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ABSTRACT 
 
Waveform partitioning – the process of assigning waveform 
components to processors – is a key step in the design of 
waveforms for implementation on multi-processor systems. 
For software radios employing processor pooling, waveform 
partitioning is a recurring task which needs to be performed 
in near real-time to support the run-time addition and 
removal of waveforms. This paper presents three different 
algorithms for automating the waveform partitioning 
process, compares the performance of these algorithms, and 
describes how partitioning algorithms can be incorporated 
into an SCA-compliant software radio. Details are given on 
how these partitioning algorithms are being integrated into 
OSSIE – the open source SCA implementation for 
embedded systems hosted by Virginia Tech.  
 

1. INTRODUCTION 
 
Software radios are frequently implemented on multiple 
processor platforms necessitating the partitioning of 
waveform components across the processors. For single 
waveform radios, this partitioning can be pre-computed. 
However, many JTRS radios and SDR base stations are 
intended to support multiple simultaneous channels possibly 
with the different waveforms operating on different 
channels. If the radio is designed so each channel has its 
own dedicated processing hardware, then the partitioning 
solution can again be pre-computed. But dedicating 
processing hardware to each channel is less efficient than 
allocating resources from a pool of processing elements [1]. 
With a multiple-channel multiple-waveform software radio 
implemented on a dynamic pool of processing elements, 
pre-computation of partitions is not feasible and a dynamic 
partitioning solution should be adopted. 
 Fortunately, the Software Communications 
Architecture (SCA) was designed to support dynamic 
partitioning of waveform components over modular 
platforms where the number and characteristics of 
processing elements can change over time. The 
ApplicationFactory interface, part of the SCA Core 
Framework, is intended to collect information about the 

underlying platform and the processing requirements of the 
waveform components. A routine can use this information 
to guide the allocation of processing resources and partition 
waveforms so that waveform components are assigned in 
such a way to minimize power consumption or maximize 
some other design objective. 
 The problem of solving for the optimal assignment of 
components to devices is analogous to a knapsack problem 
– a classic integer programming problem. Traditionally, in a 
knapsack problem, hikers must pack out a number of 
different items of various values and sizes by assigning 
items to the knapsacks where different knapsacks have 
different capacities. The objective of the problem is to find 
the allocation of items that maximizes the total value as 
constrained by capacities of the knapsacks. For the purposes 
of waveform partitioning in a processor pool, each 
processor is a “knapsack” and each waveform component is 
an “item” whose “size” is the resources consumed by the 
component (e.g., cycles or CLBs). While the equivalence 
between the waveform partitioning problem and the 
knapsack problem implies that solving for an optimal 
partition is unfortunately an NP-complete problem, it also 
means that we can draw on existing operations research 
literature which has studied knapsack related problems (e.g., 
[2] and [3]) to identify candidate algorithms for waveform 
partitioning. However, this problem differs from the 
knapsack problem due to the existence of multiple 
constraints and that the “size” of the “items” vary by 
“knapsack”. 
 This paper presents algorithms for dynamically 
partitioning SCA waveforms on hardware platforms 
utilizing processor pooling, describes how the algorithms 
are incorporated into Virginia Tech’s open source SCA 
implementation – OSSIE [4], and presents the results of 
simulation studies into the performance of the candidate 
partitioning algorithms.  
 

2. WAVEFORM PARTITIONING 
 
In this formulation, the waveform partitioner is tasked with 
finding the placement of waveform components that 

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



optimizes some parameter such as minimizing power 
consumption while satisfying the processing requirements.  

2.1 Formal Description of Waveform Partitioning 

To formalize this problem, we introduce some terminology. 
We say that a waveform, w, consists of a set C of waveform 
components where each component c  is to be 
implemented on some device d∈D where D is the set of 
devices (processors) available in the processor pool. A 
solution, s, is an association of each component with a 
device. For programming purposes a solution can be treated 
as a vector of length |C| (the number of components) where 
entry s

