comUTH)
Didier Bourse (Motorola Labs, Paris, France; HTUDidier.Bourse@motorola.comUTH)

Eric Nicollet (Thales, Paris, France; HTUEric.Nicollet@fr.thalesgroup.comUTH)

ABSTRACT

In reconfigurable systems very often a situation will occur
where an application, unknown at the design time of
equipment, will need to be deployed (integrated) onto
hardware platform consisting of several and different
processors. This deployment should be optimal or at least
suboptimal in terms of speed of processing execution and
power consumption. In this paper a process of optimal
mapping of a software realisation of an application on EP

2
PR

equipment heterogeneous hardware platform is described.

1. INTRODUCTION

In an equipment design time, when an application and
hardware platform are known, it is possible to associate
application’s modules with particular parts of the hardware
platform in the best possible way in terms of certain
performance metrics such as processing time, transport
time, power consumption, etc.
 However, in reconfigurable systems very often a
situation will occur where an application, unknown at the
design time of equipment, will need to be deployed
(integrated) onto hardware platform consisting of several
and different processors. Requirements for optimal or at
least suboptimal mapping in terms of power consumption
and performance will still be there. Applications like
cellular phones draw their energy from a battery that has a
limited amount of energy, and energy-conscious software
mapping can lead to drastic reductions of energy dissipation
of a whole mobile system. Therefore, there is a need for an
entity that is capable of making the best possible integration
of an application and its modules with processing fabrics of
the available heterogeneous hardware platform.
 Conceptually optimal software mapping entity consists
of the elements as depicted in Figure 1.
Where:
• Input - System level description language, which is used

throughout the whole design process, starting from
algorithm design and evaluation to HW and

Figure 1: Functional Components of an Optimal Integrated
Scheduler

• SW implementation. The language has capability of a

unified representation of a system that can be used to
describe its functionality independent of type of
processors employed in the hardware platform.

• Concurrency analyses, which is capable of finding and
utilizing the inherent parallelism in various applications,

• Dependency analyses, which maintains the temporal
scheduling,

• Profiling, which provides estimated or cycle accurate
calculation of performance metrics,

• Mapping that evaluates different mapping solutions until
it identifies the optimal one for the given working
conditions,

• Output – Optimal scheduler, which presents integrated
both temporal and spatial schedulers

In this paper a process of optimal mapping of a software
realisation of an application onto EP

2
PR equipment

heterogeneous hardware platform is described. Furthermore,
performance investigation of optimisation algorithms
utilised for E2R Optimal design mapper (Partitioner) is
discussed.

Concurrency Analysis

Input: System Level Description Language

Threa Threa Thread

Dependency Analysis – Temporal Scheduling

Optimal Mapping – Spatial Scheduling

Profiling

Output: Optimal Integrated Scheduler

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

2. EP

2
PR RECONFIGURABLE RADIO EQUIPMENT

(RRE) ARCHITECTURE

Reconfigurable Radio Equipments will be a key part of
future End-to-End Reconfigurable systems [1]. Meeting the
challenges imposed by the Seamless Experience vision of
E²R will require radio devices with enhanced
reconfiguration capabilities, to provide the customers (end-
user or network operators) with flexible, modular and
evolutive connectivity solutions.
 In this work, by “Equipment” reference is made to any
concrete equipment that is taking part to the overall E²R
system. This can indistinctively refer to User equipment
(e.g. flexible mobile phone), or Network equipment (e.g.
flexible base station or flexible core network devices).
 Thus, “Equipment” is not to be understood as the user
terminal, this terminology does encompass base stations
and/or access points.
 By “Radio Equipment” is meant more specifically
equipments capable to provide a radio connectivity (this
excludes from the previous list flexible core network
devices).

2.1. Three Architecture Areas

The internal architecture of the equipment is divided into a
three-tier model, which describes the key architecture areas
to be addressed for Reconfigurable Radio Equipment:

• Reconfiguration Management,
• Reconfiguration Control,
• Reconfigurable Elements.

Figure 2 gives a graphical view of such a breakdown into
architecture areas.

Figure 2: Aspect of Reconfigurable Radio Equipment
Architecture

2.1.1. Reconfiguration Management Definition
Reconfiguration Management covers all the means inside an
Equipment, enabling it to contribute to take the appropriate
decision concerning the RAT reconfiguration to be applied.
 In EP

2
PR context, those are the concepts that captured

under the general wording of Configuration Management
Module (CMM).

