

MAKING FPGAs “FIRST CLASS” SCA CITIZENS

Fred Humcke (Hardware Director SDR Products, PrismTech Corp., Burlington, Mass.;

fh@prismtech.com)

ABSTRACT

In recent years, Software Defined Radio (SDR) developers

using the Software Communications Architecture (SCA)

have been making a steady march towards the antenna of the

software defined radio. The next obstacle for the SCA to

cross lies in the interface between embedded processors and

FPGAs. Previous attempts to solve this problem have

resulted in awkward and non SCA-compliant Hardware

Abstraction Layers (HALs) that have only added latency,

decreased portability and lowered reuse of the SDR

processing elements residing in the FPGAs. The result is

that FPGAs are “second class” citizens who do not

contribute to the cost lowering business model of the SCA.

 This paper will discuss an Integrated Circuit Orb (ICO)

that supports a drop-in SCA compatible interface between

distributed software objects running on processors and

waveform objects residing in silicon. Using techniques

discussed in this paper, the connection between Software

and Hardware clients and servant is made seamless, fast and

uses fewer system resources. It will be shown that waveform

designers can use ICO to make their FPGA designs first

class SCA citizens without the time consuming task of

becoming experts in the minutia of the SCA specification.

1. INTRODUCTION

 In the years since it was first defined, the SCA has made

steady progress towards producing true software defined

radios and realizing the financial benefits of portable radio

design. The goal is to push the SCA as close to the antenna

as possible to reap the maximum benefits of the business

model. Yet, the pace of acceptance within the industry has

been slowed by certain perceptions about the SCA and

CORBA that may no longer be valid. These perceptions

include:

• The SCA operating environment is large and takes

up valuable system resources such as memory.

• The SCA/CORBA is low performance because the

TCP/IP stack adds too much overhead for simple

data transfer.

• The SCA is complex and difficult (expensive) to

learn and utilize.

• There is no SCA solution for communicating with

waveform components implemented on silicon

devices such as FPGAs and ASICs.

 From a historical perspective, these issues are similar to

those faced in the transition from low level programming

languages such as assembly to higher level programming

languages such as C. There was much resistance to C at first

because assembly code is faster and takes less memory

space than C and the early C compilers and emulators had

many problems associated with them. The historical

experience with C shows that there are two items necessary

to make a transition to a new level of design abstraction. The

first and most important item is the business case. In a

competitive market, companies will strive to implement a

new paradigm if there are financial rewards associated with

it. The business case is called the driver and in the example

of C, the driver was cost savings through portability.

Assembly might be faster and smaller than C code, but it has

to be rewritten every time it needs to run on a new processor

while C code is written once and can be quickly ported to

various platforms. While the business case drives the

industry to work towards a paradigm shift, the new level of

abstraction still cannot be accepted until technological

breakthroughs enable its practical use. Thus, the second item

that is required for abstraction acceptance is the technical

enabler. In the case of C the enablers were technical

breakthroughs in both hardware and software and included

such items as

• increases in processor performance,

• increases in memory size and density,

• smaller software footprint,

• more efficient software processing tools

(compilers),

• system elements that were bundled together in a

single package with no need to make elements from

different vendors work together (operating systems

to handle low level hardware interface),

• high level tools to remove complexity from user

(emulation and debugging environments).

 The combined effect of these enablers allowed C to

achieve wide industry acceptance and be used in many

applications. Thus, acceptance occurs when the overhead of

a high level abstraction no longer has significant impact on

system performance. Assembly is still used today in

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

applications that have strict performance requirements;

however, it is known that this comes at the cost of portability

in a changing design.

 Turning now to the current state of the SCA and

CORBA, we see the recent development of similar types of

enablers for this field. Advances in performance, size and

density continue to be made for processors, memory and

FPGAs. The size of CORBA and SCA implementations has

shrunk dramatically in recent years. Products such as

PrismTech’s E*ORB require less than 80KB of memory

compared to 1MB for the equivalent TAO ORB. Indeed,

PrismTech’s entire Spectra OE middleware for GPP takes

less than 1MB. These ultra compact CORBA/SCA

implementations are now available and running on

embedded GPPs and DSPs residing on radio processing

platforms once thought too limited in memory and

processing power to contain them.

 Another breakthrough has been in the area of domain

specific modeling and automatic code generation. Just as

better C compilers and operating systems obviated the need

for the software designer to be involved in the time

consuming minutia of the underlying hardware, PrismTech’s

Spectra tool suite allows the SDR developer to step back

from the complexities of the SCA and work at a higher level.