C∈

j specifies the device on which component cj is to be 
implemented. For instance, a partitioning solution, s, of a 
seven component waveform with components c0 to c7 onto a 
two device platform, D={d1, d2} might be specified as s=(d1, 
d2, d2, d2, d1, d2, d1) where s is actually one of CD possible 
solutions when every component has an available 
implementation for every device (there are 27 possible 
solutions in this example).  
 However, a radio will typically not have the requisite 
code or bit image to implement every component on every 
device. To model this reality, we say that a component c can 
be implemented on the set D(c) of devices. So there are 
actually only ( )

ic C∈ iD c×  possible solutions to search 

through. Again, not all of these implementations will be 
feasible as there may not be sufficient resources available 
on a device to satisfy the processing demands of all of the 
components specified as part of a partitioning solution. 
 We can capture this feasibility limitation as follows. If 
we denote the memory requirements of component c on 
device d as mem(c, d), the cycle requirements as cycle(c, d), 
and the processing element requirements as elements(c, d), a 
solution s is not feasible if any of (1), (2), or (3) is violated 
where max(d, mem), max(d, cycles), max(d, elements) are 
respectively the maximum amount of memory, cycles, and 
processing fabric elements available on device d. 

( ) ( ), max ,
i

i
s d

mem c d d mem
=

<∑  (1) 

( ) ( ), max ,
i

i
s d

cycles c d d cycles
=

<∑  (2) 

( ) ( ), max ,i
s d

elements c d d elements
=

<∑
i

In a processor pooling scheme, max(d, mem), max(d, 
cycles), and max(d, elements) are a function of any currently 
operating waveforms and may need to be adjusted to 
provide a safety margin for statistical resource contentions. 
With these constraints in place, and assuming we are 
looking for the solution s that maximizes some objective 
O(s) (e.g., power minimization), we can represent the 
partitioning problem as an integer programming problem as 
follows. 

 (3) 

Maximize:  O(s) 
Subject to:  (1),(2),(3)
 s(cj)∈D(ci)  jc C∀ ∈

(4) 

2.2 Techniques for Solving the Waveform Partitioning 
Problem 

Unfortunately, (4) cannot be solved as a simple system of 
equations, so we must employ search algorithms in a 
hopefully intelligent version of trial and error. This search 
process can be quite daunting as the analogous knapsack 
problem (or general assignment problem) is known to be an 
NP-complete problem and simply determining that a 
feasible solution exists is also an NP-complete problem. 
Further it is known that no polynomial-time algorithm with 
a fixed worst-case performance ratio (e.g., 50% of the 
optimum value) exists [2]. Thus the design of our 
partitioning algorithm is faced with a tradeoff between 
performance and run-time. Using the terminology presented 
in Section 2.1, the following presents three algorithms 
which can be used to generate solutions to the waveform 
partitioning problem. 
 In an exhaustive search, every possible solution is tried, 
evaluated for feasibility, and evaluated for optimality. This 
can be a very time consuming process as all ( )

i
ic C

D c
∈
×  are 

tried in the process, but an exhaustive search is guaranteed 
to find the optimal feasible partition if one exists. Referring 
to S as the set of solutions and numbering the solutions as s  
to 

1

Ss , the exhaustive search algorithm can be written as 
shown in Figure 1. 
 o  = -∞ *

 for k = 1:|S| 
  if s  is feasible k

   temp_o = O(s ); k

   if temp_o > o* 

    sol = s ; k

    o  = temp_o; *

   end 
  end 
 end 

Figure 1: Exhaustive Search Algorithm 
 
 In a local search algorithm, all solutions within the 
feasible neighborhood of the current solution, sk, N(sk) are 
evaluated for feasibility and performance. The next solution, 
sk+1 is found as 

( )
( )1 arg max

ks N s

ks O s+ =
∈

. For the purposes of 
this algorithm, we define the feasible neighborhood of s as 
the union of s with the set of feasible solutions which only 
differ from s in the assignment of a single component. The 
local search algorithm terminates when sk+1 = sk. 
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max_val = O(s );  0

continue = true; 
k=0; 
while(continue) 
 s  = s ; k+1 k

 continue = false; 
 for j=1: |C | 
  for m = 1:|D(c )| j

   ( )( )0_ , , , ,k k
m j Ctemp s s d D c s= ∈K K  

   if temp_s is feasible and O(temp_s) > max_val 
    continue = true; 
    max_val = o(temp_s); 
    s  = temp_s; k+1

