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ABSTRACT 
 
The design complexity of modern day field programmable 
gate array (FPGA) systems is increasing as system 
designers are forced to integrate more FPGA devices into 
a single system in hopes of meeting the demands of 
today’s computationally intensive applications. The 
problem is further worsened by applications such as 
software defined radios that not only demand high levels 
of performance, but also high degrees of portability and 
reconfigurability. Satisfying these requirements, while 
still maintaining a reasonable time to market makes full 
custom designs for FPGAs nearly impossible. One 
technique to alleviate a significant percentage of these 
burdens is to design intellectual property (IP) cores to 
conform to specific interfaces that can be parameterized to 
suite the particular needs of the IP core. Our experiences 
show that a large percentage of core communication 
patterns can occur through a select number of interfaces 
provided that the interfaces have customizable attributes 
that allow them to be made specific to a particular 
application. This technique eases design complexity since 
designers no longer spend time learning interfaces specific 
to a single core. Furthermore, if such guidelines are 
followed, the connection of cores instantly becomes a well 
understood problem that yields a finite number of efficient 
solutions. Change Proposal 289 (CP289) addresses these 
issues by specifying three profiles to describe the various 
types of component communications. In this paper we 
describe the CP289 specification and how using the three 
profiles can facilitate the design of CP289 systems. The 
concepts presented are in no way specific to CP289 and 
can easily be extended to incorporate other FPGA 
component models. 
 

1. INTRODUCTION 
 
Advancements in silicon technologies continue to fuel 
generations of field programmable gate arrays (FPGAs) 
that are capable of delivering unprecedented levels of 
performance. Coupled with their high level of 
reconfigurability, and relative low cost, FPGAs are 

attractive solutions for problems of the highest 
computational complexity. 

Once used exclusively for rapid prototyping, FPGAs 
now work side-by-side with digital signal processors 
(DSPs) and general-purpose processors (GPPs) to deliver 
some of the world’s highest performance computing 
solutions. As the complexity of these systems continues to 
increase, designers are continually faced with new 
integration challenges that exist both on and off chip. 

The Open Core Protocol (OCP) delivers a non-
proprietary, openly licensed, core-centric protocol that 
comprehensively describes the system-level integration 
requirements of intellectual property (IP) cores. OCP 
eliminates the task of repeatedly defining, verifying, 
documenting and supporting proprietary interface 
protocols by defining a collection of signals and 
parameters that can be use to move a specific type of data 
through a particular interface [OCP]. A clear advantage to 
using OCP to describe a core’s interface(s) is that the 
mechanisms through which one OCP interface can talk to 
another are clearly defined by the OCP specification. 
Even if two connected cores have dissimilar interfaces, 
the fact that they are valid OCP interfaces means the 
information needed to resolve those dissimilarities is 
readily available. 

The ability to understand how two cores 
communicate, given a set of parameters, is extremely 
powerful, especially when it comes to building networks 
that interconnect multiple cores. Since OCP defines 
exactly what each parameter means, it becomes possible 
to build utilities that generate an interconnection network 
for the designer, even if the interfaces for each node on 
the network are dissimilar. This is possible because OCP 
defines the behavior for each signal. Therefore it is 
possible to introduce intelligence into a utility that will 
generate resolution functions for dissimilar IP, assuming 
that an appropriate resolution exists. For instance, 
consider a scenario where two cores, A and B, want to 
connect. The problem is that core A has a 64-bit data path 
and core B has a 32-bit data path. Since the width of the 
data path can be expressed via an OCP parameter, a utility 
can be engineered to make a decision about how to 
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connect a 64-bit core to a 32-bit core. The ability to 
automatically generate an interconnection network of this 
nature has the potential to abstract a significant portion of 
a design’s complexity away from the designer, thus 
decreasing a design’s time to market. 

In this paper we present three OCP profiles we 
believe are sufficient to satisfy the communication 
requirements for the majority of modern-day FPGA cores. 
The three profiles include the worker control profile 
(WCP), the block dataflow profile (BDP), and the 
streaming data flow profile (SDP). Finally, we show that 
adoption of these profiles facilitates the development of 
large-scale FPGA systems. We do all of this in the context 
the Joint Tactical Radio System (JTRS) Software 
Communication Architecture (SCA), although all 
concepts presented can be further generalized to support 
almost any designed process. 
 

2. BACKGROUND 
 

2.1 The Open Core Protocol (OCP) 

OCP defines point-to-point interfaces between two 
communicating entities. One entity defines an interface to 
act as a master, and the other defines an interface to act as 
a slave. The master is the controlling entity and is the only 
entity with the capability of issuing commands. A slave 
responds to commands either by accepting or responding 
to commands that have been issued by the master. 

