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ABSTRACT 

This paper presents an innovative and generic approach to 
developing cognitive radios (CR) based on the radio 
environment map (REM). REM is envisioned as an 
integrated database consisting of multi-domain information, 
which supports global cross-layer optimization by enabling 
CR to “look” through various layers. The REM, as a vehicle 
of network support to CR, can be exploited by the cognitive 
radio engine (CE) for various cognitive functionalities such 
as situation awareness, reasoning, learning, planning and 
decision support. This paper presents the system flow and 
framework of REM-enabled situation-aware learning 
algorithms. Simulations demonstrate the effectiveness and 
efficiency of REM-enabled CR learning algorithms. 
Furthermore, by sharing information about the radio 
environment through REM dissemination, the hidden node 
problem can be mitigated and the secondary users can co-
exist with primary users (PUs) with minimal harmful 
interference. Link level and network level simulations are 
conducted with MATLAB and NS-2, respectively.  

1. INTRODUCTION 

In recent years, cognitive radios have been introduced as a 
new paradigm for enabling much higher spectrum 
utilization, providing more reliable radio services, reducing 
harmful interference, and facilitating the interoperability of 
different wireless networks [1][2]. CRs can be 
autonomously aware of situations and the radio 
environment, learn from experience, and adapt by 
responding to dynamic operational conditions. However, 
there are many research issues yet to be addressed, such as 
how a CR can obtain comprehensive situational and 
environmental awareness. To provide CR networks with up-
to-date global radio environment information, we propose 
the radio environment map as an abstraction from real-
world radio scenarios and as a vehicle of network support 
[2]. Ideally, REM can offer multi-domain environmental 
information, such as geographical features, available 
services, spectral regulations, locations and activities of 
radios, relevant policies, and experiences. To keep REM 
information current, updates to the REM database should be 

made with observations from distributed CR nodes and then 
disseminated throughout the CR network [2][3]. The REM 
can also be viewed as an extension to the available resource 
map (ARM), which has been proposed as a real-time map of 
all radio activities in the network for cognitive radio 
applications in unlicensed wide area networks (UWANs) 
[4][5].  

Several specific algorithms have been proposed for 
CRs in recent literature. For example, artificial neural 
networks and genetic algorithms have been investigated 
through CR test-beds under certain controlled radio 
environment [6][7]. In [8], Clancy et al. formalized the 
applications of machine-learning algorithms to CR and 
developed a framework. However, to the best of the 
authors’ knowledge, little literature exists which addresses 
the efficiency of learning algorithms for CEs with 
appropriate performance metrics. Our recent research shows 
that a robust CE relies on leveraging various artificial 
intelligence techniques rather than a single one [9]. 
However, how to leverage various learning algorithms 
under different radio scenarios is an open research issue. 
This is the general motivation of this work. This paper 
explores the potential of REM information on cognitive 
radio situations and proposes a framework of REM-enabled 
situation-aware learning algorithms. The ultimate goal for 
the CE envisioned in this work is to quickly determine when 
to apply which specific learning algorithm with the help of 
REM-enabled case-based reasoning/learning, and make 
prompt responses to changing environment with short 
adaptation time.  

This paper has three main contributions.  First, we 
propose a novel and generic top-down approach for CRs to 
obtain situation awareness by exploiting the REM.  
Secondly, we propose a general framework for CR learning 
algorithms that incorporates both high- and low-level 
learning loops. Third, by conducting link level and network 
level simulations, we evaluate the efficiency and 
effectiveness of the proposed REM-enabled learning 
algorithms in terms of adaptation time, average received 
signal to interference and noise ratio (SINR), average 
throughput and average packet delay of incumbent primary 
users (PUs). 
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The remainder of this paper is organized as follows: 
Section II presents more detailed explanations on REM-
enabled situation awareness. Section III explains the 
framework and system flow of REM-enabled efficient 
cognitive learning algorithms and discusses how REM can 
help CRs make adaptations more efficiently. Section IV 
presents the simulation results and demonstrates the 
efficiency and effectiveness of REM-enabled PU protection 
and cooperative learning, where CR node can learn from 
other nodes thereby mitigating interference to PUs. 

2. REM-ENABLED SITUATION AWARENESS 

The most important features of CRs are the capabilities of 
obtaining situation awareness, learning from experience and 
adapting to new scenarios, which differentiate CRs from 
software-defined radios (SDR) and adaptive radios. This 
section presents more structural details about REM and 
explains how CRs can exploit REM for situation awareness 
and efficient learning from a system point of view. 