   end    
  end 
 end 
 k=k+1; 
end 

Figure 2: Local Search Algorithm 

 In general, the local search algorithm converges faster 
than the exhaustive search, but is not guaranteed to 
converge to an optimal solution nor a feasible solution with 
the exact solution a function of the initial solution. To 
overcome this dependence on initial conditions, local search 
algorithms are frequently randomly restarted with different 
initial solutions. 
 The greedy algorithm presented in Figure 3 is based on 
an approximation presented in Section 7.4 in [1] where we 
only changed the meaning of the symbols and the number of 
constraint equations – from just “weight” to memory, 
cycles, and processing elements. In o(c,d) is the added value 
of assigning component c to device d. For example if 
minimizing total power consumption, o(c,d) is the negation 
of the amount of power c consumes when implemented on 
d. 
 Beginning with all components unassigned, the greedy 
algorithm iteratively considers all unassigned components 
and finds the component, c*, which has the biggest 
difference between the largest and second largest feasible 
o(c,d) for all d∈D(c). The component c* is then assigned to 
the device that maximizes o(c*,d). The algorithm continues 
until all components are assigned or feasible assignments 
are impossible. While this algorithm completes in 
polynomial time, like the local search, this greedy algorithm 
is not guaranteed to find a feasible solution or the optimal 
solution. 
 
3. AUTOMATING WAVEFORM PARTITIONING IN 

SCA COMPLIANT RADIOS 
 
In an SCA system there are two different classes of 
components – Devices that represent hardware elements and 
Resources that perform signal processing. The former are 

used to abstract platforms while the latter are used to build 
waveforms. Remember that in the SCA context, a waveform 
is the set of transformations applied to information that is  
C C= ; 
feas = true 
while(feas and C ≠ ∅ ) 
 diff  = -∞; *

 for each c∈j C  
  F  = {j ( ) :jd D c∈  ( ) ( ), max ,jmem c d d mem< , 
  ( ) ( ), max ,jcycles c d d cycles< , and  
  ( ) ( ), max ,jelements c d d elements< }; 
  if jF ≠ ∅ , then feas = false 
  else 
 ( )* arg max ,

j
j jd F

d o c
∈

= d ; 

 * *\j j jF F d= ; 

 if *
jF = ∅ , then diff = ∞; 

 else 
 ( )

*

** arg max ,
j

j j
d F

d o
∈

= c d ; 

 ( ) ( )* *, ,j jdiff o c d o c d= − * ; 

 end 
 if diff > diff*

  diff  = diff; *

  * *
jd d=  

  *
jc c=  

 end 
  end   
 end 
 if (feas) 
  *\C C c= ; 
  s(c )=d ; *

  ( ) ( )* *max , ,d mem mem c d− = *  
  ( ) ( )* *max , ,d cycles cycles c d− = *  
  ( ) ( )* *max , ,d elements elements c d− = *

 end  
end 

Figure 3: Greedy Assignment Algorithm  
 
transmitted over the air and the corresponding set of 
transformations to convert received signals back to their 
information content [5]. In other words, an SCA waveform 
is the set of software components and interconnections 
required to implement a particular wireless protocol.  
 SCA waveforms achieve a degree of platform 
independence via the operating environment provided by 
the SCA. This operating environment consists of a POSIX-
compliant Operating System, CORBA middleware, and the 
SCA Core Framework (CF). The CF provides a set of 
interfaces to deploy, manage, and configure SCA 
waveforms and platforms. It describes a set of required 
interfaces for Devices, Resources and generic management 
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artifacts. It also describes a Domain Profile, a set of XML 
descriptors that provide machine readable information about 
waveforms, resources, and platforms. 
 The SCA provides a flexible architecture where every 
waveform could run on any platform, and every platform 
could support any waveform in theory. However, this 
flexibility adds complexity to the management of a radio. 
To help cope with this complexity, several mechanisms 
based on well-known software design patterns have been 
integrated into the SCA. Of interest for our waveform 
partitioning problem, the SCA relies on an 
ApplicationFactory to instantiate waveforms. 
 
3.1 SCA Resources 
 
Given the wide variety of possible hardware configurations, 
software resources may significantly improve their 
performance by utilizing specific features of a particular 
platform, e.g., a convolutional decoder might be 
implemented on a hardware accelerator. To take advantage 
of these features, the SCA allows Resources to have 
multiple implementations to provide the same functionality. 
For example, a software component may have a general 
implementation for a GPP, and a specialized one that runs 
on a particular DSP. Implementation tradeoffs for the same 
platform are also possible. If a platform has plenty of 
memory, an implementation may be able to unroll loops or 
utilize a table implementation, improving performance at the 
expense of memory utilization. Capacity requirements may 
be different for every implementation of a Resource. 
 Resources and their capacity requirements are described 
in the Domain Profile. Each component description includes 
a Software Package Descriptor (SPD), a Software 
Component Descriptor (SCD), and an optional Property File 
(PRF). The SPD file contains a list with all of the available 
implementations for the component. Each implementation 
may have a reference to a PRF file that describes the 
particular allocation requirements.  
 
