

AUTOMATED WAVEFORM PARTITIONING AND OPTIMIZATION FOR SCA

WAVEFORMS

James Neel (Mobile and Portable Radio Research Group, Wireless @ Virginia Tech,
Blacksburg, VA, USA; janeel@vt.edu); Carlos Aguayo (MPRG, Wireless @ Virginia

Tech); Jeffrey Reed (MPRG, Wireless @ Virginia Tech).

ABSTRACT

Waveform partitioning – the process of assigning waveform
components to processors – is a key step in the design of
waveforms for implementation on multi-processor systems.
For software radios employing processor pooling, waveform
partitioning is a recurring task which needs to be performed
in near real-time to support the run-time addition and
removal of waveforms. This paper presents three different
algorithms for automating the waveform partitioning
process, compares the performance of these algorithms, and
describes how partitioning algorithms can be incorporated
into an SCA-compliant software radio. Details are given on
how these partitioning algorithms are being integrated into
OSSIE – the open source SCA implementation for
embedded systems hosted by Virginia Tech.

1. INTRODUCTION

Software radios are frequently implemented on multiple
processor platforms necessitating the partitioning of
waveform components across the processors. For single
waveform radios, this partitioning can be pre-computed.
However, many JTRS radios and SDR base stations are
intended to support multiple simultaneous channels possibly
with the different waveforms operating on different
channels. If the radio is designed so each channel has its
own dedicated processing hardware, then the partitioning
solution can again be pre-computed. But dedicating
processing hardware to each channel is less efficient than
allocating resources from a pool of processing elements [1].
With a multiple-channel multiple-waveform software radio
implemented on a dynamic pool of processing elements,
pre-computation of partitions is not feasible and a dynamic
partitioning solution should be adopted.
 Fortunately, the Software Communications
Architecture (SCA) was designed to support dynamic
partitioning of waveform components over modular
platforms where the number and characteristics of
processing elements can change over time. The
ApplicationFactory interface, part of the SCA Core
Framework, is intended to collect information about the

underlying platform and the processing requirements of the
waveform components. A routine can use this information
to guide the allocation of processing resources and partition
waveforms so that waveform components are assigned in
such a way to minimize power consumption or maximize
some other design objective.
 The problem of solving for the optimal assignment of
components to devices is analogous to a knapsack problem
– a classic integer programming problem. Traditionally, in a
knapsack problem, hikers must pack out a number of
different items of various values and sizes by assigning
items to the knapsacks where different knapsacks have
different capacities. The objective of the problem is to find
the allocation of items that maximizes the total value as
constrained by capacities of the knapsacks. For the purposes
of waveform partitioning in a processor pool, each
processor is a “knapsack” and each waveform component is
an “item” whose “size” is the resources consumed by the
component (e.g., cycles or CLBs). While the equivalence
between the waveform partitioning problem and the
knapsack problem implies that solving for an optimal
partition is unfortunately an NP-complete problem, it also
means that we can draw on existing operations research
literature which has studied knapsack related problems (e.g.,
[2] and [3]) to identify candidate algorithms for waveform
partitioning. However, this problem differs from the
knapsack problem due to the existence of multiple
constraints and that the “size” of the “items” vary by
“knapsack”.
 This paper presents algorithms for dynamically
partitioning SCA waveforms on hardware platforms
utilizing processor pooling, describes how the algorithms
are incorporated into Virginia Tech’s open source SCA
implementation – OSSIE [4], and presents the results of
simulation studies into the performance of the candidate
partitioning algorithms.

2. WAVEFORM PARTITIONING

In this formulation, the waveform partitioner is tasked with
finding the placement of waveform components that

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

optimizes some parameter such as minimizing power
consumption while satisfying the processing requirements.

2.1 Formal Description of Waveform Partitioning

To formalize this problem, we introduce some terminology.
We say that a waveform, w, consists of a set C of waveform
components where each component c is to be
implemented on some device d∈D where D is the set of
devices (processors) available in the processor pool. A
solution, s, is an association of each component with a
device. For programming purposes a solution can be treated
as a vector of length |C| (the number of components) where
entry s

