
Component-Based support for FPGA and DSP

Mark Hermeling (Zeligsoft, Gatineau, QC, Canada; mark@zeligsoft.com)

ABSTRACT

Until now, Software Defined Radio (SDR) standards
have focused on General Purpose Processors.
Integration with DSP and FPGA processors has been
done mostly manually and in a non-systematic manner.
This is about to change with different standards for DSP
and FPGA integration being proposed. This paper
provides a high-level introduction of the various
standards and highlights the differences between them.
The paper focuses on the standards from a tooling and
automation viewpoint.

1. INTRODUCTION

 SDR using the Software Communications Architecture
(SCA) has been made significantly easier through the
advent of modeling and generation tools. These tools enable
experts to build waveforms and platforms faster and with
better quality. These tools have also lowered the amount of
expertise required to build waveforms, which has allowed
new projects to get started quicker.
 This is commonplace with standards: the early stages
are challenging, but later stages become easier as vendors
adopt the standard and COTS products become available,
which automate tedious tasks and offload much of the
complexity from the developers.
 One specific area that has changed very little so far is
the Specialized Hardware Processors (SHPs), also known as
FPGAs and DSPs. SHPs are used to implement the lower
layers (physical layer) of a waveform. The reason for little
change is that there is a lack of standardization of how
software is developed and deployed to these processors.
Significant work has been put into facilitating development
for SHPs in past years and this is about to bear fruit.
Different standards have been developed and different
scalable, robust COTS technologies are available now or
will be available soon.
 This paper introduces the different ways that SHPs can
be used in a Software Defined Radio platform. Section 4
introduces the different patterns that developers have been
using and that vendors have proposed. Each of the patterns
is then discussed with respect to portability, ease-of-use and
performance. The inner workings of the patterns are not
discussed in detail; rather, the benefits and disadvantages of

the patterns are described. This provides the reader with an
understanding of the relative merit of each pattern.
 Special attention is paid to how automation can be used
together with each pattern to lighten the load for the
software engineer. The goal of automation and technology
is to help the engineer to focus on writing better software
faster.
 This is even more so when working with SHPs, as the
high-level software architecture is typically laid out by
software engineers, while hardware engineers have to create
the signal processing functionality. Automation of
integration would make it easier for these two groups of
engineers to work together, without restricting their creative
capabilities.
 The paper begins with a discussion on requirements
that the SCA puts on software components. This is followed
by a short introduction of the different technologies
available. After that we take an objective look at the
portability, ease-of-use, performance and automation of
each of the technologies.

2. COMPONENT REQUIREMENTS

 SCA-compliant systems consist of a flexible platform
that can be loaded with multiple radio personalities. Each
personality is a piece of software that implements a
waveform such as SINCGARS, WNW, SRW and so forth.
These personalities are also known as ‘waveforms’ or
‘applications’.
 Each waveform contains software that needs to be
loaded into the heterogeneous mix of processors that
comprises the radio platform. A waveform is divided into a
number of components, which are independently
downloadable pieces of functionality. The SCA describes
what the requirements are that these components have to
meet to be considered SCA-compliant. These requirements
fall in one of three categories: POSIX compliance, CORBA
capable, and the ability to support the SCA Base Core
Framework interfaces (CF::Resource and so forth).
 These requirements are put in place to provide
portability of the component. Components are typically
written and tested for a particular real-time operating system
(RTOS). Adherence to the requirements stated in the SCA
standard makes it easier (but not trivial) to recompile and
test a component for a different operating system (from
VxWorks to INTEGRITY or vice-versa, for example).

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 The standard, however, does not refer to SHPs at all.
Waveforms typically contain content that needs to be loaded
towards DSP and FPGA processors. SHPs do not support
POSIX and are often not CORBA capable. This provides
the following main challenges for dealing with SHPs:

• Functionality written for one SHP is not easily
portably to another (for example, Xylinx FPGA to
Altera FPGA)

• It is difficult to control functionality on SHPs
(change parameters, send start/stop messages and
so forth)

• It is difficult to send and receive data to and from
functionality on SHPs

 The technologies that we are about to take a look at are
designed to resolve all or part of these problems.

3. AUTOMATION
 Automation offloads tedious responsibility from the
engineer to tooling. The tool can guide the engineer through
visualization, validation, and generation by using
automation.
 Offloading tedious responsibilities means that the
engineer can focus on the actual functionality of the
components, rather than the nitty gritty detail required by
standards and communication busses.
 This naturally begs the question as to how much of the
work can be automated. For all the patterns discussed in this
paper, visualization and validation are natural candidates.
They provide the engineers with an easy way to express and
check their design. Generation can be divided into two main
categories: the domain profile and compilable source code.
 Domain profile generation for all patterns is
straightforward. The source code required is different for
each pattern. This paper looks at that in more detail in the
following sections.

