
DESIGN AND IMPLEMENTATION OF AN SCA CORE FRAMEWORK FOR A DSP
PLATFORM

Carlos R. Aguayo Gonzalez (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; caguayog@vt.edu);
Francisco Portelinha (Universidade Federal de Itajuba, Itajuba, MG, Brazil, portelinha@uti.psi.br); and

Jeff Reed (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; reedjh@vt.edu).

ABSTRACT

The Software Commuications Architecture (SCA) was de-
veloped to improve software reuse and interoperability in
Software Defined Radios (SDR). However, there have been
performance concerns since its conception. Arguably, the
majority of the problems and inneficiencies associated with
the SCA can be attributed to the assumption of modular
distributed platforms relying on General Purpose Processors
(GPPs) to perform all signal processing. Significant improve-
ments in cost and power consumption can be obtained by
utilizing specialized, more efficient platforms. Digital Signal
Processors (DSPs) present such a platform and have been
widely used in the communications industry. Improvements
in development tools and middleware technology opened
the possibility of fully integrating DSPs into the SCA. This
approach takes advantage of the exceptional power, cost, and
performance characteristics of DSPs, while still enjoying the
flexibility and portability of the SCA.

This paper presents the design and implementation of an
SCA Core Framework (CF) for a TI TMS320C6416 DSP.
The framework is deployed on a Lyrtech Quad-SignalMaster
C6416 board. The SCA CF is implemented by leveraging
OSSIE, an open-source implementation of the SCA, to sup-
port the DSP platform. Prismtech’s e*ORB and DSP/BIOS
are used as the middleware and operating system, respec-
tively. A sample waveform was developed to demonstrate
the framework’s functionality. Benchmark results for the
framework and sample applications are provided.

1. INTRODUCTION

The Software Communications Architecture (SCA) was de-
veloped by the Joint Tactical Radio System (JTRS) pro-
gram of the US Department of Defense to standardize the
development of Software Defined Radio (SDR) technology.
The SCA was developed to enhance system flexibility and
interoperability, while reducing development and deployment
costs. Early implementations of SCA SDRs have struggled
to meet performance, cost, size, and power requirements.
Arguably, many of the these problems have their origin
in the assumption of a modular, distributed platform based
on General Purpose Processor (GPP) to perform all signal
processing.

In order to overcome these problems, it is necessary to
make better use of specialized hardware optimized for signal
processing. Digital Signal Processors (DSP) are specialized
microprocessors designed specifically for real-time digital
signal processing. However, DSPs have been relegated as

secondary elements in the SCA, requiring a Hardware Ab-
straction Layer (HAL) for connectivity. Ongoing improve-
ments in development tools and middleware technology al-
low the implementation of SCA systems using only DSPs.
By following this approach the flexibility and reusability
brought by the SCA are complimented by the cost and
power efficiency of DSPs. If taken to a logical extent, this
approach could eliminate the need for a GPP on certain SDR
implementations. In this paper we present the design and
development of an SCA implementation for a homogeneous
TI DSP platform.

2. SYSTEM ARCHITECTURE

The goal of this project is to study the repercussions of imple-
menting the SCA in an optimized DSP platform. Therefore,
we aim to minimize, or eliminate, the use of GPPs for this
implementation. We leveraged the existing implementation
of MPRG’s Open Source SCA Implementation::Embedded
(OSSIE) [2], by porting it to the C64 platform. The system
implements the SCA version 2.2 in C++. Our development
environment is TI Code Composer Studio running on a
Windows PC. Most of the development is done using the
Device Accurate simulator of the C6000. The final target
platform is a Signal Master Quad from Lyrtech.

2.1. Software Architecture Elements

The general software structure can be seen in Fig. 1, show-
ing the three different components of the SCA Operational
Environment (OE): the Core Framework (CF), ORB, and
operating system. In this project we used OSSIE as the CF,
e*ORB from PrismTech as middleware, and DSP/BIOS as
Real-Time OS. All of them are available commercially or as
open source. Services (e.g. Log, Event, and Naming Services)
are not considered in the initial implementation.