The developer may now work at the graphical level to

describe an SDR system and then have the Spectra tool

generate the required SCA source code.

 The Spectra Modeling tools are Eclipse plug-ins that

enable the graphical modeling of both applications and

platforms at a high level of abstraction. Spectra Modeling

Tools help application developers to efficiently model

platform-independent, portable applications and “map”

those application models to different platforms. These tools

also support optional plug-ins for complementary 3rd party

tools used in the development lifecycle – thus supporting

complete domain specific tool-chain integration.

 PrismTech’s automatic code generators for various

programming languages provide extremely efficient

generation of source code and unit tests from the waveform

models. Efficiency gains of up to 50 x (several months to a

single day or less) have been experienced. Furthermore, they

inherently ensure standards-compliance in the source code.

 The Unit Test Framwork offered by PrismTech supports

‘in-cycle’ unit testing of generated source code; if necessary,

well in advance of platform availability. This strategy allows

defects to be corrected during design verification instead of

during run-time test integration which results in huge

productivity gains.

 A truly disruptive technology breakthrough has been

achieved in PrismTech’s Integrated Circuit ORB (ICO). The

ICO brings CORBA communications directly onto hardware

platforms such as FPGAs and ASICS. It accelerates the

marshaling and unmarshaling of CORBA messages at 100 x

the speeds of software ORBs. When used in SCA

applications, ICO eliminates the need for Hardware

Abstraction Layers (HALs) that have only added latency,

decreased portability and lowered reuse of the SDR

processing elements residing in the FPGAs. Waveform

objects may now be moved from software implementations

on the GPP/DSP to hardware blocks on the FPGA and back

again with no changes needed in the high level

communication protocol. The ICO is completely based on

open standards so there are no issues with proprietary

protocols or interfaces. PrismTech is working with the SDR

community on VDHL language bindings for the hardware

ORB and plans to have them standardized by the OMG.

 The sum total of all the enablers discussed above brings

CORBA and the SCA to the edge of a new era of

development and worldwide acceptance. These

breakthroughs have revitalized CORBA and made it the

equal if not the better of any middleware solution on the

market today. The SCA has now become as easy to work

with as C and other high level programming languages.

PrismTech strongly believes that the continuing advances in

processor performance, memory density, software

efficiency, support tools and hardware ORBs will enable the

SCA’s business model to propel SDR forward into

widespread use in all military and commercial markets in the

near future.

2. HISTORICAL PROBLEMS IN USING HARDWARE

WAVEFORM COMPONENTS WITH THE SCA

In the past, two methods have been used to establish

communications between SCA waveform objects residing on

a GPP/DSP and waveform objects implemented in FPGAs.

The first method makes use of the hardware abstraction

layer. An example of this is shown in Figure 1 below.

Figure 1.

 With this method, a proxy on the GPP/DSP stands in for

the hardware waveform component. When a software object

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

makes a call on a function implemented in hardware, the

proxy is activated and passes data to the local transport via a

driver. The data is transferred over the local transport, such

as a system bus, to a transport interface on the FPGA side.

The transport interface performs address decode and passes

the data to the desired waveform object. There are several

problems with this method. One problem is that the proxy is

awkward to implement and is not portable because it must

contain low level address mapping information in order to

identify the destination waveform object correctly. In

addition, several layers of software may be needed to

implement the proxy/driver stack which introduces latency.

Finally, this solution is not SCA compliant because the

CORBA message ends at the proxy and there is no ORB on

the FGPA side.

 Other attempts have been made to bring the SCA into

the FPGA by running an ORB on a processor embedded

within the FPGA. This only allows CORBA

communications and SCA compliance with software objects

running on the embedded processor itself. However,

waveform objects implemented in the hardware of the FPGA

still require the HAL in order to communicate with the

embedded processor as shown in Figure 2.

Figure 2.

 Thus, all the problems associated with the HAL have

merely been moved from the external bus to the FPGA’s

internal bus and there is still no SCA compliance for the

waveform hardware objects. Additionally, FPGAs with

internal processors are expensive and the memory needed to

support the processor uses up valuable resources. At a

particular price point, an internal processor and associated

support memory take FPGA resources away from waveform

logic. The introduction of the embedded processor also

requires that software development and debug be done in the

FPGA environment.