Given the wide range IP core functionality, 
performance, and interface requirements, a fixed-
definition protocol fails to address the vast spectrum of 
suitable core requirements.  Furthermore, the ability to 
support sufficient test and verification practices adds an 
even higher level of complexity. To address these 
requirements, OCP supports highly configurable 
interfaces. Using these highly configurable interfaces, a 
designer can tailor an instance of an OCP interface to a 
specific application. The ability to tailor an OCP interface 
to meet the needs of a specific application is provided 
through the use of OCP parameters. A collection of OCP 
parameters is referred to as an OCP  
profile. These parameters indicate to the designer which  
OCP signals need to be included inside of a core’s OCP 
interface. In addition, the inclusion of certain parameters 
within a profile can be used to imply behavior, as well as 
indicate signal properties, such as a signal’s bit-width. 
 
2.2 The JTRS Communication Architecture 

The SCA specification establishes an implementation 
independent framework with baseline requirements for the 
development of JTRS software defined radios [1]. The 
requirements include both interface and behavioral 

specifications that ensure the maintenance of portability 
and configurability across vendor platforms. 
 The SCA uses the Common Object Request Broker 
(CORBA) to provide a common language through which 
all distributed elements (components) within the system 
communicate. Although CORBA has been adopted as a 
middleware for GPPs, CORBA implementations for 
processing elements such as DSPs and FPGAs are far less 
common. 
 Change Proposal 289 (CP289) is intended to address 
components that cannot use the portability requirements 
defined in section 3.2 of the SCA specification. 
Specifically, it defines specific portability requirements 
that target resource constrained environments such as 
DSPs, FPGAs, and Application Specific Integrated 
Circuits (ASICs). 
 Portability in the SCA implies that a SCA component 
should be capable of executing on any system that has 
been deemed SCA compliant. Meaning that if a software 
component connects into System A, it should also connect 
into System B provided that System A and B are both 
SCA compliant. This example ignores any differences in 
the underlying architecture of the processing element 
responsible for executing the component’s functionality. 
However, from an interface standpoint, component 
instances in either system should be identical. This is an 
important facet of the SCA as it allows components to be 
obtained from various sources and then seamlessly 
integrated into a single system. 
 For FPGAs, the mechanisms that enable portability to 
be maintained are provided by OCP. Each FPGA 
component must contain interfaces that operate in 
accordance with the WCP, BDP, and SCP profiles. If 
these details are maintained for each FPGA component 
implementation, then CP289 says the component 
implementation can connect into any SCA system that is 
CP289 compliant. 
 In addition, CP289 defines additional protocol 
semantics that specify how specific types of information 
can be communicated through an interface that identifies 
itself with a particular OCP profile. For instance, 
according to CP289, a read command on an interface that 
conforms to WCP will put the worker in an operating 
state. These additional semantics are not part of the OCP 
specification, but have been introduced by the authors of 
CP289 in order to further define how information on an 
FPGA should be communicated if a system is to be SCA 
and CP289 compliant. These additional semantics further 
simplify SCA application development because SCA 
utilities have prior knowledge of how data is 
communicated to a specific component. With this 
knowledge, the utilities can generate software libraries 
that facilitate access to the applications underlying 
hardware. 
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 This dramatically improves the development 
experiences of the application developed as the designer 
needs only to understand how to use a set of software 
libraries. The tools determine the details of how the 
libraries interact with the physical hardware. This scenario 
is made possible not only because OCP provides a set of 
constrained signals that have a well-defined behavior, but 
also because using a constrained set of signals enables a 
designer to write well-defined rules on how to connect 
OCP interfaces that associate with dissimilar parameter 
sets. 
 
3. CODE GENERATION FOR SCA COMPONENTS 

RUNNING ON FPGAs 
 
In the remainder of this paper we describe an ongoing 
effort at Mercury Computer Systems, Inc. to develop a 
model for components that execute on FPGAs. To date, 
most of the work has been fueled by our efforts to develop 
a CP289-compliant system. However, this work is by no 
means limited to CP289. In fact, it is our intent to 
introduce these same concepts into future releases of 
existing solutions, such as Mercury’s FPGA Development 
Kit (FDK). Ultimately, introducing these concepts into 
existing processes will alleviate a large percentage of the 
design effort that is currently expected from designers. In 
addition, the automation of specific processes will result 
in a more efficient design process that is less susceptible 
to error and more forgiving of future changes. This will 
significantly improve the overall design experience. 
 The following sections examine two key concepts 
that are critical in the development of CP289-compliant 
systems. The first being the process of building CP289-
compliant components and the second being how these 
components interconnect. The former concept is captured 
by a software utility described below.  
 