C∈

j specifies the device on which component cj is to be
implemented. For instance, a partitioning solution, s, of a
seven component waveform with components c0 to c7 onto a
two device platform, D={d1, d2} might be specified as s=(d1,
d2, d2, d2, d1, d2, d1) where s is actually one of CD possible
solutions when every component has an available
implementation for every device (there are 27 possible
solutions in this example).
 However, a radio will typically not have the requisite
code or bit image to implement every component on every
device. To model this reality, we say that a component c can
be implemented on the set D(c) of devices. So there are
actually only ()

ic C∈ iD c× possible solutions to search

through. Again, not all of these implementations will be
feasible as there may not be sufficient resources available
on a device to satisfy the processing demands of all of the
components specified as part of a partitioning solution.
 We can capture this feasibility limitation as follows. If
we denote the memory requirements of component c on
device d as mem(c, d), the cycle requirements as cycle(c, d),
and the processing element requirements as elements(c, d), a
solution s is not feasible if any of (1), (2), or (3) is violated
where max(d, mem), max(d, cycles), max(d, elements) are
respectively the maximum amount of memory, cycles, and
processing fabric elements available on device d.

() (), max ,
i

i
s d

mem c d d mem
=

<∑ (1)

() (), max ,
i

i
s d

cycles c d d cycles
=

<∑ (2)

() (), max ,i
s d

elements c d d elements
=

<∑
i

In a processor pooling scheme, max(d, mem), max(d,
cycles), and max(d, elements) are a function of any currently
operating waveforms and may need to be adjusted to
provide a safety margin for statistical resource contentions.
With these constraints in place, and assuming we are
looking for the solution s that maximizes some objective
O(s) (e.g., power minimization), we can represent the
partitioning problem as an integer programming problem as
follows.

 (3)

Maximize: O(s)
Subject to: (1),(2),(3)
 s(cj)∈D(ci) jc C∀ ∈

(4)

2.2 Techniques for Solving the Waveform Partitioning
Problem

Unfortunately, (4) cannot be solved as a simple system of
equations, so we must employ search algorithms in a
hopefully intelligent version of trial and error. This search
process can be quite daunting as the analogous knapsack
problem (or general assignment problem) is known to be an
NP-complete problem and simply determining that a
feasible solution exists is also an NP-complete problem.
Further it is known that no polynomial-time algorithm with
a fixed worst-case performance ratio (e.g., 50% of the
optimum value) exists [2]. Thus the design of our
partitioning algorithm is faced with a tradeoff between
performance and run-time. Using the terminology presented
in Section 2.1, the following presents three algorithms
which can be used to generate solutions to the waveform
partitioning problem.
 In an exhaustive search, every possible solution is tried,
evaluated for feasibility, and evaluated for optimality. This
can be a very time consuming process as all ()

i
ic C

D c
∈
× are

tried in the process, but an exhaustive search is guaranteed
to find the optimal feasible partition if one exists. Referring
to S as the set of solutions and numbering the solutions as s
to

1

Ss , the exhaustive search algorithm can be written as
shown in Figure 1.
 o = -∞ *

 for k = 1:|S|
 if s is feasible k

 temp_o = O(s); k

 if temp_o > o*

 sol = s ; k

 o = temp_o; *

 end
 end
 end

Figure 1: Exhaustive Search Algorithm

 In a local search algorithm, all solutions within the
feasible neighborhood of the current solution, sk, N(sk) are
evaluated for feasibility and performance. The next solution,
sk+1 is found as

()
()1 arg max

ks N s

ks O s+ =
∈

. For the purposes of
this algorithm, we define the feasible neighborhood of s as
the union of s with the set of feasible solutions which only
differ from s in the assignment of a single component. The
local search algorithm terminates when sk+1 = sk.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

max_val = O(s); 0

continue = true;
k=0;
while(continue)
 s = s ; k+1 k

 continue = false;
 for j=1: |C |
 for m = 1:|D(c)| j

 ()()0_ , , , ,k k
m j Ctemp s s d D c s= ∈K K

 if temp_s is feasible and O(temp_s) > max_val
 continue = true;
 max_val = o(temp_s);
 s = temp_s; k+1