2.1.2. Reconfiguration Control Definition
Reconfiguration Control covers all the means inside an
Equipment, enabling it to appropriately take advantage of
the reconfigurable elements it is composed of.
 In EP

2
PR context, these concepts were identified as being

the Configuration Control Module (CCM).
 As depicted in Figure 3 Optimal mapping (Spatial
Scheduler) is a part of Configuration Control Module
(CCM):

2.1.3. Reconfigurable Elements Definition
Two main categories of Reconfigurable Elements are
distinguished:
• Software programmable modules, which are processing

units subject to host RAT software modules,
• Parametrical modules, which are reconfigured thanks to

parameters adjustments instead of software installation
and execution. Those can be of two sub-categories:
o Flexible hardware sub-systems (assembled with

their driver software),
o Flexible software components (autonomous

software modules proposing by themselves a
certain number of tuneable parameters).

In EP

2
PR context, the corresponding concepts were identified

as being the Configurable Execution Modules (CEM).

Figure 3: Positioning of Optimal mapping in EP

2
PR Architecture

Reconfiguration
Management

Decides the RAT into which the
equipment should be reconfigured

Reconfiguration
Control
Applies the RAT configuration
in accordance with equipment

capabilities

Reconfigurable
Elements
Implements the RAT processing

according to Reconfiguration
Control elementary

Implemented by a set of
Configuration Management
Modules (CMMs)

 Decision Making

Implemented by a set of
Configuration Control Modules
(CCMs)

Reconfiguration Infrastructure

Implemented by a set of
Configurable Execution Modules
(CEMs)
Encompasses Component Models
and Radio Domain Devices
definition

CC
M

CCM_FunctionalMapper

CCM_Prof CCM_SpatialScheduler

CCM_PlatformMapper

CCM_D&
C

CE
M

CMM

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

3. OPTIMAL MAPPING ENVIRONMENT

Reconfigurable systems have a hardware platform
composed of a network of different architectural fabrics,
such as ISA processor, DSP processor, FPGA, Accelerators
and ASIC blocks. Instruction set architectures are often
related to as soft programmable forms and field
programmable logic as hard programmable forms.
Therefore, spatial scheduling is frequently termed HW/SW
partitioning and an entity performing partitioning is termed
the Partitioner.
 The Partitioner environment utilized in this work
consists of three different commercially available
development platforms representing a processor, DSP and
FPGA. These platforms are briefly described below.

3.1. Tigersharc / VisualDSP++

The Tigersharc processor is a static superscalar DSP chip
that supports 1-, 8-, 16-, and 32-bit fixed- and floating-point
data types on the same chip. It is available at speeds up to
600MHz and with up to 24Mb of DRAM integrated.
 VisualDSP++ is the integrated development
environment from ADI. The environment contains an
optimizing C/C++ compiler and a cycle-accurate simulator
for the Tigersharc chip.

3.2. ARM / Armulator

The ARM is a processor core design that is available as IP
from ARM Ltd. and exists in a wide range of different
versions and packages from a number of manufacturers as
well as for integration into custom silicon. There are also
chips combining an FPGA with an ARM processor core
available from Triscend.
 The Armulator is a cycle-accurate simulator for the
ARM cores available from ARM Ltd.

3.3. Xilinx Virtex II/ iSE

The Virtex II is Xilinx’s most advanced FPGA available at
the moment, with a Virtex II Pro version available that
contains embedded PowerPC processors.

4. THE HARNESS

4.1. Module Definitions

4.1.1. Tigersharc
In the case of the Tigersharc, the module is defined as a set
of C files specified in the Partitioner program. A standalone
test bench version of each module is required to get the
initial performance data. After an initial partition and

schedule has been determined the design can be run with
full data interchange to verify the partitioning.

4.1.2. ARM
ARM modules are defined in exactly the same way as
Tigersharc modules, allowing easy code sharing between
these designs.

4.1.3. Xilinx
Xilinx modules are defined by creating the entire module as
project in iSE. It is synthesized here and the Harness can
execute the simulation in ModelSim and collect the data
from it. Each Xilinx module will be contained in its own
directory underneath the main project directory.

4.2. Module Interface

The module interface for C versions is in the file
file_interface.c which has to be included in each module
that makes use of the interface.
 The template generation can be used to create an initial
framework for each module with the necessary code for
communicating on the channels used by the module.
 Note that to allow simulation of each design module on
multiple processing units it is necessary that there is only
one module writing to each channel, though multiple
modules may read from each channel.

4.3. Data Acquisition

4.3.1. C
Data Acquisition for C versions is done through a set of
preprocessor macros which enable acquisition of timing
data and disable collection around certain areas, for example
the interface functions which are estimated separately.