Cognitive behavior, usually taking place in a rich and 
complex environment, is goal-oriented and a function of the 
dynamic environment [10]. Therefore, obtaining 
comprehensive radio environment information is imperative 
for CRs. The idea behind REM is digitizing and indexing 
radio environment information. The more clearly the radio 
environment is characterized and modeled, the better the CR 
can learn from experience and environment. Figure 1 shows 
how the REM, as an integrated database, can provide CRs 
with multi-domain radio environment information, such as 
geographical features, available services, spectral 
regulations, locations and activities of radios, relevant 
policies, and experiences. In addition, the REM can 
incorporate the policy layer, application layer, optimization 

layer, topology, and network layer information, all of which 
are important to CR networks. Table 1 illustrates the 
information domains of an example REM and the index to 
each REM information element. Enabled by advanced 
database technologies such as web-based database, REM 
can be accessed in a centralized or distributed way.   

Rather than observing the radio environment with blind 
and wide spectrum sensing, REM-enabled CR may choose 
to have a scalable view of radio environment with an 
application-specific observation range. For example, for 
indoor wireless access, REM information pertaining to only 
a few rooms could suffice; whereas for outdoor wireless ad-
hoc networks, a large-scale REM could be appropriate, 
providing more global information. To obtain situation 
awareness, not every CR needs to conduct sophisticated 
spectrum sensing so long as it maintains or has access to an 
up-to-date REM through the network support [2][3]. 

From a system standpoint, the REM enables a top-
down approach for a CR to obtain situation awareness in a 
very efficient way. For example, the REM can inform the 
CR what kind of radio networks could be in service at a 
certain location. Based upon the radio interface 
specifications stored in the REM database, the CR will 
know the possible frequency bands and modulation types 
used by PUs. The CR can even obtain some prior 
knowledge of PUs by analyzing the historical REM data 
and learning from experience. Therefore, CR can conduct 
PU detection with focused attention instead of spending 
excessive processing time performing complex spectrum 
sensing and signal classification algorithms. This top-down 
approach for PU detection and/or classification is more 
effective and efficient. Furthermore, REM has the potential 
to support global cross-layer optimization by enabling CRs 
to “look” through various layers: from policy layer, 
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Table 1: Digitizing and Indexing Radio Environment Information 

Domain and index 
range 

Syntax and index 

Application type  
=>  700-799 

Voice (701), packet data(702), video 
conference (703), etc  

Optimization layer 
=>  600-699 

Minimize interference to PU (600), 
maximize SU throughput (601), etc 

Topology and 
network type  
=>  500-599 

Infrastructure-based network 
{WCDMA(500), cdma2000 (501), 
WRAN (502), etc}; ad hoc network 
(510), mesh network (520), etc 

MAC and duplex 
=>  400-499 

TDMA (400), FDMA (401), CDMA 
(402), OFDMA (403); FDD (410), TDD 
(411), etc 

Geography and 
mobility 
information 
=>  300-399 

Indoor {home (300), office (301), airport 
(302), factory (303), etc}; outdoor 
{urban (310), suburban (311), open rural 
(312), highway (313), etc}; in-vehicle 
{train (320), bus (321), car (322), plane 
(323), etc}, etc 

Modulation type 
=> 200-299 

AM (200); FM (210); M-PSK {BPSK 
(220), QPSK(221), etc}; M-QAM {16-
QAM (230), 64 QAM (231), etc}; etc 

Radio device 
capability 
=>  100-199 

Channel coding {Convolutional coding 
(100), Turbo Coding (110), etc}; 
maximum RF transmit power (120), 
sensitivity (130), operational bands 
(140); antenna type (150), etc 

Experience 
=>  0-99 

Blind zone (10), hot spot (20), hidden 
node (30), etc 

application layer, optimization layer, topology layer, down 
to the network, MAC, and PHY layers [11][12]. 

3. SYSTEM FLOW AND FRAMEWORK OF REM-
ENABLED LEARNING ALGORITHMS 

This section discusses the system flow and framework of 
the proposed REM-enabled situation-aware learning 
algorithms, as shown in Figure 2.  