DSP/BIOS is a scalable real-time multitasking operat-
ing system designed specifically for the TMS320 family
of DSPs [4]. It is developed and maintained by Texas
Instruments. DSP/BIOS is built in modules which allows
developers to reduce the footprint to a minimum by only inte-
grating the features that are strictly necessary for operation. It
supports preemptive multithreaded operations thanks to a real
time scheduler and provides memory management modules
for low overhead dynamic memory allocation. DSP/BIOS is
not POSIX compliant, as required by the SCA, forcing a
slight deviation from the specifications. The C6000 family
of processors does not include a memory management unit.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Fig. 1. Software Structure

The ORB used in this project is PrismTech’s e*ORB
SDR C++ version for DSP. This is a custom port of their
commercially available C version, a very optimized, modular
implementation of minimum-CORBA as standardized by
the Object Management Group (OMG). However, Prismtech
has released this version to the general public [3]. e*ORB
supports the Extensible Transport Layer (ETF) which allows
custom transport plug-ins.

2.2. Platform

The target platform for this project is the SignalMaster Quad
C6416 from Lyrtech [1]. This high performance board con-
tains four TI TMS320C6416T DSPs and two Xilinx Virtex II
FPGAs divided into two clusters (one FPGA and two DSPs
each). The system runs at 720 MHz and has 128Mbytes
of SDRAM memory per DSP. There is a high speed bus
between both FPGAs implemented using LVDS. The com-
munication between two DSPs within the same cluster can be
implemented using shared memory or FastBus, a proprietary
protocol developed by Lyrtech. In this project, only DSPs
are used for signal processing and framework functionality.
FPGA operation is limited to inter-DSP communications.

3. REAL-TIME IMPLEMENTATION

The bulk of this project consists of porting the existing
version of OSSIE to the C64 platform. The original OSSIE
runs on an x86 platform running Linux with omniORB as
middleware.

As with any other software project, development tools
play a very important role. We use Code Composer Stu-
dio (CCS), an integrated development environment for TI
DSPs, with version 5.1.0 of its Code Generation Tools.
This particular version lacks the Standard Template Library
(STL) and has limited support for C++ exceptions. The STL
provides template classes such as Vector, widely used in the
original OSSIE. In the absence of exception support, we use
CORBA Environment variables coupled with a set of macros,
distributed as part of e*ORB, for error handling. These char-
acteristics forced significant changes in the original OSSIE
source code.

Fig. 2. Processing Node Deployment Scheme

An important aspect in the development of this project
is the lack of a Memory Management Unit (MMU) in
the C64. The MMU is responsible for handling memory
access requests. It takes care of virtual memory management,
paging, memory protection, and bus arbitration. Its job is
to take pieces of dispersed physical memory and present
them to the requesting process as a contiguous block. In
porting OSSIE to the MMUless C64 platform all memory
management is the responsibility of the developer and certain
OS calls, such as fork(), are not supported.

Another important area in the development is the porting
of all scheduling calls to the preemptive, multithreaded
DSP/BIOS. The main difference from a traditional fair-share
OS is that the active task with the highest priority will be
scheduled for execution; no matter how many other tasks
are waiting, or for how long. This characteristic allows de-
terministic execution, crucial in real-time systems, but makes
the developer completely responsible for task scheduling and
priority assingment.

The functionality of the Core Framework is split between
Host and Remote nodes. The Host node includes an instance
of DomainManager, while a remote node includes an in-
stance of DeviceManager and other Devices. Fig. 2 shows
the CF interfaces allocated to each node. There are other
possible strategies, for example having a node host both
DomainManager and DeviceManager, while the rest of the
nodes in the platforms only host Devices. We decided on
this approach to stress our implementation and evaluate the
degree of flexibility delivered by it.

3.1. XML Parsing Strategy

The SCA specification requires the reading of the XML
Domain Profile at runtime to obtain deployment and con-
figuration information. For example, the ApplicationFactory
interface must read a SAD file in order to know what
components are included in a given waveform and their
connections. Parsing an XML file is a complicated task for
a DSP and there are not many tools available to perform
this. In order to facilitate development, reduce memory
requirements, and speed execution, we developed a two-
step parsing scheme designed to facilitate Domain Profile
parsing by the DSP. In this scheme, an offline translation
of the XML files into a simplified format is performed. The
simplified format only keeps the most important information
from the profile files and stores it in a simple text file. The

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Fig. 3. Simplified Parsing Strategy

information kept includes all the data required for successful
deployment and configuration of waveforms and components:
UUIDs, descriptors locations, connections, etc. The informa-
tion discarded represents information not indispensable for
waveform deployment and operation: descriptions, headers,
authors, etc. Even though the discarded information is im-
portant, and therefore must be provided when developing an
SCA component, the main framework functionality does not
require it for proper operation. A graphical representation of
this approach is shown in Fig. 3. It can be argued that this
approach is not SCA compliant. However, having this two-
step parsing does not affect the design cycle of traditional
SCA waveforms and only adds one extra step at installation
time. The savings in time and complexity, along with the
uncompromised portability of the resulting waveforms justify
this decision.