4. AVAILABLE TECHNOLOGIES

 As stated above, the SCA standard has so far paid little
attention to SHPs. Projects have been using a workaround
to access functionality running on FPGAs. Functionality—
for example, a Digital Down Converter (DDC)—is
downloaded to the FPGA and an DDC_Adapter (or Proxy)
is run on a General Purpose Processor (GPP). The adapter is
the intermediate between the content on the FPGA and the
rest of the waveform. The first pattern that is covered is the
use of adapters.
 The second pattern is the Hardware Abstraction Layer
for Connectivity (HAL-C). HAL-C also uses the adapters,
but does provide a standardized way of managing
connections between the functionality on the SHPs.
 The third pattern is the Component Portability Standard
(CPS). CPS uses adapters as well, but the adapters are

standardized to the extent that the developer does not have
to manually develop them anymore.
 The fourth and last pattern extends the CORBA bus to
the SHPs. The functionality on the SHPs is able to
communicate through CORBA (GIOP) messages directly.

5. ADAPTERS

 Adapters are a flexible, powerful, and efficient way of
managing functional content on SHPs. An adapter is an
SCA-compliant, CORBA-capable software component that
runs on a GPP and provides access to functionality on an
SHP.
 Take, for example, a platform that consists of an FPGA
and a GPP processor as shown in Figure 1. The platform
contains two logical devices, which implement the
capability to load and execute software on the physical
FPGA and GPP. Note that the platform abstracts whether
the physical devices are Xylinx or Altera FPGAs, as well as
whether the GPP is a PowerPC or an X86.

Figure 1: Platform Model

Figure 2: Waveform model for Adapter or HAL-C

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 Figure 2 shows a section of a waveform. A number of
observations can be made by looking at Figure 2. First of
all, the DDC component does not support the CF::Resource
interface. This is not a CORBA capable component.
Indeed, this component will execute on the FPGA and
hence will not directly receive CORBA messages.
Secondly, the DDC_Adapter has the Resource interface: it
has an inPort to receive data, an outPort to send data, and a
devicePort. This last port talks to the device that loaded the
ddc component (through the SCA DeviceThatLoadedThis-
ComponentRef construct). The DDC_Adapter is the front
that manages all administrative tasks for the DDC
component.
 Figure 2 seems to indicate that the DDC_Adapter will
receive data through CORBA and this is certainly one of the
possibilities. The adapter could receive data through
CORBA, and write it to FPGA memory. The FPGA
operates on it and sends the data back. The disadvantage of
this is immediately clear: the performance will not be the
most optimal.
 The SCA standard states that data should flow through
CORBA, but other transports can be used for performance
reasons. However, the connection needs to be initiated
through the SCA interfaces, even if other transports are
used.
 Hence the connection to the inPort and from the outPort
could be used by the DDC_Adapater to configure a high-
speed bus that connects the FPGA to other parts of the
hardware. The implementation of this depends on the
hardware and the SCA BSP delivered by the hardware
provider. This also implies that the implementation of the
sender and receiver depends on the SCA BSP delivered by
the hardware vendor. Care should be taken to limit this
dependency as much as possible.
 The devicePort has an interface of CF::PropertySet and
is connected to the FPGA device that is executing the DDC
component. This allows the adapter to discover details about
the FPGA in use. These details are often needed by the
adapter to make system calls to write data to the FPGA’s
memory to configure the DDC and to pass data to and from
the DDC.

5.1 Portability
 The portability of this particular solution is fairly poor.
The adapter is typically not POSIX compliant; it uses
system calls to communicate with the DDC. The adapter is
thus tightly coupled to the platform in use; most of this
dependency is towards the SCA BSP. It is also tightly
coupled to the DDC.
 The DDC itself is written for the particular FPGA in
use and usually also has platform IP blocks integrated in it.
 Hence neither the adapter nor the DDC itself are
portable. However, using the adapter ensures that the other
parts of the waveform are still portable.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

5.2 Ease-of-Use
 The use of adapters implies that the developer has a lot
of extra work to do to make the DDC work in an SCA
setting. This is also fairly detailed and expert work, as the
developer has to be aware of a lot of the inner workings of
the SCA, the platforms SCA BSP and the workings of the
FPGA code.
 One of the most significant pieces of work for the
developer is to make it such that connections between the
components can be created based on the contents of the
waveform description (SAD). Connections require location
transparency, which comes at a cost. Waveforms that use
the straight Adapter pattern often omit this location
transparency. The HAL-C pattern in the next section
improves on this.
 The second major piece of work is to ensure that the
upper layers of the waveform are not affected by the
Adapter pattern. It is important to ensure that the upper
layers of the waveform are portable, even if the lower layers
are not.

