
TAKING THE SCA TO NEW FRONTIERS

Steve Bernier (CRC, Ottawa, Ontario, Canada; steve.bernier@crc.ca)
Claude Bélisle (CRC, Ottawa, Ontario, Canada; claude.belisle@crc.ca)

Communications Research Centre Canada (CRC)
3701 Carling Ave., PO Box 11490, Station H

Ottawa ON K2H 8S2
Government of Canada

ABSTRACT
The Software Communications Architecture (SCA) has
been developed by the US Department of Defence in the
late 1990’s to respond to an urgent requirement to
standardize the development of their radio equipment. The
SCA has now been adopted throughout the world by
military organizations as the foundation for their radio
development.

The SCA however is not, and should not be considered, a
military specific architecture. The SCA, and the now
available associated development tools, truly form a
component-based development architecture, so popular for
Business-to-Business applications.

There are however still some reluctance in using the SCA
outside the military market. In this paper, we first explain
how the SCA can be seen as a CBD framework and how it
differs from other popular CBD frameworks. We then
cover the Myths and Realities of the SCA and demonstrate
that the SCA is well suite for not only public safety and
commercial radio systems but has applicability in almost
any embedded systems, from space to avionics, automobile,
radar, test equipment and other electronic devices. We
conclude with a few leads as to how the SCA should evolve.

1. INTRODUCTION
As defined by the creators of the specification, the SCA is
more or less a framework that standardizes the development
of signal processing platforms and applications to simplify
their integration. The original goal was to provide the US
DoD with radio sets for which:

− applications could be easily ported from one platform to
another to enhance communications interoperability;

− commercial-off-the-shelf (COTS) technology could be
easily integrated, to reduce development and maintenance
cost, and;

− the relation between the hardware platforms and the
software applications could be abstracted, to simplify the
integration and testing phases.

Rather than creating yet another framework from a white
sheet, the SCA has been built by assembling commercially
available software standards. namely:
− POSIX (Portable Operating System Interfaces) offers

code portability
− CORBA abstracts inter-process communications
− CCM (CORBA Component Model) provides a

development life cycle structure
− X.731 ITU/CCITT OSI provides device state

Management

The concept behind the SCA is one of development by
components, software and hardware, with a key emphasis
on a set of rules and behaviour to facilitate the integration of
these components together.

This approach is the foundation of Component-Based
Development (CBD).

2. CBD FOR EMBEDDED SYSTEMS
CBD is a programming trend that started some ten years ago
and has reached an unprecedented level over the past three
years, with the most popular CBD environment being
Microsoft .Net and Sun Microsystems Enterprise Java
Beans (EJB). However, unlike .Net and EJB, which require
specific operating infrastructures (.Net mandates the use of
Microsoft operating systems –Windows or Vista - and EJB
requires a Java virtual machine) the SCA was designed to
be a framework suitable for heterogeneous systems. The
SCA is a platform-independent framework, supporting
multiple operating systems, in their native form; multiple
processor families; and a wide range of external devices.

While the SCA was developed to address the specific needs
of the US DoD communications infrastructure, it has all the
characteristics to be an architecture of choice for many other
embedded system applications, from space, to avionics,
automobile, medical, personal devices and other electronics
systems.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

The SCA standardizes two main categories of components,
those forming an application, and those forming the
hardware platform. It also defines a set APIs to support
deployment related functionalities and for making
components “composable” which is at the heart of CBD. It
does not specify any domain specific API, such as one for
an RF synthesizer or an antenna positioning gimbal.

It is these domain specific APIs that define the domain and
the type of applications that can be deployed as shown in
the Figure 1.

Figure 1. SCA Vertical Markets

One of the early issues with the SCA for embedded system
was the requirement to use proprietary code to handle
communications with specialized hardware devices (DSP,
FPGA). HAL-C was produced but quickly became
superfluous. With CORBA now available for DSP and
FPGA, we can communicate directly to these devices and
use them in similar fashion as for GPP.

An industry has now been formed around the SCA with
commercial off the shelf products for the core framework
itself but also for development tools allowing companies to
speed up their development times. It is also possible now to
purchase complete signal processing platforms enabled with
the SCA.

As much as the SCA was a paradigm shift in the
development of military radio, as much as the SCA can
become a paradigm shift in the CBD world.