 end
 end
 end
 k=k+1;
end

Figure 2: Local Search Algorithm

 In general, the local search algorithm converges faster
than the exhaustive search, but is not guaranteed to
converge to an optimal solution nor a feasible solution with
the exact solution a function of the initial solution. To
overcome this dependence on initial conditions, local search
algorithms are frequently randomly restarted with different
initial solutions.
 The greedy algorithm presented in Figure 3 is based on
an approximation presented in Section 7.4 in [1] where we
only changed the meaning of the symbols and the number of
constraint equations – from just “weight” to memory,
cycles, and processing elements. In o(c,d) is the added value
of assigning component c to device d. For example if
minimizing total power consumption, o(c,d) is the negation
of the amount of power c consumes when implemented on
d.
 Beginning with all components unassigned, the greedy
algorithm iteratively considers all unassigned components
and finds the component, c*, which has the biggest
difference between the largest and second largest feasible
o(c,d) for all d∈D(c). The component c* is then assigned to
the device that maximizes o(c*,d). The algorithm continues
until all components are assigned or feasible assignments
are impossible. While this algorithm completes in
polynomial time, like the local search, this greedy algorithm
is not guaranteed to find a feasible solution or the optimal
solution.

3. AUTOMATING WAVEFORM PARTITIONING IN

SCA COMPLIANT RADIOS

In an SCA system there are two different classes of
components – Devices that represent hardware elements and
Resources that perform signal processing. The former are

used to abstract platforms while the latter are used to build
waveforms. Remember that in the SCA context, a waveform
is the set of transformations applied to information that is
C C= ;
feas = true
while(feas and C ≠ ∅)
 diff = -∞; *

 for each c∈j C
 F = {j () :jd D c∈ () (), max ,jmem c d d mem< ,
 () (), max ,jcycles c d d cycles< , and
 () (), max ,jelements c d d elements< };
 if jF ≠ ∅ , then feas = false
 else
 ()* arg max ,

j
j jd F

d o c
∈

= d ;

 * *\j j jF F d= ;

 if *
jF = ∅ , then diff = ∞;

 else
 ()

*

** arg max ,
j

j j
d F

d o
∈

= c d ;

 () ()* *, ,j jdiff o c d o c d= − * ;

 end
 if diff > diff*

 diff = diff; *

 * *
jd d=

 *
jc c=

 end
 end
 end
 if (feas)
 *\C C c= ;
 s(c)=d ; *

 () ()* *max , ,d mem mem c d− = *
 () ()* *max , ,d cycles cycles c d− = *
 () ()* *max , ,d elements elements c d− = *

 end
end

Figure 3: Greedy Assignment Algorithm

transmitted over the air and the corresponding set of
transformations to convert received signals back to their
information content [5]. In other words, an SCA waveform
is the set of software components and interconnections
required to implement a particular wireless protocol.
 SCA waveforms achieve a degree of platform
independence via the operating environment provided by
the SCA. This operating environment consists of a POSIX-
compliant Operating System, CORBA middleware, and the
SCA Core Framework (CF). The CF provides a set of
interfaces to deploy, manage, and configure SCA
waveforms and platforms. It describes a set of required
interfaces for Devices, Resources and generic management

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

artifacts. It also describes a Domain Profile, a set of XML
descriptors that provide machine readable information about
waveforms, resources, and platforms.
 The SCA provides a flexible architecture where every
waveform could run on any platform, and every platform
could support any waveform in theory. However, this
flexibility adds complexity to the management of a radio.
To help cope with this complexity, several mechanisms
based on well-known software design patterns have been
integrated into the SCA. Of interest for our waveform
partitioning problem, the SCA relies on an
ApplicationFactory to instantiate waveforms.

3.1 SCA Resources

Given the wide variety of possible hardware configurations,
software resources may significantly improve their
performance by utilizing specific features of a particular
platform, e.g., a convolutional decoder might be
implemented on a hardware accelerator. To take advantage
of these features, the SCA allows Resources to have
multiple implementations to provide the same functionality.
For example, a software component may have a general
implementation for a GPP, and a specialized one that runs
on a particular DSP. Implementation tradeoffs for the same
platform are also possible. If a platform has plenty of
memory, an implementation may be able to unroll loops or
utilize a table implementation, improving performance at the
expense of memory utilization. Capacity requirements may
be different for every implementation of a Resource.
 Resources and their capacity requirements are described
in the Domain Profile. Each component description includes
a Software Package Descriptor (SPD), a Software
Component Descriptor (SCD), and an optional Property File
(PRF). The SPD file contains a list with all of the available
implementations for the component. Each implementation
may have a reference to a PRF file that describes the
particular allocation requirements.