5.3 Performance
 The performance of this solution can be very good.
Typically, the adapter is not involved in data transport, but
all data is transported over high-speed connections that the
FPGA is connected to. This allows the developer to avoid
any overhead and get the most out of the hardware.

5.4 Automation
 The Adapter pattern can not be automated for the
general case since there is no standard to follow that dictates
what the code for the adapter and the SHP content should
look like.
 However, automation can be achieved for a particular
platform. That is, generation of the adapter as well as the
FPGA component code can be automated for a particular in-
house or COTS platform. This would make that particular
platform easier to use.
 Automation for a platform could completely generate
the source code required for the implementation of the
adapter and could generate skeletons for the code that needs
to execute on the SHP. All the developer would have to do
is extend the skeleton with functional signal processing
code.

6. HARDWARE ABSTRACTION LAYER FOR
CONNECTIVITY

 The Hardware Abstraction Layer for Connectivity
(HAL-C) [1] pattern does not look any different than the
Adapter pattern, where the application and platform design
is concerned. That is, the platform and application external
interfaces and connections look exactly as shown in Figure
1 and Figure 2. The difference is in the internals of the

adapter and the DDC. The HAL-C standard is documented
in SCA change proposal 237 [2].
 HAL-C addresses several portability problems with the
portability of the Adapter pattern. It describes a
communication API to isolate the software from the
communication mechanisms available in the hardware. The
idea is that each component has an internal functional core
that is wrapped in libraries (for the C/C++ language) and IP
blocks (for VHDL) that interface the functional core with
the transports.
 HAL-C describes how to set up connections between
components; it does not describe the data transport over
these connections. That is left to the designer. The result of
this is that HAL-C delivers greater portability of waveforms
between platforms, but not portability of components within
waveforms since components are tightly coupled due to the
way they send data over the connections.

6.1 Portability
 Portability of the waveform from one platform
implementing HAL-C to another platform implementing
HAL-C would increase significantly. However, components
are tightly coupled; hence HAL-C does not make it easier to
build a library of components that can be re-used across
waveforms.
 The thing to keep in mind with respect to portability at
the FPGA level is that this is not really achievable
according to many practitioners. The functional code
running on FPGAs is very susceptible to differences in
timing, for example. Hence, portability can never be
guaranteed, but it can be improved.
 Portability can be further improved through the use of
model-driven development techniques for functional
content. Tools such as MathWorks Simulink used in
combination with Xilinx System Generator allow a
developer to include IP blocks that manage the HAL-C
implementations, together with blocks describing the
functional behavior for components. This seems like an
interesting approach that can further increase portability of
code across platforms.

6.2 Ease-of-Use
 HAL-C pushes more work to the SCA BSP, namely the
implementation of the connection handling. This means that
the individual developer does not need to manage this
anymore. HAL-C provides location transparency and makes
it easier for the developer to create connections between
components, regardless of where these components are
deployed. The developer can build the functionality on top
of the connection handling.
 The developer still needs to decide on a way to
encode/decode the data that needs to be sent over the
connection. HAL-C does not cover this.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 The developer would also need to write the adapters.
Many developers write one single adapter for an FPGA or
DSP. The FPGA and DSP might contain multiple different
pieces of functionality, which would normally go into
multiple components. However, DSPs and FPGAs often
only take one image and hence the components are
combined into a monolithic load at compile time. This is
then managed through a single adapter. This does limit the
deployment and portability options of the waveform.

6.3 Performance
 HAL-C does introduce some infrastructure code to
manage the connection. However, this code is relatively
light and does not typically introduce a huge performance
overhead.

6.4 Automation
 HAL-C defines an API. Hence, it is possible to
generate implementation skeletons for components. The
skeletons would contain all the code that is required to use
the components in an HAL-C infrastructure. The user can
add functional code into those skeletons.
 Adapters can not be directly generated based on the
HAL-C specification only. An adapter manages three
different types of requests: properties, connections, and
start/stop commands. HAL-C does not completely describe
how properties and start/stop commands should be
implemented; however, this could be done with a small
extension to the HAL-C standard.