We implemented the XML translator in C++ as a stand-
alone application. It uses the Xerces parser and the parser
library from the original OSSIE project. The translator parses
an SCA compliant XML file, gathers the required informa-
tion, and writes the translated file with a .c64 extension,
preserving file names and directory structure. These simpli-
fied .c64 files are then parsed at real time by the framework
running on the C64.

3.2. File System

Our hardware platform does not have long-term storage capa-
bility. Therefore, only a partial file system is implemented in
this project. The host computer’s hard drive and file system
are used by the framework. This is accomplished by CCS
I/O utilities and the JTAG interface.

To implement the file system interfaces we relied on IO
functions from the TI run-time support library. However, the
access allowed by this library is limited primarily in terms
of directory manipulation. Therefore, functionality such as
mkdir, rmdir, mount, and unmount is not implemented.

3.3. Software Component Deployment

The SCA specifies two equivalent mechanisms to launch
software components. One is using ResourceFactory and
the other using ExecutableDevice. The ExecutableDevice
interface typically represents processors with a multithreaded
operating system capable of launching software components.
ExecutableDevice has access to the OS directives to schedule
the component. ResourceFactory performs the exact same

Fig. 4. Sample QPSK Application Waveform

functionality and is used as a local tool to deploy compo-
nents without a DeviceManager. In this project we use the
ResourceFactory interface to deploy components in the host
node and an ExecutableDevice for remote nodes.

The implementation of these interfaces uses DSP/BIOS
task scheduler. Every time a new component instance is
required, a new task is created and scheduled. The Resource-
Factory and ExecutableDevice implementations are in charge
of managing the new task’s priority. Because of the lack of
an MMU and long-term storage capability, it is necessary to
have all the tasks loaded in program memory before they can
be scheduled.

4. SAMPLE APPLICATION

In order to demonstrate the framework functionality, two
sample applications are developed. These applications are
intended for demonstration purposes and nothing else. No
extensive signal processing is performed. The main goal for
these applications is to verify the operation of the framework
and to corroborate the feasibility of deploying SCA compliant
waveforms onto the C64 platform.

The first application includes three simple components:
BPSK Modulator, Channel, and Demodulator. The BPSK
modulator generates a random stream of 1’s and -1’s. The
stream is passed to the Channel component which adds Gaus-
sian noise to the In-Phase and Quadrature components of the
stream. The Demodulator only displays the constellation di-
agram of the signal. The second waveform includes a QPSK
demodulator instead of BPSK. Fig. 4 shows a graphical
representation of the second waveform. Both waveforms were
successfully deployed on a single chip configuration using the
ResourceFactory interface to launch the components.

5. RESULTS

In this section we present general profiling results for the im-
plementation. The framework capabilities are demonstrated
by switching back and forth between two waveforms. Code
Composer Studio (CCS) is used to control the execution, dis-
play information and error messages, and enter selection val-
ues. Keep in mind that from the framework perspective there
is no difference between deploying these simple waveforms
and deploying more sophisticated ones. The source code for
the framework, XML translator, and sample application is
openly available and can be downloaded from [2].

5.1. Profiling

Profiling was performed on the framework and application
using two different metrics: memory footprint and cycle

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

count. The former represents the extra memory space nec-
essary to suport the SCA framework. The latter represents
the amount of overhead imposed by the framework in terms
of processing power.

All results were obtained from a single-chip configuration.
That is, all framework and waveform components were
collocated within the same processor; they do not include a
transport layer.No optimizations were performed in either
the framework or the waveform components. All performance
tests were carried out using the C6416 Device Cycle Accurate
Simulator and the Code Composer Studio profiler. It is
very important to emphasize that these results represent
initial measurements and are subject to further investigation,
validation, and optimization.