4.3.2. FPGA
For the FPGA parts the data is collected in the test bench for
each module. The test bench also provides the module
interface. This allows timing from the harness code to be
automatically excluded in the Xilinx environment.
 Furthermore, the harness collects information on the
number of FPGA elements used on the Virtex chip by
parsing the output of the synthesis runs.
 The partitioner can create a test bench file that sets up a
clock with a counter; when the clock is disabled, the profile
information is written out to the data file read by the
harness.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

5. THE PARTITIONER DESIGN

Figure 4: Optimal partitioning steps

5.1. Overall structure

The partitioner uses an object oriented design using the
following basic classes: processing units, communication
channels, design modules and mappings.
 A processing unit is a general purpose processor or
FPGA device that code can be partitioned onto. Any
number and type of these can be set up in the Partitioner.
 A design module is a part of the program to be
partitioned. It communicates with other modules on the
communication channels specified for it. The Partitioner can
create template code for the instantiation of a design module
on a particular processing unit type.
 A communication channel is a name for a channel that
data can be exchanged on between different design
modules. The Partitioner can create code for communicating
on these channels as part of the template code generated for
an instantiation of a design module on a processing unit
type.
 Mappings represent the implementation of a design
module on a specific processing unit.
 The Partitioner is separate from the Simulation harness
and can be run independently once the simulation data has
been acquired. Different scenarios can be tested without
having to rerun the simulation.

5.2. GUI

The GUI allows entering the information on all the
modules, their dependencies and different mappings.
Several different mappings, even onto the same hardware
part, can take place for each module in the design.
The GUI also allows hardware and design parameters to be
set, such as the clock speed, for each hardware module.

5.3. Simulation

The partitioner will automatically link and compile all
mappings of all modules and execute them in the
appropriate simulator. An optional cygwin-based
environment is available to provide quick tests outside of
the simulators to allow fast tests of the module code.

5.3.1. Cost Function
The cost function depends on the following variables:
• Relative Power scale (set in the Partitioner's global

settings dialog as “Power Cost Weighting”), determines
how much value is given to the power consumption of a
module in relation to the cost of the processing unit it is
running on

• Absolute power scale is calculated by first finding the
maximum cost of any processing unit and the maximum
power consumption of any module. This way of
calculating the absolute power scale is used to insure a
well distributed cost function (if the cost function is not
well distributed, the ant colony optimization algorithm
does not perform optimally).

• The cost of instantiating a module on a processing unit is
plus the cost of using the processing unit in the overall
design (set in the processing unit properties) if it hasn't
been used already.

• The overall cost function is the cost of all the module
instantiations plus a time and area penalty if either of
these limits have been exceeded.

5.3.2. FPGA
The FPGA has a unit cost as well as an “infinite” cost for
exceeding the number of FPGA elements available on the
chip.
 The cost function is a weighted sum of the power and
“fixed” costs for each module with a (usually) infinite
penalty for exceeding the time or area limits.

5.3.3. ARM
The arm has a cost function similar to the FPGA one but
without penalty for exceeding area limits as there are none
(however a similar limit could be conceivably imposed on
memory image size.

5.4. GA Partitioning Algorithm

Set up
processing units

Set up
channels

Create
Modules

Add Mappings

Add files to mapping

Create Template

Specify channels
and dependencies

Perform
Partitioning

Use
Genetic Algorithm

Use Ant
Colony Optimisation

Run
Experiments

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

The partitioning is performed using a genetic algorithm.
Each possible partitioning is represented by a vector of
numbers, where each number in each cell in the vector
represents one possible mapping of the module represented
by the cell onto a particular target device. The vector is
called a “chromosome” in the language of genetic
algorithms.
 Initially a population of chromosomes is generated at
random, then each chromosome is evaluated against the cost
function. The most fit chromosomes are selected as parents
for a new generation of chromosomes, and the cycle is
repeated a chosen number of times.
 The GA algorithm allows an almost completely free
choice of cost function and tends to generate good results
fairly quickly but does not give a guarantee of an optimal
solution.

5.5. Scheduler

The scheduler finds the optimum schedule of design
modules on processing units given a specified mapping of
design modules onto processing units. It consists of a
function to compute the execution time of a schedule and a
recursive function to apply this function to all possible
schedules in turn and determine the schedule with the
shortest execution time. Given that the design modules are
constrained to a single target processing unit the scheduling
cost is not prohibitive.

5.5. Ant Colony Optimization Algorithm

The modified ant colony optimization algorithm created for
this study combines partitioning and scheduling into one
operation. The algorithm is based on the basic ant colony
optimization algorithm described in [2]i.
 The ant colony optimization algorithm works by
simulating a colony of ants that attempts to find a path
through the problem space, in our case attempt to find the
optimum path (schedule) through the different instantiations
of design modules onto processing units.
 Unlike in the original algorithm each ant has two taboo
lists, one for the design modules that have been scheduled
and one for the particular mappings from design modules
onto processing units that have been chosen.