7. COMPONENT PORTABILITY STANDARD
 The Component Portability Standard (CPS) [2] builds
on top of the HAL-C standard. The CPS goes beyond HAL-
C and standardizes more aspects of a component’s life-
cycle.
 CPS standardizes not only creating connections
between components, but provides components with a
method-based connection on its ports, where HAL-C
provides a stream-based interface. CPS further provides
component life-cycle and configuration options like start,
stop, configure and query.
 In other words, the CPS standard treats components on
SHP processors similar to components on GPP processors.
 The CPS achieves this by defining a standardized
adapter for every SHP component. The adapter translates
CORBA messages to the SHP component. The adapter is
standardized, which means the user does not have to
develop a custom adapter for every component. However,
the standard is flexible enough to allow users to write their
own adapters if required for performance reasons.
 The platform for a CPS application looks as depicted in
Figure 1; however, the application model looks completely
different and is depicted in Figure 3. The main difference is
that an adapter is no longer present. As mentioned above,

CPS handles adapters automatically and the user does not
need to worry about them anymore.

Figure 3: Waveform model for CPS

 One of the main benefits of this is that the waveform
model no longer depends on whether a CPS component is
used. The DUC component could have multiple
implementations: one for a DSP, one for an FPGA, and one
for a GPP. This type of flexibility is not achievable through
the adapter or HAL-C patterns.
 The CPS standard puts much more responsibility at the
SCA BSP level. This responsibility has been moved from
the individual component level to the infrastructure level.
This also implies a higher level of overhead. CPS does try
to minimize the amount of overhead as much as possible
and enables optimizations such as zero-copy communication
whenever possible.
 CPS is the first standard that uses a componentized
approach to running functional content on SHPs. An
application using CPS can use multiple components in the
physical layer of a radio. CPS ensures the components are
deployed and connected correctly. The CPS approach can
be much more granular than the adapter of HAL-C
approach. This provides more options during deployment
time, but also stresses the SCA CoreFramework and the
hardware more to deploy the waveform correctly.

7.1 Portability
 Portability with CPS is increased, though the problem
with timing at this low level has not been removed. CPS
abstracts communication to the operation level. In HAL-C a
component would be fed a stream of data, but the
component itself would have to ‘know’ what that data
means. This implies that there is coupling between the
receiver and sender of the data. In CPS, the component
would be fed a stream of operations with parameters. The
receiver is now decoupled from the sender: they are only
related through the interface.
 This means that CPS components are re-usable between
waveforms, whereas HAL-C components are not. This
helps engineers to build a library of components and re-use
them in different waveforms.

7.2 Ease-of-Use

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 The fact that CPS components receive operations with
parameters also makes it easier for developers to write code
for these components. The amount of code that needs to be
written has been reduced, since the marshalling and un-
marshalling code is already included in the CPS
infrastructure code.

7.3 Performance
 The CPS infrastructure layer performs more work than
the HAL-C infrastructure layer. The work that the CPS
infrastructure performs is functionality that the developer
typically would have to write himself for HAL-C. The
functionality has to be included somewhere.
 The implication here is that a developer has more
control over the work done in the critical path of a
component in HAL-C. Hence HAL-C can be optimized
more than CPS. However, in the general case, these two
patterns would have comparable performance.

7.4 Automation
 CPS as a standard has excellent potential for
automation. Every component has an interface that is
expressed in the visual model. This interface completely
defines what messages the component can receive and
hence what the component implementation should look like.
This holds for both DSP as well as FPGA processors.
 A code generator can completely generate the skeleton
for the component and the user can extend it.

8. CORBA
 CORBA has been used extensively on GPPs in the past
in systems that range from embedded control to radar to
consumer electronics. Over the years CORBA has proven
that it can provide excellent performance in embedded
systems. However, a lot of people are still not convinced
that CORBA is the ideal solution to meet the stringent real-
time requirements that SDR systems have to adhere to.
 Fielded SCA/SDR radios have proven that these fears
can be put to rest when using high-performance, low-foot
print CORBA ORBs. However, using a high-performance
ORB itself is not sufficient: care must also be taken to
design the system properly so as not to inadvertently
introduce performance bottlenecks.
 Since GPP components already use CORBA, it makes
sense to try and extend the CORBA bus to the SHPs.
Extending the CORBA bus to the SHPs is the easiest way to
communicate from the GPPs to the SHPs. However, it
might not be the best way to communicate between SHPs or
within a particular SHP class (cases in which both HAL-C
and CPS shine).
 A DSP processor is different from a GPP, both in
execution model and in programming languages. CORBA
ORBs are available on DSPs and programming these DSPs
is not very different from programming a GPP.