3. SCA MYTHS AND REALITIES

As discussed in the previous section, the SCA has all the
attributes required for a development and deployment
framework for any embedded system. It supports multiple

operating systems and with the use of CORBA, it is truly
agnostic of the hardware platform. However, there is still
some reluctance to use it for non-military applications.

In this section, some of the most commonly heard
complaints about the SCA and its usage will be discussed
and shown to be simply myths.

3.1 Myth #1: The SCA is Slow to Boot
According to rumors, some SCA radios take up to up to 15
minutes to boot. It is agreed that software defined radios
will, in most cases, take longer to become operational than
hardware-only radios. The question here is: Is this due to
the SCA or simply to the fact that software must be loaded?
In order to get a better understanding of the boot time issue,
this section describes the different steps required to
complete the boot sequence.

a. First, upon power up, an SCA POSIX AEP [1] compliant

operating system and its services (e.g. file system) must
be started. This step requires copying the binary image of
an OS kernel from permanent storage memory to the
processor run-time memory and launching the kernel.
Depending on the speed of the physical memory and the
bus connecting it to the processor, this step can be very
fast; especially with a real-time operating system (RTOS).

b. Once the operating system is started, the software

components forming the SCA platform are launched.
First, a CORBA naming service must be started. Second,
a DomainManager and potentially several
DeviceManagers are launched. Then, each
DeviceManager launches a number of Device software
components. As far as the OS is concerned, all that work
amounts to launching a number of tasks. Here again, the
speed of memory, bus, and processor can make a big
difference. And of course, it also helps to use a very fast
OS.

 During the SCA platform boot up, both the

DomainManager and the DeviceManager will parse a
number of XML files. Generally speaking, parsing an
XML file can be slow and require a large amount of
runtime memory. But there are many ways to implement
those steps; some better than others. However, no matter
how it’s done, parsing XML files still requires file access
and that is something a CF vendor cannot easily optimize.
The choice of a file system type (say NFS) over another
(say RAM FS) can have a huge impact on performance.

Radar API
Supplement

Automotive
API

Supplement

JTRS
Waveform

Applications

SCA API
Supplement

SCA Core Framework

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

c. Last but not least, an application must be launched in
order to bring the radio in operational mode. During that
process, potentially several software components will be
launched and many XML files will be parsed. In other
words, the launch of an application is much the same as
booting the node components. Therefore, it can benefit
from the same solutions.

In summary, the speed at which an SCA radio can be booted
is affected by a number of things. The hardware can make
the difference; processor, buses and memory speed (storage,
run-time, etc.) can significantly contribute to booth time.
The speed of communications between SCA software
components can also affect the boot time of a radio; but that
is covered in the next section. Nevertheless, the boot time
myth is slowly being put to rest as SCA radios are being
deployed and are actually booting as fast as the legacy
radios they are replacing [2] [3].

3.2 Myth #2: SCA Applications are Slow
One of the longer lasting myths about the SCA is that it is
too slow because of CORBA. CORBA is the inter-process
communications (IPC) mechanism which allows SCA
components to interact and exchange information. Since
SCA components are developed separately as black boxes,
they must rely on an IPC mechanism to interact with each
other. The SCA mandates the use of CORBA as the IPC.
CORBA is actually a programming language and is
processor independent. CORBA is also scalable as it
provides a single model for communications between
components whether they are located in the same process or
across the network. In short, CORBA is great for
portability, which is the main goal of the SCA after all.

However, CORBA has the very bad reputation of being
slow. That reputation dates back to its early days when the
General Inter-Orb Protocol (GIOP) was only implemented
using TCP/IP (called Internet Inter-Orb Protocol – IIOP).
GIOP is the protocol by which different CORBA objects
interact. Fortunately, CORBA has come a long way since
then.

ORBs can now be used for real-time embedded systems.
COTS real-time ORBs provide a very fast implementation
of IIOP; nearly as fast as if TCP/IP was used directly [4].
However, TCP/IP being inherently too slow for most real-
time applications, it is also possible to use a different
pluggable transport [5] which outperforms IIOP (see figure
2). In some cases, switching from the TCP/IP transport to a
very fast transport can produce savings of one order of
magnitude [6]. Real-time ORB vendors typically support a
number of transports (UDP, multicast, shared memory).