3.2 SCA Devices

A Device is a special kind of Resource that provides a
logical abstraction of a physical device. It acts as a proxy for
the rest of the components to interact with the piece of
hardware it represents. Because of the wide variety of
physical devices that can be integrated into a platform, the
SCA allows each Device to define its own capacity model.
That is, each device can specify what services it can
provide, how these services are quantified, and the way it
provides this services. This capacity model is described by
means of allocation properties and is component dependent.
For example, a microcontroller in a platform may indicate
that it has available 32 MB of free memory to host software
components; an FPGA, that it has 3 MBLPs available; a

DSP, that it has 32 MB of memory available, 500M idle
clock cycles, one available McBSP interface, and a
dedicated convolutional decoder coprocessor.
 Before deploying any application, the
ApplicationFactory obtains a list of all Devices available for
the platform and their respective capacities. This
information is contained in the Device Profile. Each Device
is described by a Device Package Descriptor (DPD) and a
SPD. The former describes the hardware part while the
latter describes the logical part of that device. The SPD may
also reference a PRF which describes the properties of the
device being deployed such as serial number, processor
type, and allocation capacities. A Device Configuration
Descriptor (DCD) provides a list of all the devices deployed
at startup.

3.3 Dynamic Partitioning in ApplicationFactory

The SCA ApplicationFactory is based on the Factory
Design Pattern. It partitions, deploys, and instantiates
waveforms based on information provided by the Software
Assembly Descriptor (SAD). This descriptor contains a list
of all the components that comprise the waveform and their
respective connections. ApplicationFactory is expected to
find an appropriate device on the platform to host each
component in the waveform. This decision is based on each
Device’s capacity model and the requirements and
dependencies of the software components, e.g., a software
component developed for a DSP would not be able to run
on an ARM. Some components may require a particular
hardware accelerator or a particular amount of memory – all
of which must be considered by the ApplicationFactory
when partitioning a waveform. Besides these obvious
matches, ApplicationFactory needs to include the
developer’s input for a predefined deployment plan and
collocation requirements for some components. Collocation
requirements refer to those components that need to be
deployed on the same device for proper operation, or to
meet performance constraints.
 It is at this point that ApplicationFactory executes the
algorithms described in this paper to find the best
partitioning solution according to a predefined optimization
criterion. This criterion could be smaller memory footprint,
faster performance, lower power consumption, or fewer
number of devices required. After the solution has been
found, ApplicationFactory allocates the required capacities
from the host devices and proceeds to launch, initialize,
configure, and connect components.

3.4 Integration into OSSIE

The Open-Source SCA Implementation::Embedded
(OSSIE) is an open implementation of the SCA, developed
by Mobile and Portable Radio Research Group (MPRG) at

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

Virginia Tech. It is developed in C++, runs on a Linux
platform, and uses omniORB and the Xerces XML parsers.
To validate the feasibility of automated waveform
partitioning and implementation, we developed a sample
implementation of the algorithms presented in this paper.
They are implemented as separate classes and invoked from
the OSSIE framework. The OSSIE ApplicationFactory
obtains the description of the platform and waveforms from
the XML domain profile. It then writes an intermediate file
containing all the available devices and requested resources
along with their respective allocation capacities. The
partitioning classes read this file, find the best partitioning
solution, and write another intermediate file containing the
component-device pairs that represent the deployment plan.
The OSSIE framework reads this output file and converts it
into a DeviceAssignmentSequence which is used for
waveform creation. Prior to this work, the OSSIE
framework required an externally supplied
DeviceAssignmentSequence.

4. PERFORMANCE

To inform the choice of algorithms for the partitioner, we
developed a simulation of the waveform partitioning
process on a pooled processing system. The simulation
permits us to vary the number and type of devices available
in the system, the number and type of components in the
target waveform, and the amount of resources utilized by
concurrent and previously allocated waveforms.

We drove this simulation with varying number of
devices modeled on the Texas Instruments
TMS320VC5501. To model previously allocated
waveforms, the available resources for each device were
reduced by a random number drawn from a uniform
distribution from zero to the device capacity. Each
algorithm was then tasked with partitioning a waveform
whose components have randomly generated processing
requirements with the goal of minimizing total power
consumption. This process was repeated over ten trials for
each combinations of numbers of components and devices.
The results of these simulations are shown in Figure 4
where the performance of an algorithm is measured as
fraction of the performance of the exhaustive search
algorithm where achieving the same power level as the
exhaustive search is assigned a 1, not finding a feasible
solution when one exists a 0, and all other values are given
as power(exhaustive search)/power(algorithm). Because
power is modeled as a linear function (P =
cycles/max_cycles × Peak_power), all feasible solutions
consume the same power so the plots effectively depict
feasibility percentages.