Given a set of n design modules that have possible
instantiations onto the processing units, we try to find the
lowest cost schedule and instantiations of design modules
onto the processing units available. That is, we try to find a
path between all the possible mappings of design modules
onto processing units such that each design module is only
instantiated once. We call d Bij Bthe cost of scheduling mapping
j after mapping i was previously scheduled. In general, we
use cost instead of the length of paths used in the original
algorithm.

 For each move of each ant in the algorithm, the ant
considers all the possible mappings of all the possible
design modules that haven't been scheduled yet. It
determines the cost of scheduling each mapping given the
already instantiated mappings. From this cost and the
pheromone trail of each possible transition we determine the
transition probability for each possible mapping, using
equation (4) in [2].
 After all ants have completed their tour the pheromone
trails between possible mappings are updated based on the
total cost of the tour each ant took.
 An elitist strategy with 2 elitist ants according to
section V.B in [2] is used; this means that the best path is
given 3 times the usual intensity.

6. RESULTS

Figure 5: Turbo coder example

6.1. 3GPP channel coding example

The 3 P

rd
P generation mobile phone channel coding example

uses the turbo coder as it is the most computationally
challenging parts of the channel coding.
 The Turbo coder is made up of a splitter, an interleaver,
two constituent encoders and a combiner.
 Unfortunately only limited scope for parallelism exists
in this example as the only possibility for parallel execution
is “constituent1” in parallel with “interleaver” and
“constituent2”. This limits the complexity of calculating the
partitioning (the more options for executing code paths in
parallel exist in the design, the bigger the solution space).

Optimizer Best Result In Round Time
GA 100.26 1 0.05
ACO 100.3 1 0.11
Best: 100.26 1 0.05

In the simple 3GPP example little difference exists between
the two partitioning algorithms. This example also
illustrates that the ant colony optimization may not always
find the very best result quickly (in fact, it will find a result
very close to the optimal result very quickly but it can take a
long time to find improvements to a near-optimal result as

splitter constituent1

constituent2 interleaver

combiner

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

new potential solutions are chosen with a probability
proportional to the potential change to the current best
result).

6.2. Synthetic Benchmarks

6.2.1. Simple Synthetic Example
The “simple” example contains of 6 modules, 5 of which
have mappings onto 3 possible ARM processing units and 1
which has a mapping onto a Tigersharc target. No
dependencies are set between the modules.

Optimizer Best Result In Round Time
GA 386.47 1 14.3
ACO 386.47 2 0.7
Best: 386.47 1 0.7

As can be seen, the GA is at a disadvantage in this case as it
has to run the scheduler for each chromosome being
evaluated, a lengthy process where a large number of
possible schedules need to be evaluated.
 The ACO converges on a good solution very quickly
due to the good match of the ACO heuristic to the problem
space.

6.2.2. Complex Synthetic Example
The “complex” example is the same as the “simple”
example but it has dependencies between the different
modules.

Optimizer Best Result In Round Time
GA 469.35 11 8.9
ACO 469.35 6 1.7
Best: 469.35 6 1.7

In this case the GA is better able to explore the complete
problem space and is able to come up with a solution in less
time than for the previous example. It is also much faster
than on the simple example as far fewer different schedules
need to be evaluated for each chromosome.
 The ACO still finds a good solution though more
slowly than on the simple example. It is still faster than the
GA as it performs scheduling as part of the optimization.

6.2.3. Variable Synthetic Example

A synthetic example with a variable number of modules that
need to be scheduled was created to compare the scalability
of the ant colony versus genetic algorithm optimization
algorithms. Figure 6 shows the results from this experiment:

Figure 6: Scalability comparison

The execution time for the genetic algorithm version of the
partitioner takes exponential time to calculate a partitioning
and it was prohibitively expensive to run it for more than 9
modules (this is as a result of the exhaustive search
scheduler used in the genetic algorithm version of the
Partitioner).
 The ant colony optimization version of the partitioning
algorithm executed in nearly linear time and should scale to
very large problem sets. Both algorithms produced identical
results for each problem tested in this example.

6.3. Conclusions

The ACO algorithm provides equally good results as the
GA in a much more scalable fashion; however it is more
sensitive to bad choices in the Partitioner parameters.

7. REFERENCES

[1] E2R II, Deliverable 4.1
[2] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System:

Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics, 26:29--41,
1996.

3 4 5 6 7 8 9 10 11 12
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Execution Times

ACO
GA

number of modules
se

co
nd

s

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