 The problems discussed above conspire to make FPGAs

second class SCA citizens and slow the adoption of the SCA

for military and commercial applications. This shows the

need for a CORBA ORB implemented at the gate level

within the FPGA. The hardware ORB allows software

objects located on the external GPP/DSP to communicate

with the waveform objects on the FGPA without the need

for a proxy or embedded processor. The communication, as

far as the objects are concerned, takes place at a high level

of abstraction with no knowledge required of the local

transport or address mapping scheme. This concept is

illustrated in Figure 3. The result is seamless SCA

compliance across all objects in the waveform and the

elimination of layers of software that introduce design

complexity and performance latency to the system.

Figure 3.

3. DESCRIPTION OF THE INTEGRATED CIRCUIT

ORB

The Integrated Circuit ORB (ICO) is part of PrismTech’s

family of products for CORBA middleware applications.

Hardware elements of an enterprise system may now be

made CORBA compliant and reap the benefits of software

portability. In addition to supporting general purpose

CORBA communications, the ICO has also been tightly

integrated into PrismTech’s Spectra tool suite for Software

Defined Radio. This brings the portability of the SCA onto

silicon devices.

 ICO is a hardware implementation of a CORBA ORB.

It supports a general subset of CORBA functions that will

support the SCA architecture. While ICO may be used to

provide SCA compatibility, it is primarily a CORBA core

and may also be used in pure CORBA applications with no

SCA requirements. For SCA applications, additional

functionality may be added via PrismTech tools to

implement the SCA component. The ICO has been written

in portable VHDL that can be synthesized onto any FPGA

or ASIC platform.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 The ICO design environment consists of:

• The ICO core,

• IDL to VHDL compiler,

• Spectra Modeling Tool,

• The optional SCA waveform component.

The ICO core is responsible for implementing the transfer

syntax used in CORBA messages. The core unmarshals the

incoming GIOP octet stream and extracts header and data

fields while discarding padding. Endian conversion is

performed on all incoming data based on information in the

GIOP message header. In the incoming direction, the core

performs operation name demultiplexing to determine which

object the data in the GIOP message is being transferred to.

Message data is then extracted for transfer to the appropriate

logic.

 If a message indicates that a response is expected, the

ICO core generates a reply message. The core will perform

a read operation to an object, if necessary, to obtain data for

the reply. It then populates the header field and aligns the

data. When a reply message has been built, the ICO core

transfers the data to the local transport via a FIFO-like

interface.

 An optional feature may be added to ICO in order to

support SCA implementations. The Spectra tools will

instantiate and parameterize an SCA component that

performs functions such as registering with the naming

service, configure and query. It will also decode SCA

messages such as runTest, start, stop, initialize, release

object and pass these instructions on to the appropriate

waveform objects. Thus, seamless compatibility with the

SCA is achieved.

 The ICO can also be configured to support FPGA

waveform objects that act as clients. When the embedded

object makes a function call request, ICO will gather the

data from the object and then marshal a GIOP request

message and send it to the desired client via the local

transport. Any returning reply messages will be processed by

ICO and the data passed back to the client.

4. THE ICO DESIGN FLOW

4.1 Waveform IDL Description

In order to incorporate ICO into an FPGA design, the user

must first describe the memory elements of the waveform

component with the Interface Description Language (IDL).

Each accessible register and memory in the waveform

component is given an operation name and its I/O properties

are described in IDL. Registers can be accessed alone or in

groups depending on how they are described in the IDL. If it

is desired to write a register and read it back at a different

time, the register would require two operation names; one

for write and one for read. If it is desirable to write a register

and read the results immediately it could be described as a

single operation with an inout parameter. PrismTech

provides tools that can aide hardware engineers in writing

the IDL descriptions.

4.2 IDL to VHDL Compiler

The IDL description of the waveform component must then

be processed by the IDL to VHDL compiler to generate ICO

configuration files. The IDL to VHDL compiler is part of

PrismTech’s IDL compiler family. This software tool is

responsible for generating configuration parameters needed

by the ICO core to do operation name demultiplexing and

data routing to the appropriate waveform objects. The

compiler also adds parameters to VHDL package files that

configure the physical aspects of the ICO interface and

internal storage elements. Parts of the VHDL code for the

ICO are also generated at compile time by the code

generator. Each operation receives its own unique read and

or write strobe depending upon how it was described in the

IDL. The IDL to VHDL compiler produces a list of

operation names and the strobes assigned to them so that the

user can make the appropriate connections in the top level

VHDL code. PrismTech tools can automatically make these

connections for the user.

