

IMPLEMENTING SCA COMPONENTS ON FPGAs

Joshua Noseworthy (Mercury Computer Systems, Inc., Chelmsford, MA, USA;

jnoseworthy@mc.com); James Kulp (Mercury Computer Systems, Inc., Chelmsford,
MA, USA; jkulp@mc.com)

ABSTRACT

The design complexity of modern day field programmable
gate array (FPGA) systems is increasing as system
designers are forced to integrate more FPGA devices into
a single system in hopes of meeting the demands of
today’s computationally intensive applications. The
problem is further worsened by applications such as
software defined radios that not only demand high levels
of performance, but also high degrees of portability and
reconfigurability. Satisfying these requirements, while
still maintaining a reasonable time to market makes full
custom designs for FPGAs nearly impossible. One
technique to alleviate a significant percentage of these
burdens is to design intellectual property (IP) cores to
conform to specific interfaces that can be parameterized to
suite the particular needs of the IP core. Our experiences
show that a large percentage of core communication
patterns can occur through a select number of interfaces
provided that the interfaces have customizable attributes
that allow them to be made specific to a particular
application. This technique eases design complexity since
designers no longer spend time learning interfaces specific
to a single core. Furthermore, if such guidelines are
followed, the connection of cores instantly becomes a well
understood problem that yields a finite number of efficient
solutions. Change Proposal 289 (CP289) addresses these
issues by specifying three profiles to describe the various
types of component communications. In this paper we
describe the CP289 specification and how using the three
profiles can facilitate the design of CP289 systems. The
concepts presented are in no way specific to CP289 and
can easily be extended to incorporate other FPGA
component models.

1. INTRODUCTION

Advancements in silicon technologies continue to fuel
generations of field programmable gate arrays (FPGAs)
that are capable of delivering unprecedented levels of
performance. Coupled with their high level of
reconfigurability, and relative low cost, FPGAs are

attractive solutions for problems of the highest
computational complexity.

Once used exclusively for rapid prototyping, FPGAs
now work side-by-side with digital signal processors
(DSPs) and general-purpose processors (GPPs) to deliver
some of the world’s highest performance computing
solutions. As the complexity of these systems continues to
increase, designers are continually faced with new
integration challenges that exist both on and off chip.

The Open Core Protocol (OCP) delivers a non-
proprietary, openly licensed, core-centric protocol that
comprehensively describes the system-level integration
requirements of intellectual property (IP) cores. OCP
eliminates the task of repeatedly defining, verifying,
documenting and supporting proprietary interface
protocols by defining a collection of signals and
parameters that can be use to move a specific type of data
through a particular interface [OCP]. A clear advantage to
using OCP to describe a core’s interface(s) is that the
mechanisms through which one OCP interface can talk to
another are clearly defined by the OCP specification.
Even if two connected cores have dissimilar interfaces,
the fact that they are valid OCP interfaces means the
information needed to resolve those dissimilarities is
readily available.

The ability to understand how two cores
communicate, given a set of parameters, is extremely
powerful, especially when it comes to building networks
that interconnect multiple cores. Since OCP defines
exactly what each parameter means, it becomes possible
to build utilities that generate an interconnection network
for the designer, even if the interfaces for each node on
the network are dissimilar. This is possible because OCP
defines the behavior for each signal. Therefore it is
possible to introduce intelligence into a utility that will
generate resolution functions for dissimilar IP, assuming
that an appropriate resolution exists. For instance,
consider a scenario where two cores, A and B, want to
connect. The problem is that core A has a 64-bit data path
and core B has a 32-bit data path. Since the width of the
data path can be expressed via an OCP parameter, a utility
can be engineered to make a decision about how to

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

connect a 64-bit core to a 32-bit core. The ability to
automatically generate an interconnection network of this
nature has the potential to abstract a significant portion of
a design’s complexity away from the designer, thus
decreasing a design’s time to market.

In this paper we present three OCP profiles we
believe are sufficient to satisfy the communication
requirements for the majority of modern-day FPGA cores.
The three profiles include the worker control profile
(WCP), the block dataflow profile (BDP), and the
streaming data flow profile (SDP). Finally, we show that
adoption of these profiles facilitates the development of
large-scale FPGA systems. We do all of this in the context
the Joint Tactical Radio System (JTRS) Software
Communication Architecture (SCA), although all
concepts presented can be further generalized to support
almost any designed process.

2. BACKGROUND

2.1 The Open Core Protocol (OCP)

OCP defines point-to-point interfaces between two
communicating entities. One entity defines an interface to
act as a master, and the other defines an interface to act as
a slave. The master is the controlling entity and is the only
entity with the capability of issuing commands. A slave
responds to commands either by accepting or responding
to commands that have been issued by the master.