3.2 SCA Devices 
 
A Device is a special kind of Resource that provides a 
logical abstraction of a physical device. It acts as a proxy for 
the rest of the components to interact with the piece of 
hardware it represents. Because of the wide variety of 
physical devices that can be integrated into a platform, the 
SCA allows each Device to define its own capacity model. 
That is, each device can specify what services it can 
provide, how these services are quantified, and the way it 
provides this services. This capacity model is described by 
means of allocation properties and is component dependent. 
For example, a microcontroller in a platform may indicate 
that it has available 32 MB of free memory to host software 
components; an FPGA, that it has 3 MBLPs available; a 

DSP, that it has 32 MB of memory available, 500M idle 
clock cycles, one available McBSP interface, and a 
dedicated convolutional decoder coprocessor.  
 Before deploying any application, the 
ApplicationFactory obtains a list of all Devices available for 
the platform and their respective capacities. This 
information is contained in the Device Profile. Each Device 
is described by a Device Package Descriptor (DPD) and a 
SPD. The former describes the hardware part while the 
latter describes the logical part of that device. The SPD may 
also reference a PRF which describes the properties of the 
device being deployed such as serial number, processor 
type, and allocation capacities. A Device Configuration 
Descriptor (DCD) provides a list of all the devices deployed 
at startup. 
 
3.3 Dynamic Partitioning in ApplicationFactory 
 
The SCA ApplicationFactory is based on the Factory 
Design Pattern. It partitions, deploys, and instantiates 
waveforms based on information provided by the Software 
Assembly Descriptor (SAD). This descriptor contains a list 
of all the components that comprise the waveform and their 
respective connections. ApplicationFactory is expected to 
find an appropriate device on the platform to host each 
component in the waveform. This decision is based on each 
Device’s capacity model and the requirements and 
dependencies of the software components, e.g., a software 
component developed for a DSP would not be able to run 
on an ARM. Some components may require a particular 
hardware accelerator or a particular amount of memory – all 
of which must be considered by the ApplicationFactory 
when partitioning a waveform. Besides these obvious 
matches, ApplicationFactory needs to include the 
developer’s input for a predefined deployment plan and 
collocation requirements for some components. Collocation 
requirements refer to those components that need to be 
deployed on the same device for proper operation, or to 
meet performance constraints. 
 It is at this point that ApplicationFactory executes the 
algorithms described in this paper to find the best 
partitioning solution according to a predefined optimization 
criterion. This criterion could be smaller memory footprint, 
faster performance, lower power consumption, or fewer 
number of devices required. After the solution has been 
found, ApplicationFactory allocates the required capacities 
from the host devices and proceeds to launch, initialize, 
configure, and connect components. 
 
3.4 Integration into OSSIE 
 
The Open-Source SCA Implementation::Embedded 
(OSSIE) is an open implementation of the SCA, developed 
by Mobile and Portable Radio Research Group (MPRG) at 

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



Virginia Tech. It is developed in C++, runs on a Linux 
platform, and uses omniORB and the Xerces XML parsers. 
To validate the feasibility of automated waveform 
partitioning and implementation, we developed a sample 
implementation of the algorithms presented in this paper. 
They are implemented as separate classes and invoked from 
the OSSIE framework. The OSSIE ApplicationFactory 
obtains the description of the platform and waveforms from 
the XML domain profile. It then writes an intermediate file 
containing all the available devices and requested resources 
along with their respective allocation capacities. The 
partitioning classes read this file, find the best partitioning 
solution, and write another intermediate file containing the 
component-device pairs that represent the deployment plan. 
The OSSIE framework reads this output file and converts it 
into a DeviceAssignmentSequence which is used for 
waveform creation. Prior to this work, the OSSIE 
framework required an externally supplied 
DeviceAssignmentSequence.  
 

4. PERFORMANCE 
 

To inform the choice of algorithms for the partitioner, we 
developed a simulation of the waveform partitioning 
process on a pooled processing system. The simulation 
permits us to vary the number and type of devices available 
in the system, the number and type of components in the 
target waveform, and the amount of resources utilized by 
concurrent and previously allocated waveforms.  