Triggered by certain service request from CR devices 
(such as a video conference call), the CR first obtains 
situation awareness by querying the REM and determines 
the optimal spectrum and network to use. For example, 
REM information might show that the CR is in the service 
area of a wireless regional area network (WRAN) and that 
TV channel 9 is available. The CR then senses TV channel 
9 and adjacent channels to verify the information provided 
by the REM database. If it is confirmed that TV Channel 9 
is suitable to use, the WRAN system then determines the 
utility functions that fit the current situation of the CR user: 
service type and QoS requirements, e.g., data rate, latency, 
bit error rate, power consumption, etc. Such a radio scenario 
can be defined by {703, 600, 502, 403, 411, 312, 231, etc} 
according to Table 1. It should be noted that different 

services might require disparate performance metrics and 
utility functions for optimization. Based on previous 
experiences, the WRAN CE may leverage various machine 
learning algorithms (such as artificial neural networks and 
genetic algorithms) or heuristic algorithms to fine-tune its 
parameter set, optimizing its performance according to link 
feedback information. With the help of REM, prompt 
adaptation and/or scheduling can be made based on 
spectrum usage models and predictions. 

Figure 2 indicates that the proposed framework for CR 
learning algorithms includes both a high-level and a low-
level learning loop. The high-level loop is based on case-
based learning/reasoning which leverages various learning 
algorithms and selects the most appropriate learning method 
for the current radio scenario.  The low-level loop optimizes 
the corresponding parameters used in the specific learning 
algorithm. Under a given radio scenario, a CR first chooses 
the most effective high-level learning method to use (e.g., 
cooperative learning or heuristic learning) with case-based 
reasoning, then it starts the low-level learning. For each new 
case, e.g., a new radio scenario that has not been previously 
experienced, the CR may take a “trial and error” approach 
and memorize its experience into case memory and REM (if 
the experience is associated with certain location) for future 
reference. In this way, the CR will be able to learn from 
both its own and global network experience.  

With case-based learning, a CR can accumulate its 
learning experience continuously to increase its knowledge. 
The adaptation time shortens as the CR gains experiences 
through various radio scenarios. Furthermore, the CR will 
adopt a better starting point and further reduce the solution 
space over which it must search. Case-based learning 
performs very well in dynamically changing environments 
and is well suited for implementation with the REM [9]. By 
indexing REM information, radio scenarios can be 
characterized clearly and retrieved efficiently for case-based 
learning, not unlike indexing a dictionary. Further details 
regarding REM-enabled case-based learning will be 
explained in another paper [13].  

Similar to the proverb, “history is the world’s finest 
teacher,” historical system-level REM information is 
valuable to CRs. For example, prior knowledge about the 
radio environment, such as spatiotemporal statistics of the 
PUs, can help a CR to improve the PU detection rate by 
adjusting the detection threshold [14]. Furthermore, a CR 
can derive the periodicity or model of PUs traffic based on 
REM information and specifications of wireless network 
standards, and then opportunistically access the spectrum 
with fewer collisions by exploiting the inherent periodicity 
of widely employed TDMA or CSMA systems [15]. Some 
“slow” learning algorithms (such as data mining) can be 
employed offline as long-term learning.   
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Figure 2: System flow and frame work of REM-enabled situation-aware learning algorithms

4. SIMULATION AND ANALYSIS  

In this section, we demonstrate the impact of REM-enabled 
situation awareness on channel quality and network 
performance with both link-level and network-level 
simulations.  In all simulations, a number of secondary users 
(SUs) attempt to share the spectrum with some stationary 
incumbent PUs in an open area of 1000 meters by 1000 
meters. The convergence time of the network is evaluated as 
the mobile SUs adapt to share spectrum with PUs. 

4.1. Impact of REM information on stationary SU 
network adaptation time 

The impact of minimizing stationary SUs’ interference to 
PUs is investigated in this section. A densely populated area 
containing 20 PUs (40 links) and 30 SUs (60 links) is 
presented in Figure 3. All users are stationary, and occupy a 
single frequency channel and time slot.  Multiple users 
located in the same radio resource set (frequency channel, 
time slot) cause interference to each other, but separate sets 
are orthogonal.  In all simulations, all PU links are located 
on orthogonal sets, and therefore do not cause one another 
interference.  However, there are not enough orthogonal 
sets for all links, thus many channels and time slots must be 
shared by SUs.  PUs have static channels, but SUs may 
change their parameters at the risk of causing interference to 
both primary and other secondary users. For the simulation, 
each SU makes one of four simple (heuristic) adaptations: 

increase power, decrease power, change frequency channel 
or time slot, or make no change. 

In the first case, information about the radio 
environment is not known, and the SUs must make their 
adaptations based upon their links’ received SINRs and the 
measured interference levels.  In the second case, the SUs 
have additional information about all links, including the 
transmitter and receiver locations and the channel/time slot 
they currently occupy.  Each radio, however, still acts 
independently of others, and therefore a global network 
optimum is not guaranteed in either case. 