4. CP289 COMPONENT CODE GENERATION FOR 
FPGAS 

 
4.1 Software Component Descriptors 

CP289 components are described at the highest level by 
their Software Component Descriptor (SCD). Each SCD 
describes the ports that are used by the component to send 
and receive data from other entities within the system. 
Included in this description is a port name, repository ID, 
and type. The port type either provides or uses depending 
on the responsibilities the port assumes. The port is a 
provider if it assumes the responsibilities of servicing 
requests and issuing responses. Similarly, the port is a 
user if it assumes the responsibility of issuing requests and 
servicing responses. 

The SCD also specifies the location of the 
component’s property file. The property file associates a 
collection of properties with a specific component. Each 
property consists of a name, a value, and the value’s type. 
The value’s type is used to determine the amount of 
memory that must be allocated to accommodate a 
worker’s property space, as well as the offset into that 
memory that should be used to access the property value. 
The repository ID indicates the location of the ports 
interface description within the interface repository. The 
worker developer uses the repository ID to query the 
interface repository about the interfaces the worker needs 
to support. 
 
4.2 Interface Definitions 

Each SCA component port must be accompanied by an 
interface definition. The interface definition describes 
how the interface through which the port can be accessed. 
Specifically, it describes the types of data and operations 
that an interface to a specific port can support. The 
interface definitions reside in an interface repository (IR). 
The IR is a CORBA object that acts as a container for 
interface definitions. Our implementation approach uses 
the IR to store the interface definitions associated with the 
RPL components being developed. For a detailed 
explanation of the IR, the reader is referred to [2]. It 
should be noted that the SCA specification does not 
reference any specific IDL files. Therefore, there is no 
standard way of using the SCA meta-data to discover the 
appropriate IDL files. 
 
4.3 Inferring OCP Configurations for Component 
Ports 
 
The list of the ports belonging to a component is defined 
in the SCD. Each port must be associated with a name, 
type, and repid. Figure 1 shows how this information is 
used to generate the appropriate OCP interfaces. Each 
component port corresponds to at least one OCP interface 
that uses a Worker Port Profile. For each component port, 
an IR lookup is done using the ports repository ID. The IR 
lookup determines if the ports associated interface 
definition contains one-way operations. If the ports 
associated interface definition contains at least one one-
way operation, then two interfaces must be created to 
support the port. The first interface enables the 
communication of the operation itself, while the latter 
enables the return values, output arguments, or exceptions 
to be communicated back to the requesting entity. 
  
4.4 Generating an OCP Configuration 
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Figure 1. Generating OCP-Component Interfaces. 

The result of this process is an OCP configuration that 
describes the interfaces through which data is 
communicated between the component and the immediate 

surrounding environment. Given an OCP configuration 

the tool is capable of generating an OCP core 
configuration file. This file is required to maintain OCP 
compliance. 

In addition to the OCP core configuration file, the 
tool generates a collection of HDL specific files. These 
files specify the components top-level signals. The 
component developer uses these files as the starting point. 
The developer is required to populate the skeletons with 
the RTL that best describes the components functionality. 
 
4.5 Future Work 

In the future we plan to introduce capabilities that will 
enable the tool to introduce limited functionality into the 
component skeletons it creates. The functionality could 
include a sizeable percentage of the logic necessary to 
manage communication through specific OCP interfaces. 
Interfaces that conform to the WCP must be able to 
discriminate between read and write commands (among 
others things). State machine(s) that would allow the 
component to do so could be included as part of the RTL 
code that is generated automatically. In addition, the 
potential exists for this tool to expel software header files 
that would facilitate access to the component. 
Specifications such as CP289 can specify protocol 
semantics that define how data is communicated through a 
particular interface. For example, CP289 specifies that 
control operations are communicated to components via 

read transactions through a WCP interface. The 
responsibility of the component is to execute a control 
operation when it has been instructed to execute a read at 
a specific address. A software header file facilitates the 
executions of these control operations by providing an 
application developer with data structures that list each 
control operation and its associated address. This way 
developers need not concern themselves with generating 
the address mappings for specific components. The tools 
do it automatically. The developers need only to be 
concerned about ensuring the application includes the 
appropriate header files.  
 

5. ON-CHIP INTERCONNECTS FOR CP289 

The creation of CP289 guarantees FPGA-component 
portability across compliant systems. This guarantee can 
be maintained only through adherence to the OCP profiles 
that CP289 defines. The use of OCP as a means to 
describe a component’s interface to the external world has 
advantages that extend beyond the maintenance of 
component portability. The absence of standardized 
interfaces, such as OCP, results in companies developing 
their own proprietary interfaces, soon to be followed by 
their own proprietary networks. 

Developing networks that interconnect cores is a task 
that could easily lend itself to machine automation. The 
reason why it doesn’t is because the interconnection of 
non-standardized interfaces is next to impossible. The 
solution space is nearly infinite. The use of OCP as a 
standard interface constrains that solution space, making 
machine automation a real possibility. 