Some even support RTOS specific transports and embedded
system interconnects like CompactPCI and VME [7].

Figure 2 – CORBA Communications

It is a myth that the SCA is slow because of CORBA. As
explained above, CORBA communications can be made as
fast as the native platform transport [7]. Unfortunately, most
CORBA developers are unaware of the concept of
pluggable transports which contributes to keeping this myth
alive.

3.3 Myth #3: The SCA is too fat
The SCA requires a POSIX AEP compliant operating
system which theoretically takes more space than not using
an operating system. The SCA also relies on CORBA which
requires a translation layer (source code for stubs and
skeletons) that, for the SCA, amounts to approximately
730kB of binary code using Objective Interface System
ORBexpress or 3.3 MB using TAO (obtained using default
configuration for respective IDL compilers). But more
importantly, the SCA relies on XML files which typically
require an XML parser. Such a parser is usually rather large
in memory footprint. Using the open-source Xerces-C++ [8]
XML parser to build an SCA core framework requires
approximately 2.6 MB of static footprint and typically 4
MB of dynamic footprint.

Footprint is dependent of the number of components in the
radio (platform and application). As an example, the ISR
IDP-100 [9] runs simultaneously a Voice-over-IP and a
streaming video application with approximately 51 MB of
memory. That footprint also includes all the software of the
operating environment, namely: the SCARI++ core
framework (CRC), the platform SCA devices (ISR),
ORBexpress and naming service (OIS), and INTEGRITY
with file system and POSIX support (Green Hills Software).

Those memory requirements may seem large for small form
factor platforms. CF implementers are improving and

stub
Client

skel
Server

ORB

GIOP
Pluggable Transport
(e.g. GIOPoverVME)

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

constantly making their product smaller and faster.
However, it will always remain that implementing a
waveform with software instead of hardware requires more
memory. The memory requirements of a SDR can not be
compared to the requirements of a radio which merely use
software for implementing basic control functions. For the
same reasons, the flexibility of a SDR cannot be compared
to traditional radios. The cost of flexibility is memory; more
than before but not a whole lot.

4. THE FUTURE OF THE SCA

The future core frameworks will be smaller and faster;
that’s no secret. But what’s not so obvious is that there are
two approaches for achieving those goals. Most of the
research has been focused on optimizing the tasks to be
executed for maximum speed or minimum footprint.
Another approach consists in eliminating some tasks
normally required for the deployment of components. This
second technique will be referred to as static deployment.
The remainder of this section describes both approaches.

4.1 Tasks Optimization
The tasks optimization approach is relatively straight
forward. First, the sequence of tasks performed during the
deployment phase of the components are identified. Then
each one of these tasks can be optimized. Optimizations
need to maintain compliancy with the SCA requirements. A
core framework typically has to perform several tasks to
deploy any component so there is plenty to choose from for
optimization.

Charles Linn [10] identified a number of different tasks that
can be optimized for small platforms. Some optimizations
actually require additional APIs to the SCA standard ones.
For instance, speeding up file system access actually
requires an extended API (to the SCA File interface) to get
access to a native file name. However, eliminating the use
of a DOM XML parser is an implementation level
optimization which does not require API changes. Most
tasks optimizations are relatively easy to implement and
generally don’t pose a certification problem.

4.2 Static Deployment Optimization
In the second approach, static deployment, the goal is to
eliminate as many tasks as possible. A CF can achieve this
by saving deployment context information and reusing it.
Linn [10] describes one static deployment optimization. He
explains how the resolved property values for components
could be saved for future use. Each time a component is
deployed, a core framework must determine the initial value
to use for configuring each property. This is done using the
SCA rules of precedence for property value overloading. If
the resolved values were saved by the core framework, there

would be no need to compute the second time a component
is deployed. In other words, the property resolving task
could be skipped.

Basically, any decision made by a core framework could be
saved and used the next time it is required. For instance,
when an application is used for the second time, a core
framework could avoid redeploying it if the target devices
used in the previous deployment support a caching feature.
Avoiding the copy of component artifacts saves a
significant amount of time especially when memory access
is slow. Of course, there are cases where a core framework
can’t simply restart a previously deployed component. For
instance, when a device’s cache has been cleared or when a
device doesn’t support caching. In those cases, the core
framework defaults back to deploying the components as
usual.