PU links were initially established to have a received 
power 10 dB above the noise floor, taking into account 
antenna gains and propagation losses.  Note in Figure 4 that 
with global REM information, the SUs cause minimal 
interference to PUs (a SINR degradation of only 0.2 dB).  
Without REM, however, this degradation extends to nearly 
2.5 dB on average, and in some cases more than 20 dB.  
Furthermore, the average SINR of SUs increases with REM 
knowledge, a full 1.2 dB than without REM (see Figure 4).  
This suggests that the SUs with REM information can 
simultaneously maintain PU link quality as well as their 
own.  Additionally, as areas become more congested, these 
differences increase. 

4.2. Impact of REM information on PU performance in 
the presence of mobile SUs 
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Figure 3: Simulation scenario (I)  

 

 

 

 

 

 

 

Figure 4: Average PU and SU SINR vs. SU adaptation time  

In this subsection, all SUs are moving randomly within the 
simulation area. The simulation parameters are listed in 
Table 2. REM-enabled cognitive SUs adopt an adaptive 
transmission scheme: if the SU detects a PU is transmitting 
or falls within its interference range, it will suspend 
transmission. Figure 5 shows the average SINR 
improvement at the central PU node (node O in Figure 6) in 
the presence of 50 SUs. The SUs are moving randomly in 
the simulation area. When these SUs make adaptations with 
the help of the global REM or local REMs, the average 
SINR at the central PU receiver is increased by 24.3 dB and 
14 dB, respectively. The results also indicate the benefits of 
hidden PU protection due to cooperative learning, which is 
enabled by disseminating local REMs among SU nodes [3]. 
Each SU node can obtain a global REM by integrating local 
REMs from distributed SU nodes.  

The UM-OLSR protocol [16] and the NS-2 network 
simulator (version 2.29) [17] were used for network-level 
simulation on PUs’ performance in the presence of SUs.  

Table 2: Simulation parameters  

Parameter  Value 
Transmission range of 
radio node (PU or SU) 

450 meters 

Sensing range of SU 450 meters 
Interference range of SU 450 meters 
Speed of SUs  Uniformly distributed in (0, 10m/s) 
Data rate of wireless link 2 Mbps 
Interface queue length 50 packets 
Radio channel model two-ray ground model 
Simulation period 200 seconds 

Both PU and SU nodes comply with IEEE 802.11 MAC. 
The simulation parameters are also listed in Table 2. 
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Figure 5: Simulated received SINR improvement at a PU node 

when using REM-enabled CRs as SUs 

In the NS-2 simulations, two constant bit rate (CBR) 
connections are established between PU nodes A and D, and 
nodes B and C, respectively (see Figure 6), and the PUs’ 
CBR traffic has fixed periodic pattern. Cognitive SUs can 
model PUs’ spectrum usage pattern after an observation 
period and then transmit during the idle time to avoid 
collisions. Note that a coordinated quiet period for all SUs 
is required to detect PUs’ spectrum usage pattern. Figure 7 
shows the average delay of data flow between PUs under 
various scenarios. It is shown that REM-enabled CR SUs 
introduce little latency increase, whereas non-CR SUs may 
result in significant delay to PUs’ packet deliveries due to 
frequent collisions. Note: in Figure 7, the 1st data flow is 
from node A to node D while the 2nd data flow is from node 
B to node C. For scenario #1, #2, #3, #4, PUs co-exist with 
10, 20, 30, and 30 SUs, respectively. In scenario #3, SUs 
generate one 512-byte CBR packet per second, whereas in 
scenario #4, SUs generate 10 times higher CBR traffic (one 
5120-byte CBR packet per second). Simulations show that 
the PUs have nearly the same throughput for these four 
scenarios. Therefore, for packet data communication 
networks, the packet delay of incumbent PUs is a more 
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Figure 6: Simulation scenario (II) 
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Figure 7: Simulated average packet delay of PUs  

under various scenarios  

sensitive indicator of harmful interference from SUs. 

5. SUMMARY 

This paper introduces a new approach to developing CR 
based on REM. Ideally, REM can provide CRs global radio 
environment information. The system flow and framework 
of REM-enabled situation-aware learning algorithms have 
been discussed. Global situation awareness and 
coordination help CRs to make desired adaptations beyond 
single node’s capability. Both link-level and network-level 
simulation results demonstrate that global REM information 
can significantly improve the performance of both primary 
and secondary users, reduce CR network adaptation time, 
and mitigate the hidden node problem.  
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