We drove this simulation with varying number of 
devices modeled on the Texas Instruments 
TMS320VC5501. To model previously allocated 
waveforms, the available resources for each device were 
reduced by a random number drawn from a uniform 
distribution from zero to the device capacity. Each 
algorithm was then tasked with partitioning a waveform 
whose components have randomly generated processing 
requirements with the goal of minimizing total power 
consumption. This process was repeated over ten trials for 
each combinations of numbers of components and devices.  
The results of these simulations are shown in Figure 4 
where the performance of an algorithm is measured as 
fraction of the performance of the exhaustive search 
algorithm where achieving the same power level as the 
exhaustive search is assigned a 1, not finding a feasible 
solution when one exists a 0, and all other values are given 
as power(exhaustive search)/power(algorithm). Because 
power is modeled as a linear function (P = 
cycles/max_cycles × Peak_power), all feasible solutions 
consume the same power so the plots effectively depict 
feasibility percentages. 

To examine the performance for the more general case 
of a heterogeneous processing pool, we used two different 
device types – the VC5501s from before and Blackfins 

operating in their peak power consumption modes. The 
results of these simulations are shown in Figure 5 where 
relative local search performance is given as was done in 
Figure 4, but with the greedy algorithm in the place of 
exhaustive search. Unlike the previous simulation, not every 
feasible solution is an optimal solution, and the ratio of  

 
Figure 4: Average performance of partitioning algorithms with 

respect to exhaustive search in uniform processor pool. 
 

power consumption of the greedy result to the local search 
result could exceed 1 implying that the local search 
algorithm outperformed the greedy search. However, out of 
the 1200 individual trials in this simulation, the local search 
outperformed the greedy algorithm only twice. As a real-
world comparison, an OFDM waveform with 10 MHz 
channels developed by Nova Systems Solutions and 
intended for deployment on high-end platforms has nine 
components implemented over two different processors (a 
TMS3206416 and a Virtex 2V6000-6).[6] 

For this more extensive simulation, we did not perform 
the exhaustive search algorithm as it takes significantly 
longer to execute than either the greedy or local search 
algorithms as illustrated in Figure 6. More generally for the 
two deterministic algorithms (the local search was permitted 
to randomly restart up to 10 times if it failed to find a 
feasible solution), the time complexity of the exhaustive 
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search algorithm is ( )DO C   while the greedy algorithm – 

assuming an initial insertion sort of power consumption by 
component for each device – is ( )2logO D C C D+  [2].  

 
Figure 5: Average performance of local search algorithms with 

respect to exhaustive search in uniform processor pool. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

By drawing an analogy between knapsack problems and 
waveform partitioning we were able to leverage existing 
operations research literature to develop a candidate 
algorithm – the greedy algorithm – for waveform 
partitioning for run-time and off-line waveform partitioning 
for processor pools as it consistently finds near optimal 
solutions in under 100 ms even for large systems of 
processors and complex waveforms. With this algorithm 
and the existing services of the SCA run time waveform 
partitioning for pooled processors should be feasible 
 Nominally, many of the problems associated with 
distribution of waveform processing across numerous 
processors are handled by the ORB services in the SCA. 
However, the arbitrary distribution of components on a 
platform that includes FPGAs, and to a lesser extent DSPs, 
is currently problematic for these services. Also, while the 
discussed search algorithms support arbitrary mapping of 
components to arbitrary processor types, a bit image for an 

FPGA based component implementation is targeted to a 
specific location on the FPGA [7] which violates 
assumptions inherent to the search algorithms. 

 
Figure 6: Average algorithm run times for simulations in 

Figures 4 and 5. 
 
 In the coming months, we will extend this work by 
more tightly integrating the interface between the search 
algorithms and OSSIE and modifying processor constraints 
to support an arbitrary number and type of allocation 
properties. Additionally, to fully leverage the waveform 
partitioner, OSSIE will be enhanced to support multiple 
implementations of components at a framework level and to 
verify the satisfaction of component dependencies and 
collocation requirements – features not supported in the 
current version of OSSIE (version 0.5). Additionally, we 
will be examining and comparing additional algorithms for 
solving knapsack problems from [1] and [2] with randomly 
generated waveform data, externally provided waveform 
data (e.g., [6]) and waveform data generated in a previous 
study into the optimal choice of devices for waveforms. 
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