Each OCP profile defined in CP289 specifies a finite 
number of signals, each having a well-defined behavior 
with a limited amount of parameterization. The fact that 
the behavior and parameterization of specific signals is 
limited makes it possible to define specific rules for 
resolving connections between two dissimilar instances of 
the same OCP signal. The rules that provide these 
resolutions are easily interpreted by a machine. In the 
paragraphs to follow, we will explore what can be done to 
automatically generate an interconnect network that is 
capable of communicating control and status information 
to WCP slave entities. 

Figure 2 shows an example of the internal control 
ring (ICR) that distributes control and status information 
to CP289 compliant components. The network consists of 
a single master and N nodes. A worker control interface 
(WCI) master contains an interface that conforms to the 
WCP, hence it is called WCI. Each slave on the network 
is identified by a unique address map. When the master 
issues a request, the first slave connected into the network 
examines the address that has been associated with that 
request. If the slave recognizes the address that has been 
presented to it, the slave absorbs the transaction away 
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from the ring. Otherwise the data is communicated to the 
next slave connected to the ring. This process repeats 
itself once for each slave in the network. If the master 
receives the request back, an error bit is asserted. This bit 
indicates that there was a problem executing the request. 

 
 
 
 
 
A WCI transaction requires multiple clock cycles to 

complete. The exact number of required clock cycles is 
dependent on how many nodes have been connected to 
the network, as well as the width of the interconnect itself. 
Each slave on the network increases the network’s 
communication latency by one clock cycle. This is 
because the insertion of a slave entity will either increase 
the number of paths that a request must traverse by one, or 
increase the number of paths that a response must traverse 
by one. 

The communication latency is also affected by the 
value of the parameter that indicates the width of the ring. 
A single WCI transaction requires 72 bits be 
communicated. This requires 9 clock cycles when the 
width of the network is 8 bits. 

Building a WCI network is a matter of instantiating 
multiple OCP interfaces and then specifying connections 
between them. This is easily performed in software. The 
tool requires that each node instance be accompanied by 
an XML file that describes specific pieces of information 
about the slave. This information includes the size of the 
address space required to access the slave and the 
parameter values that are specific to the interface instance.  

A similar XML file describes the interconnection of all of 
the components. 

The software looks at the XML file for each slave in 
order to determine where each slave should be connected 
into the ring and into what address space it should be 
mapped. If two dissimilar interfaces need to connect, the 
tool generates IP suitable for resolving the dissimilarities 
for two connected interfaces. It should be noted that the 
tool considers two interfaces dissimilar if the two 
interfaces share the same profile, but specify unequal 
parameter values.  

The output of this process is an HDL-specific, top-
level description. The description instances a single 
master and multiple slaves. Each node is instanced with 
parameter values that are in accordance with the 
parameter values specified by the node’s XML file. The 
description can be synthesized for download onto a 
specific FPGA device. 

In addition to the top-level HDL files, the tools are 
capable of producing header files that facilitate access to 
the network via software. These header files contain data 
structures that define the address ranges into which 
specific components have mapped. Once again, the 
application developer need only be concerned with 
including the appropriate header files into the application. 

The state of our work is such that we have prototyped 
software to perform the aforementioned task using non-
standardized XML formats. The full utility of this concept 
will not be apparent until there is a way to express OCP-
related meta-data in a format that is understood by all. The 
current way of doing this is through the use of an OCP 
core configuration file. However, the file format that is 
used for the configuration file is intended to be read by 
humans, and thus requires a significant amount of work to 
parse by machine. This simply won’t work. OCP, along 
with other standards organizations such as IP-XACT, are 
looking at formats that would capture a core’s meta-data 
in a format that is more easily manipulated by machine. 

Figure 2. Worker Control Interface (WCI) Internal Control Ring. 

 
6. CONCLUSION 

Maximizing component portability and reuse is a critical 
part of accelerating the development of today’s high-
performance applications. Standardizing component 
interfaces is one technique for doing this. We have seen 
that standardizing component interfaces using standards 
such as OCP eliminates proprietary core interfaces by 
specifying a set of signals with well-defined behaviors. 
This maximizes portability since systems and components 
that conform to specific OCP interfaces will be 
interoperable. This is critical in application domains-, 
such as software defined radios, where component and 
system developers are almost never the same people. 
 A side effect of using standard interfaces is that they 
limit the ways in which they can be interconnected. This 
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finite solution space allows for the automatic integration 
and configuration via standards such as IP-XACT. IP-
XACT is a standard that enables one to describe 
connections between OCP interfaces through the use of 
schema, such as XML. Software parses the XML and then 
generates the appropriate interconnect base on the 
parameters that had been defined by the XML schema.  
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