Given the wide range IP core functionality,
performance, and interface requirements, a fixed-
definition protocol fails to address the vast spectrum of
suitable core requirements. Furthermore, the ability to
support sufficient test and verification practices adds an
even higher level of complexity. To address these
requirements, OCP supports highly configurable
interfaces. Using these highly configurable interfaces, a
designer can tailor an instance of an OCP interface to a
specific application. The ability to tailor an OCP interface
to meet the needs of a specific application is provided
through the use of OCP parameters. A collection of OCP
parameters is referred to as an OCP
profile. These parameters indicate to the designer which
OCP signals need to be included inside of a core’s OCP
interface. In addition, the inclusion of certain parameters
within a profile can be used to imply behavior, as well as
indicate signal properties, such as a signal’s bit-width.

2.2 The JTRS Communication Architecture

The SCA specification establishes an implementation
independent framework with baseline requirements for the
development of JTRS software defined radios [1]. The
requirements include both interface and behavioral

specifications that ensure the maintenance of portability
and configurability across vendor platforms.
 The SCA uses the Common Object Request Broker
(CORBA) to provide a common language through which
all distributed elements (components) within the system
communicate. Although CORBA has been adopted as a
middleware for GPPs, CORBA implementations for
processing elements such as DSPs and FPGAs are far less
common.
 Change Proposal 289 (CP289) is intended to address
components that cannot use the portability requirements
defined in section 3.2 of the SCA specification.
Specifically, it defines specific portability requirements
that target resource constrained environments such as
DSPs, FPGAs, and Application Specific Integrated
Circuits (ASICs).
 Portability in the SCA implies that a SCA component
should be capable of executing on any system that has
been deemed SCA compliant. Meaning that if a software
component connects into System A, it should also connect
into System B provided that System A and B are both
SCA compliant. This example ignores any differences in
the underlying architecture of the processing element
responsible for executing the component’s functionality.
However, from an interface standpoint, component
instances in either system should be identical. This is an
important facet of the SCA as it allows components to be
obtained from various sources and then seamlessly
integrated into a single system.
 For FPGAs, the mechanisms that enable portability to
be maintained are provided by OCP. Each FPGA
component must contain interfaces that operate in
accordance with the WCP, BDP, and SCP profiles. If
these details are maintained for each FPGA component
implementation, then CP289 says the component
implementation can connect into any SCA system that is
CP289 compliant.
 In addition, CP289 defines additional protocol
semantics that specify how specific types of information
can be communicated through an interface that identifies
itself with a particular OCP profile. For instance,
according to CP289, a read command on an interface that
conforms to WCP will put the worker in an operating
state. These additional semantics are not part of the OCP
specification, but have been introduced by the authors of
CP289 in order to further define how information on an
FPGA should be communicated if a system is to be SCA
and CP289 compliant. These additional semantics further
simplify SCA application development because SCA
utilities have prior knowledge of how data is
communicated to a specific component. With this
knowledge, the utilities can generate software libraries
that facilitate access to the applications underlying
hardware.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 This dramatically improves the development
experiences of the application developed as the designer
needs only to understand how to use a set of software
libraries. The tools determine the details of how the
libraries interact with the physical hardware. This scenario
is made possible not only because OCP provides a set of
constrained signals that have a well-defined behavior, but
also because using a constrained set of signals enables a
designer to write well-defined rules on how to connect
OCP interfaces that associate with dissimilar parameter
sets.

3. CODE GENERATION FOR SCA COMPONENTS

RUNNING ON FPGAs

In the remainder of this paper we describe an ongoing
effort at Mercury Computer Systems, Inc. to develop a
model for components that execute on FPGAs. To date,
most of the work has been fueled by our efforts to develop
a CP289-compliant system. However, this work is by no
means limited to CP289. In fact, it is our intent to
introduce these same concepts into future releases of
existing solutions, such as Mercury’s FPGA Development
Kit (FDK). Ultimately, introducing these concepts into
existing processes will alleviate a large percentage of the
design effort that is currently expected from designers. In
addition, the automation of specific processes will result
in a more efficient design process that is less susceptible
to error and more forgiving of future changes. This will
significantly improve the overall design experience.
 The following sections examine two key concepts
that are critical in the development of CP289-compliant
systems. The first being the process of building CP289-
compliant components and the second being how these
components interconnect. The former concept is captured
by a software utility described below.

4. CP289 COMPONENT CODE GENERATION FOR
FPGAS

4.1 Software Component Descriptors

CP289 components are described at the highest level by
their Software Component Descriptor (SCD). Each SCD
describes the ports that are used by the component to send
and receive data from other entities within the system.
Included in this description is a port name, repository ID,
and type. The port type either provides or uses depending
on the responsibilities the port assumes. The port is a
provider if it assumes the responsibilities of servicing
requests and issuing responses. Similarly, the port is a
user if it assumes the responsibility of issuing requests and
servicing responses.