4.3 SCA Compatibility

To achieve SCA compatibility the designer must also pass

the IDL description of the waveform through PrismTech’s

Spectra Modeling Tool. In an SCA-compliant environment,

ICO communicates with the hardware developer’s native

waveform logic via an SCA waveform component. Spectra

instantiates and parameterizes the VHDL for this component

in the design. The tool then creates a VHDL wrapper around

the ICO and the SCA waveform component to present the

developer with a single core. The ICO is now ready to be

instantiated in the FPGA HDL. The process for waveform

component generation with the Spectra tool is illustrated in

figure 4.

 Additionally, a loadable device component will also

have to be developed for the SCA OE. For initial

implementations of ICO, the loadable device component

must reside on an external GPP/DSP that will be responsible

for loading an image into the FPGA at power up. It may be

possible to move the loadable device functionality into the

FPGA itself using partially reconfigurable devices as that

technology becomes more mature.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 4.

4.4 Adding ICO to the FPGA Design

The hardware developer treats the ICO as any other IP

interface core. In typical FPGA designs the ICO core resides

between the waveform logic and the local transport and

takes the place of the address decode block found in

conventional bus interface designs. The basic design process

of the FGPA is unchanged as it relates to waveform and

system bus performance considerations. Figure 5 shows how

ICO might be used in a typical application that

communicates with command and control logic in the

waveform object.

Figure 5.

 ICO may also be used in data paths between waveform

objects within FPGAs and between FPGAs themselves,

however, this is a system consideration and the performance

requirements must be taken into consideration. Just as in a

software system where assembly code might still be chosen

over C for high end performance, the FPGA designer may

choose to omit CORBA from custom point-to-point high

speed communications with the understanding that

portability is sacrificed. Enhancements to the ICO will

enable it to be used in more diverse high speed

communication applications in the near future.

 Software developers treat ICO components as they

would any other CORBA object. This design approach

makes communication between the S/W and H/W objects

seamless. Using ICO, radio developers can now host radio

elements in an FPGA and still have them be addressable and

callable from an SCA-compliant software core framework as

though it was an SCA object and not an FPGA.

5. ICO AND ETF

The ICO communicates with software ORBs over the local

transport. In many cases the local transport will be a low

level system bus that does not support high level

communication protocols. This situation requires that

software ORBs make use of the Extensible Transport

Framework (ETF) defined in the CORBA specification. An

ETF must be created to transfer GIOP messages from the

software ORB to the local transport along with any header

or encapsulation data required. This situation is not unique

to ICO, but would be required for any ORB that does not

support the standard TCP/IP. Typically, the ORB vendor

supplies the ETF at the customer’s request. PrismTech has

developed an ETF for Ethernet and plans to create similar

software for several other common transport schemes as per

customer requirements.

 On the ICO side, the equivalent ETF functionality must

be handled in hardware. An ETF interface block may need

to be inserted between the ICO and the local transport. This

ETF interface is required if ICO is used to support user

waveform blocks that act as CORBA clients. When an

embedded client waveform component makes a function

call, ICO will read IOR information from an internal lookup

table and use that data to marshal the message header. In

addition, ICO will prepend transport address data to the

front of the GIOP message. The ETF interface block may

then use that information to encapsulate the GIOP message

as per the requirements of the local transport. The

encapsulated message will then be sent to the transport

interface for transmission to the servant ORB. PrismTech

will work with the user to develop the ETF interface design

according to the needs of the system.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

6. CONCLUSION

PrismTech has created a powerful solution for implementing

CORBA messaging on silicon devices such as FPGAs and

ASICs. CORBA is an open standard and the Integrated

Circuit ORB (ICO) is a hardware implementation of the

standard. Using CORBA to communicate between

GPP/DSPs and FPGAs simply is, by definition, SCA-

compliant because the SCA specifies CORBA as the

preferred protocol to be used to communicate between SCA

waveform components. Using CORBA protocols between

GPP/DSPs and FPGAs also eliminates the need to

implement needlessly complex Hardware Abstraction Layers

(HALs) in the waveform data flow chain as well as the

supporting proprietary protocols that go with them. While

ICO may be used to provide SCA compatibility, it is

primarily a CORBA core and may also be used in pure

CORBA applications with no SCA requirements if needed in

the future.

 The Integrated Circuit ORB is flexible, highly

configurable and uses a minimum of FPGA resources. It

frees the hardware developer from learning and

implementing the complexities of CORBA protocols and

allows concentration on custom waveform design elements.

The software engineer is presented with a seamless

environment in which to communicate between client and

server applications. System developers have a solution that

is portable across platforms sharing the same interconnect

fabric. The PrismTech Integrated Circuit ORB is part of new

generation of products and tools that will revitalize CORBA

and the SCA and allow SDR to become ubiquitous in

commercial and military applications.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