 An FPGA processor, however, is completely different
from a GPP, both in execution model and in programming
languages. CORBA ORBs for FPGAs are just now
becoming commercially available. Practitioners have a lot
of questions on both performance and programmability of
components that use CORBA on FPGAs.

8.1 Portability
CORBA is a standard managed by the OMG. It includes
both a messaging standard and a standard programming
API. This API has been defined for GPP and DSP
processors, the latter through the CORBA/e standard. These
standards ensure portability between devices that can run
CORBA or CORBA/e compatible ORBs.
 This is different for FPGA processors. There is no
standardization of CORBA at all; hence it is likely that a
component implemented for an FPGA ORB of vendor A
will not work with the FPGA ORB of vendor B.

8.2 Ease-of-Use
 Writing CORBA code for a DSP is not very different
from writing CORBA code for a GPP. Once a developer has
mastered CORBA he will be able to apply this knowledge
to the world of DSPs effortlessly.
 The same cannot be said for the world of FPGAs. A
typical FPGA engineer knows how to manage streams of
data and how to buffer the data and send it into the proper
signal processing algorithms. CORBA messaging is
significantly different compared to data streams. CORBA
messages are sent to a particular object, are related to a
particular operation, and contain data as payload. These
concepts are often new to FPGA engineers who usually
have a hardware background, as opposed to a software
background.
 Sending data to an FPGA that supports CORBA will be
very easy; however, writing functionality for an FPGA that
uses CORBA would require a shift in thinking for the
FPGA engineers. The technology is too new to decide
whether this shift in thinking is easily overcome.

8.3 Performance
 CORBA messaging can be made very efficient. Typical
CORBA messaging uses the CORBA GIOP protocol over
TCP/IP. The latter adds significant overhead. However, it is
possible to run pure CORBA communication directly over,
for example, a RapidIO bus. SHP processors can be directly
connected to that bus and hence communication can be done
efficiently.
 This is certainly true for communication between a
GPP processor and an SHP processor. The data has to go
over the bus and GIOP is as good a protocol as any.
However, SHP processors frequently have to communicate
together. From FPGA to FPGA, FPGA to DSP, DSP to DSP

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

and so forth. Even worse, communication also happens
within an FPGA or within a DSP.
 CORBA messaging is not the ideal communication bus
in these situations. The encoding and decoding of data into
the GIOP protocol is often not needed and hence slows
down communication. Some other form of communication
would be better suited.

8.4 Automation
 Different ORB vendors provide CORBA on SHP
processors. These ORB vendors specify exactly what the
code should look like for a specific component; hence this
pattern can be automated without any problems, to the same
extent as CPS: Automation generates skeletons; the user
provides the functional code.

9. CONCLUSION
 This paper has presented four different standards and
has discussed many advantages and disadvantages for the
use of these standards. The one question on people’s mind
is: “Which standard will be the one used in the future?”
 This question is impossible to answer. All the standards
have good and bad qualities. Currently, projects are using a
mixture of all four standards. The technology to extend the
SCA into the SHPs is too young to declare a clear winner.
The only pattern that has been extensively used in fielded

systems is the Adapter pattern, with HAL-C close on its
heels.
 CPS is not currently available on COTS boards and
CORBA on SHP is just available commercially.
 The coming years will tell which standard people prefer
and what standard(s) the JPEO will include in future
revisions of the SCA. This process will be impacted by the
available automation for the standards. COTS vendors like
Zeligsoft are working hard on this.
 A final conclusion is difficult to give in the context of
the previous paragraph. The recommendation for now is
that projects should examine their needs, examine what
technology is available to them, evaluate the patterns and
make a sound decision based on the criteria discovered.
 If all else fails, the adapter method is tried and proven
and will work on any platform. It is very well possible to
update a waveform from an Adapter pattern to HAL-C, CPS
or even CORBA at a later stage in the game.

11. REFERENCES

[1] “Specialized Hardware Supplement to the Software
Communication Architecture (SCA) Specifications”, JTRS-5000
SP, V3.0, 27 August 2004
[2] “Extension for component portability for specialized
hardware to the JTRS Software Communication Architecture
(SCA) Specification, V3.1x, 20 January 2005

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Component-Based support for FPGA and DSP
	Search by Author
	Search by Session