The SCD also specifies the location of the
component’s property file. The property file associates a
collection of properties with a specific component. Each
property consists of a name, a value, and the value’s type.
The value’s type is used to determine the amount of
memory that must be allocated to accommodate a
worker’s property space, as well as the offset into that
memory that should be used to access the property value.
The repository ID indicates the location of the ports
interface description within the interface repository. The
worker developer uses the repository ID to query the
interface repository about the interfaces the worker needs
to support.

4.2 Interface Definitions

Each SCA component port must be accompanied by an
interface definition. The interface definition describes
how the interface through which the port can be accessed.
Specifically, it describes the types of data and operations
that an interface to a specific port can support. The
interface definitions reside in an interface repository (IR).
The IR is a CORBA object that acts as a container for
interface definitions. Our implementation approach uses
the IR to store the interface definitions associated with the
RPL components being developed. For a detailed
explanation of the IR, the reader is referred to [2]. It
should be noted that the SCA specification does not
reference any specific IDL files. Therefore, there is no
standard way of using the SCA meta-data to discover the
appropriate IDL files.

4.3 Inferring OCP Configurations for Component
Ports

The list of the ports belonging to a component is defined
in the SCD. Each port must be associated with a name,
type, and repid. Figure 1 shows how this information is
used to generate the appropriate OCP interfaces. Each
component port corresponds to at least one OCP interface
that uses a Worker Port Profile. For each component port,
an IR lookup is done using the ports repository ID. The IR
lookup determines if the ports associated interface
definition contains one-way operations. If the ports
associated interface definition contains at least one one-
way operation, then two interfaces must be created to
support the port. The first interface enables the
communication of the operation itself, while the latter
enables the return values, output arguments, or exceptions
to be communicated back to the requesting entity.

4.4 Generating an OCP Configuration

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Figure 1. Generating OCP-Component Interfaces.

The result of this process is an OCP configuration that
describes the interfaces through which data is
communicated between the component and the immediate

surrounding environment. Given an OCP configuration

the tool is capable of generating an OCP core
configuration file. This file is required to maintain OCP
compliance.

In addition to the OCP core configuration file, the
tool generates a collection of HDL specific files. These
files specify the components top-level signals. The
component developer uses these files as the starting point.
The developer is required to populate the skeletons with
the RTL that best describes the components functionality.

4.5 Future Work

In the future we plan to introduce capabilities that will
enable the tool to introduce limited functionality into the
component skeletons it creates. The functionality could
include a sizeable percentage of the logic necessary to
manage communication through specific OCP interfaces.
Interfaces that conform to the WCP must be able to
discriminate between read and write commands (among
others things). State machine(s) that would allow the
component to do so could be included as part of the RTL
code that is generated automatically. In addition, the
potential exists for this tool to expel software header files
that would facilitate access to the component.
Specifications such as CP289 can specify protocol
semantics that define how data is communicated through a
particular interface. For example, CP289 specifies that
control operations are communicated to components via

read transactions through a WCP interface. The
responsibility of the component is to execute a control
operation when it has been instructed to execute a read at
a specific address. A software header file facilitates the
executions of these control operations by providing an
application developer with data structures that list each
control operation and its associated address. This way
developers need not concern themselves with generating
the address mappings for specific components. The tools
do it automatically. The developers need only to be
concerned about ensuring the application includes the
appropriate header files.

5. ON-CHIP INTERCONNECTS FOR CP289

The creation of CP289 guarantees FPGA-component
portability across compliant systems. This guarantee can
be maintained only through adherence to the OCP profiles
that CP289 defines. The use of OCP as a means to
describe a component’s interface to the external world has
advantages that extend beyond the maintenance of
component portability. The absence of standardized
interfaces, such as OCP, results in companies developing
their own proprietary interfaces, soon to be followed by
their own proprietary networks.

Developing networks that interconnect cores is a task
that could easily lend itself to machine automation. The
reason why it doesn’t is because the interconnection of
non-standardized interfaces is next to impossible. The
solution space is nearly infinite. The use of OCP as a
standard interface constrains that solution space, making
machine automation a real possibility.

Each OCP profile defined in CP289 specifies a finite
number of signals, each having a well-defined behavior
with a limited amount of parameterization. The fact that
the behavior and parameterization of specific signals is
limited makes it possible to define specific rules for
resolving connections between two dissimilar instances of
the same OCP signal. The rules that provide these
resolutions are easily interpreted by a machine. In the
paragraphs to follow, we will explore what can be done to
automatically generate an interconnect network that is
capable of communicating control and status information
to WCP slave entities.