5.2. Memory Footprint

Memory allocation results are obtained from the .MAP file
generated by CCS Code Generation Tools. This file contains
a maping of all sections allocated in memory. It includes
program memory and data memory. All dynamic memory
allocation requests are served from a memory pool or heap,
which is also included in the .MAP file. All profiling results
are presented in 8-bit bytes. Note that each DSP on the
SignalMaster Quad board has 128M of external memory
(ERAM) besides the 2K Bytes of on-chip memory (ISRAM).

The total memory used by the system is shown in Table I.
It represents a little more than 1% of the available mem-
ory per DSP in the platform. These results correspond to
the single-chip implementation of both, BPSK and QPSK,
sample waveforms. The footprint is directly related to the
application’s functionality and the number of components.
Table II shows the memory breakdown by major components.
The .ERAM$heap field represents the total heap available to
serve dynamic memory allocation requests from the applica-
tion. The footprint contribution from support libraries (e.g.
Generic Runtime Library, Math Library, etc) is considered
under the “Other” category. Fig. 5 shows a graphical repre-
sentation of the main components’ contribution to the total
memory allocation.

TABLE I

TOTAL MEMORY ALLOCATION

Memory Type Bytes
ISRAM 78096
ERAM 1383145
TOTAL Memory Usage 1461241
TOTAL Memory Available 120000000

Due to space limitations, we do not break down the
memory footprint for each major component. Instead, we
comment on some important aspects and state some qualifiers
for these results.

In the break down of the memory requirements for the
Core Framework (CF) we find that almost 70% of the total
memory allocated for the CF comes from the C++ mapping
of the SCA CF IDL interfaces. It is important to note that

Fig. 5. Memory Footprint Summary

the CF IDL descriptions, cf.idl file, contain all the interfaces
defined in the SCA CF, including some that are not used in
single-processor operation (e.g. Device, DeviceManager). It
is possible to optimize the C++ bindings of IDL interfaces
by adding more control to the IDL compiler, enabling more
selective code generation (e.g. for specific interfaces generate
stub only, or skeletons only, or nothing). This approach opens
the door for potentially large improvements depending on
how much of the IDL interfaces are being used. This is a
well understood approach, although it is not implemented in
this project. Another important qualifier for these results is
the absence of Device-related interfaces. No DeviceManager
or Device interfaces were implemented. The methods in
DomainManager relative to Device and service registration
and unregistration are not implemented in this version as
well.

The memory requirement results for the application in-
clude both BPSK and QPSK components, along with Chan-
nel, Demodulator, Resource Factory, Assembly Controller,
and the user interface. The main waveform components
have a very similar footprint as expected. However, the
functionality of these components is extremely simple. More
complex waveforms will require more memory.

The results correspondent to the ORB are from a prelimi-
nary release. Further development and optimization has been
performed on e*ORB and these results may not accurately
represent the memory footprint of the latest version.

TABLE II

MAJOR COMPONENTSCONTRIBUTION

Memory Type Bytes
CF 556555
Parsers 31511
ORB 212412
Application 385624
Sub-Total 1186102
.ERAM$heap 131072
Other 144067
TOTAL Memory 1461241

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

5.3. Performance Profile

CPU Cycle requirements are collected for the most significant
sections of the implementation. The sections profiled were
domain initialization and waveform creation. The results are
shown in Table III. Domain initialization is not application
dependant and includes the instantiation of Domain Manager,
ApplicationFactory, and ResourceFactory. Waveform creation
represents the execution of ApplicationFactory’s create(). It
includes descriptor parsing, task scheduling and initialization,
and component connection. Keep in mind that waveform
creation is waveform specific and these results only apply
to our test waveforms.

TABLE III

CF TASKS PERFORMANCEPROFILE

Task Cycles Time(sec)
Domain Initialization 2365664 3.286E-03
Create Application 10997946 1.527E-02

5.3.1. ORB Profiling:ORB performance has a great im-
pact on the system because all inter-component communica-
tions are established using CORBA messages. Two specific
scenarios are used for profiling:

• Invocation: roundtrip cycle count for a simple method
invocation with no arguments.

• Marshaling: roundtrip cycle count for a simple method
invocation with basic arguments.