To examine the performance for the more general case
of a heterogeneous processing pool, we used two different
device types – the VC5501s from before and Blackfins

operating in their peak power consumption modes. The
results of these simulations are shown in Figure 5 where
relative local search performance is given as was done in
Figure 4, but with the greedy algorithm in the place of
exhaustive search. Unlike the previous simulation, not every
feasible solution is an optimal solution, and the ratio of

Figure 4: Average performance of partitioning algorithms with

respect to exhaustive search in uniform processor pool.

power consumption of the greedy result to the local search
result could exceed 1 implying that the local search
algorithm outperformed the greedy search. However, out of
the 1200 individual trials in this simulation, the local search
outperformed the greedy algorithm only twice. As a real-
world comparison, an OFDM waveform with 10 MHz
channels developed by Nova Systems Solutions and
intended for deployment on high-end platforms has nine
components implemented over two different processors (a
TMS3206416 and a Virtex 2V6000-6).[6]

For this more extensive simulation, we did not perform
the exhaustive search algorithm as it takes significantly
longer to execute than either the greedy or local search
algorithms as illustrated in Figure 6. More generally for the
two deterministic algorithms (the local search was permitted
to randomly restart up to 10 times if it failed to find a
feasible solution), the time complexity of the exhaustive

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

search algorithm is ()DO C while the greedy algorithm –

assuming an initial insertion sort of power consumption by
component for each device – is ()2logO D C C D+ [2].

Figure 5: Average performance of local search algorithms with

respect to exhaustive search in uniform processor pool.

5. CONCLUSIONS AND FUTURE WORK

By drawing an analogy between knapsack problems and
waveform partitioning we were able to leverage existing
operations research literature to develop a candidate
algorithm – the greedy algorithm – for waveform
partitioning for run-time and off-line waveform partitioning
for processor pools as it consistently finds near optimal
solutions in under 100 ms even for large systems of
processors and complex waveforms. With this algorithm
and the existing services of the SCA run time waveform
partitioning for pooled processors should be feasible
 Nominally, many of the problems associated with
distribution of waveform processing across numerous
processors are handled by the ORB services in the SCA.
However, the arbitrary distribution of components on a
platform that includes FPGAs, and to a lesser extent DSPs,
is currently problematic for these services. Also, while the
discussed search algorithms support arbitrary mapping of
components to arbitrary processor types, a bit image for an

FPGA based component implementation is targeted to a
specific location on the FPGA [7] which violates
assumptions inherent to the search algorithms.

Figure 6: Average algorithm run times for simulations in

Figures 4 and 5.

 In the coming months, we will extend this work by
more tightly integrating the interface between the search
algorithms and OSSIE and modifying processor constraints
to support an arbitrary number and type of allocation
properties. Additionally, to fully leverage the waveform
partitioner, OSSIE will be enhanced to support multiple
implementations of components at a framework level and to
verify the satisfaction of component dependencies and
collocation requirements – features not supported in the
current version of OSSIE (version 0.5). Additionally, we
will be examining and comparing additional algorithms for
solving knapsack problems from [1] and [2] with randomly
generated waveform data, externally provided waveform
data (e.g., [6]) and waveform data generated in a previous
study into the optimal choice of devices for waveforms.

6. REFERENCES

[1] M. Kosmicki, S. Pearce, “Digital Processing Pool for JTRS
Software Radio: In-Mission Flexibility and Efficient
Technology Insertion,” SDRF Technical Conference 2004,
Phoenix, AZ, Nov. 15-18, 2004.

[2] S. Martello, P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley & Sons Ltd.,
Chichester England, 1990.

[3] D. Pisinger, “Algorithms for Knapsack Problems,” Ph.D.
Dissertation, University of Copenhagen, Copenhagen,
Denmark, February 1995.

[4] OSSIE website: (OSSIE), http://ossie.mprg.org/
[5] Software Communications Architecture v2.2. Available

online: http://jtrs.spawar.navy.mil/sca/
[6] Waveform data provided via correspondence with C. Van der

Valk, Nova Systems Engineering.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

[7] M. Dumas, L. Belanger, S. Roy, J. Chouinard, “Development
of a SCA 3.1 Compliant W-CDMA Waveform on DSP/FPGA
Specialized Hardware,” SDRF Technical Conference 2005,
Orange County, CA, Nov 14-18, 2005.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