Figure 2 shows an example of the internal control
ring (ICR) that distributes control and status information
to CP289 compliant components. The network consists of
a single master and N nodes. A worker control interface
(WCI) master contains an interface that conforms to the
WCP, hence it is called WCI. Each slave on the network
is identified by a unique address map. When the master
issues a request, the first slave connected into the network
examines the address that has been associated with that
request. If the slave recognizes the address that has been
presented to it, the slave absorbs the transaction away

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

from the ring. Otherwise the data is communicated to the
next slave connected to the ring. This process repeats
itself once for each slave in the network. If the master
receives the request back, an error bit is asserted. This bit
indicates that there was a problem executing the request.

A WCI transaction requires multiple clock cycles to

complete. The exact number of required clock cycles is
dependent on how many nodes have been connected to
the network, as well as the width of the interconnect itself.
Each slave on the network increases the network’s
communication latency by one clock cycle. This is
because the insertion of a slave entity will either increase
the number of paths that a request must traverse by one, or
increase the number of paths that a response must traverse
by one.

The communication latency is also affected by the
value of the parameter that indicates the width of the ring.
A single WCI transaction requires 72 bits be
communicated. This requires 9 clock cycles when the
width of the network is 8 bits.

Building a WCI network is a matter of instantiating
multiple OCP interfaces and then specifying connections
between them. This is easily performed in software. The
tool requires that each node instance be accompanied by
an XML file that describes specific pieces of information
about the slave. This information includes the size of the
address space required to access the slave and the
parameter values that are specific to the interface instance.

A similar XML file describes the interconnection of all of
the components.

The software looks at the XML file for each slave in
order to determine where each slave should be connected
into the ring and into what address space it should be
mapped. If two dissimilar interfaces need to connect, the
tool generates IP suitable for resolving the dissimilarities
for two connected interfaces. It should be noted that the
tool considers two interfaces dissimilar if the two
interfaces share the same profile, but specify unequal
parameter values.

The output of this process is an HDL-specific, top-
level description. The description instances a single
master and multiple slaves. Each node is instanced with
parameter values that are in accordance with the
parameter values specified by the node’s XML file. The
description can be synthesized for download onto a
specific FPGA device.

In addition to the top-level HDL files, the tools are
capable of producing header files that facilitate access to
the network via software. These header files contain data
structures that define the address ranges into which
specific components have mapped. Once again, the
application developer need only be concerned with
including the appropriate header files into the application.

The state of our work is such that we have prototyped
software to perform the aforementioned task using non-
standardized XML formats. The full utility of this concept
will not be apparent until there is a way to express OCP-
related meta-data in a format that is understood by all. The
current way of doing this is through the use of an OCP
core configuration file. However, the file format that is
used for the configuration file is intended to be read by
humans, and thus requires a significant amount of work to
parse by machine. This simply won’t work. OCP, along
with other standards organizations such as IP-XACT, are
looking at formats that would capture a core’s meta-data
in a format that is more easily manipulated by machine.

Figure 2. Worker Control Interface (WCI) Internal Control Ring.

6. CONCLUSION

Maximizing component portability and reuse is a critical
part of accelerating the development of today’s high-
performance applications. Standardizing component
interfaces is one technique for doing this. We have seen
that standardizing component interfaces using standards
such as OCP eliminates proprietary core interfaces by
specifying a set of signals with well-defined behaviors.
This maximizes portability since systems and components
that conform to specific OCP interfaces will be
interoperable. This is critical in application domains-,
such as software defined radios, where component and
system developers are almost never the same people.
 A side effect of using standard interfaces is that they
limit the ways in which they can be interconnected. This

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

finite solution space allows for the automatic integration
and configuration via standards such as IP-XACT. IP-
XACT is a standard that enables one to describe
connections between OCP interfaces through the use of
schema, such as XML. Software parses the XML and then
generates the appropriate interconnect base on the
parameters that had been defined by the XML schema.

7. ACKNOWLEDGMENT

The authors would like to recognize Shepard Siegel of
Mercury Computer Systems, Inc. for his tireless efforts in
advancing this initiative.

8. REFERENCES

[1] “Software communication architecture specification,” M. S.
Programmable Radio Consortium, November 2001, v2.2.

[2] “Common object request broker architecture: Core
Specification,” T. O. M. Group, March 2004, v3.0.3.

[3] “Open core protocol specification,” O. I. Partnership, 2005,
v3.1 Available: http://www.opc-ip.org.

[4] “Extension for component portability for specialize hardware
processors,” J. T. R. S. J. P. Office, March 2005, v3.1.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Implementing SCA Components on FPGAs
	2.1 The Open Core Protocol (OCP)
	3. CODE GENERATION FOR SCA COMPONENTS RUNNING ON FPGAs
	4. CP289 COMPONENT CODE GENERATION FOR FPGAS
	5. ON-CHIP INTERCONNECTS FOR CP289
	6. CONCLUSION

	Search by Author
	Search by Session