Two different argument types were evaluated:

1) Single Data Type
2) Sequence (1024 elements)

In our version of e*ORB, even for interfaces with no
arguments defined in their IDL definitions must receive a
CORBA::Environment variable as an argument due to the
lack of exception support. In both scenarios, Client and
Server where launched as separate DSP/BIOS tasks with
priorities 2 and 1, respectively. The e*ORB profiling re-
sult for different primitive data types are summarized in
Tables IV & V.

An interesting point is that the very first time a client
makes a request to a server, the execution takes longer than
subsequent requests, as shown in Table IV. This extra delay
is due to the binding of new connections, which is a one-
off overhead. Subsequent calls are deterministic. There are
possible optimizations for this delay and PrismTech is per-
forming further investigation to remove any initial invocation
problems if they exist. All results in Table V are from deter-
ministic (after the initial) requests. A graphical representation
of the profile is shown in Fig. 6. After observing these results,
the need for block processing in an SCA system is evident.
It takes 4,208 clock cycles to make a roundtrip marshalling
call with a single float, while it takes 6,908 clock cycles to
send a sequence with 1,024 floats. Averaging, it only takes
6.74 clock cycles to transfer each element in the sequence.

TABLE IV

E*ORB C++ FOR DSPS INVOCATION PROFILE (CPU CLOCK CYCLES)

Task Clock Cycles
Initial Invocation 4184
Subsequent Invs. 4081

TABLE V

E* ORB C++FOR DSPS MARSHALLING PROFILE (CPU CLOCK CYCLES)

float char short double
Basic Marsh. 4208 4127 4142 4124
Seq. Marsh. 6908 5732 6072 8342

5.4. Impact on Data Rate Performance

The framework overhead incurred during instantiation and
waveform deployment can be arranged to happen off-line.
The only aspect of the SCA that impacts the system
throughput is the dependency on CORBA for intercomponent
commnications. The maximum system data rate depends
on many factors: algorithm processing delays, framework
delays, analog to digital conversion rate, etc. In order to
isolate the impact of the framework, we use the results shown
in Table V to estimate an upper bound for the system data
rate.

Ignoring processing delays, the maximum achievable data
rate is given by1/(Tfr + Tm + Ttr) whereTfr is the delay
due to interface adapters,Tm is the delay due to middleware
processing, andTtr is the delay due to transport mechanisms.
In our system, we are only consideringTm because no
interface adapters are required and no transport mechanisms
have been developed at this time.

Tm is given by:

Tm =
Dt · Ss

Np · n
(1)

Where Dt is the measured transfer delay as shown in
Table V. Ss is the number of samples per symbol.Np is
the packet size andn is the number of bits per symbol. To
estimate the maximum data rate allowed by the framework,
we assumeSs = 8 and n = 1. The clock speed in our
system is 720e6. Substituting these values into equation (1)
for a single float type transfer, that according to Table V takes
4,142 cycles, the maximum data rate achievable is21,728bits
per second. However, if we consider sending a sequence of
1,024 floats, the transfer takes 6,072 clock cycles allowing
a maximum data rate of15,177,865bits per second. This
result highlights the need for block processing within the
SCA, trading off latency and performance.

6. CONCLUSIONS

One of the main concerns of applying the SCA is the heavy
infrastructure required to support it. In order to ease require-
ments in terms of performance, cost, and power consumption,
we propose an implementation of the SCA Core Framework
for a TI C64 DSP platform. This approach minimizes the

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Fig. 6. e*ORB C++ for DSPs Marshalling Profile (CPU Clock Cycles)

use of GPPs and is demonstrated by deploying two sample
waveforms. In this implementation, all the framework man-
agement tasks are performed by the DSP. Minor deviations
from the specifications are required which do not affect
the functionality or portability of either the framework or
applications.

The total memory footprint of our complete implemen-
tation is about 1.5MB, which represents about 1% of the
128MB available per DSP in our platform. Performance
benchmarks show that, although CORBA introduces some
delays and overhead, the overall effect can be reduced by
sending packets of data instead of single elements. The source
code for the framework and sample waveforms is available
open-source at [2].

ACKNOWLEGMENT

This work was supported by Texas Instrument, Prismtech,
Mercury Computer, and Lyrtech.

References

[1] Lyrtech signal processing website. Available at: http://www.lyrtech.com.
[2] Open-source sca implementation::embedded. Available at:

http://ossie.mprg.org.
[3] Prismtech website. Available at:http://www.prismtech.com.
[4] Texas instruments inc. website. Available at:http://www.ti.com.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