Another example of a static deployment optimization is the
transformation of indirect connections into direct
connections. As explained in [11], a connection is indirect if
at least one of the components involved in the connection
(source or destination) is identified using run-time
information. A direct connection is one where both
components involved in the connection are identified by
name or identifier. The current SCA supports three types of
indirect identification mechanisms [12]: domainfinder,
devicethatloadedthiscomponentref, and
deviceusedbythiscomponentref. All three mechanisms
require that a core framework gather deployment
information which can then be used in lookup tables to
identify a component. Core frameworks could save the
result of the identification process and thus perform direct
connections the next time the application is deployed.

Ultimately, a core framework could remember every
decision it makes to deploy applications. This would allow
applications to be redeployed skipping all the tasks except
the actual instantiation of components, their configuration
and their inter-connections. Static deployment doesn’t
require any special API from the components being
deployed. SCA applications don’t need to be modified to be
deployed statically. Another important benefit of full static
deployment is determinism. Redeploying an application is
predictable. Those properties are very important for safety-
critical embedded systems such as those used in aircrafts.

Static deployment optimizations may seem like they could
lead to certification issues more easily than tasks
optimizations. But a core framework typically does not skip
any deployment tasks the first time an application is
deployed. Thus, for a first deployment, there is no
difference in behavior between a new generation core

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

framework and a legacy one. Consequently, there should be
no certification problems.

As discussed, both optimizations approaches can provide
significant improvements. Clearly, new generation core
frameworks will provide a combination of static deployment
and tasks optimizations. In fact, the latest version of the
SCARI++ core framework [13] already provides some
optimizations of both kinds.

5. CONCLUSION
The SCA is a component-based development environment
with all the characteristics to be used well beyond military
radio equipment. Its domain and platform agnostic design
makes it a perfect candidate for any embedded systems,
from military and public safety radios to space, avionics,
automobile and other commercial systems. Unlike other
component-based development frameworks, it is not
restricted to a specific operating environment. Since the
SCA is mainly a framework for the deployment and
configuration of applications, its impact on the signal
processing performance is minimal. In fact one can say that
it improves the performance as it allows the developer to
choose the best processors and inter-process
communications protocol.

Being an open specification, its evolution can be community
driven, ensuring a rapid response to the market
requirements. The SCA specification has lead to the
creation of an ecosystem of SCA products and services.
This allows SCA radio and application developers to be
more productive since they can concentrate on their
business logic. The SCA is slowly proving that it is a truly
versatile component-based development environment for
embedded systems.

6. REFERENCES

[1] JPEO/JTRS, SCA Application Environment Profile,

SCA Specification Appendix B, April 2006.
[2] Press Release, Thales JTRS Radio Achieves

Government Certifications – First in Industry, January
2006.

[3] Mark Truner, “Harris SDR Solutions – Scalable,
Reusable, and Secure”, International Software Radio,
London, UK, June, 2004.

[4] C. Hrustich, “CORBA for Real-Time, High
Performance and Embedded Systems”, Fourth
International Symposium on Object-Oriented Real-
Time Distributed Computing, isorc, p. 345, 2001.

[5] D.C. Schmidt, C. O’Ryan, O. Othman, F. Kuhns, J.
Parsons, “Applying Patterns to Develop a Pluggable
Protocols Framework for ORB Middleware”, Design

Patterns in Communications, Cambridge University
Press, 2001.

[6] J. Belzile, “Putting it all together – Objectives and
Challenges”, SDRF’05 Technical Conference, 2005.

[7] G. Middioni, “CORBA over VMEbus Transport for
Software Defined Radios”, www.motorola.com, 2005.

[8] Xerces C++ Parser, http://xml.apache.org/xerces-c/
[9] ISR IDP100 Development Kit, http://www.isr-

t.com/products_idp.htm
[10] C. Linn, “Designing Jtrs Core Frameworks For

Battery-Powered Platforms: 10 Techniques For
Success”, SDRF’04 Technical Conference, 2004

[11] F. Lévesque, C. Auger, S. Bernier, H. Latour, “Jtrs
Sca: Connecting Software Components”, SDRF’03
Technical Conference, 2003.

[12] JPEO/JTRS, Domain Profile, SCA Specification,
Appendix D, April 2006.

[13] SCARI++, http://www.crc.ca/rars.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

