

EMULATORS BASED ENVIRONMENT FOR HW/SW PARTITIONING

Mirsad Halimic (Panasonic Broadband Communications Development Laboratory,

Wokingham, Berkshire, United Kingdom; Mirsad.Halimic@eu.panasonic.com)
Adnan Al-Adnani (Panasonic Broadband Communications Development Laboratory,

Wokingham, Berkshire, United Kingdom; Adnan@eu.panasonic.com)
Yasuo Harada (Panasonic Broadband Communications Development Laboratory,

Wokingham, Berkshire, United Kingdom; Yasuo.Harada@jp.panasonic.com)
Dick Arvind (University of Edinburgh, Edinburgh, United Kingdom; dka@dcs.ed.ac.uk)

Janek Mann (University of Edinburgh, Edinburgh, United Kingdom; janekm@gmail.com)

ABSTRACT

This paper describes two parts of the environment termed a
Partitioner. The Partitioner is utilised for partitioning a
functional designs (software modules) onto heterogeneous
hardware platforms. In this study the heterogeneous
platform is presented by three different commercially
available development environments representing a RISC
processor, DSP and FPGA. The Partitioner is designed to
take a set of basic code modules and in the process of
reconfiguring an SDR based terminal find a partitioning
(assignment to different processing units) and schedule for
these modules that will optimised the performance of the
unit.
 Parts of the Partitioner presented here are a Threading
analyser, which analyses the threadability of a module of
non-threaded code and a tool that performs analysis of the
power consumption on each of the available platforms.

1. INTRODUCTION

Mobile computing in the future will demand processing
platforms that provide high-performance computation at
low power consumption and which support multi-standard
wireless protocols. One of the enablers for fulfilling these
requirements is an entity that maps software onto
heterogeneous hardware platform in an optimal way. In this
study that entity is termed the Partitioner.
 The Partitioner is designed to take a set of basic code
modules and in the process of reconfiguring an SDR based
terminal find a partitioning (assignment to different
processing units) and schedule for these modules that will
optimised the performance of the unit. There is a GUI that
allows entering the information on all the software
(functional) modules, their dependencies and different
mappings. Several different mappings, even onto the same
hardware part, can take place for each module in the design.
The GUI also allows hardware and design parameters to be
set, such as the clock speed, for each hardware module.

 Respective hardware platforms are represented by their
development environments, which provide support for
running a simulation of the partitioned code on the vendor-
supplied simulators. The RISC processor platform is
represented by the Armulator, a cycle-accurate simulator for
the ARM cores available from ARM Ltd. The DSP platform
is represented by VisualDSP++, the integrated development
environment from Analog Devices for a cycle-accurate
simulator for the TigerSHARC processor. The FPGA
platform was represented by ModelSim, Xilinx simulation
environment for Virtex II.
 Parts of the Partitioner presented in this paper are a
Threading analyser and a tool for Timing and Power
analysis.

2. THREADING ANALYSER

The purpose of the “Threading Analyser” is to take input in
the shape of a C file and produce output of a number of
“modules” as understood by the rest of the Partitioner
environment consisting of C files with associated
dependency and communication channel information. There
is no conditional control flow between these modules, and
each module needs to be executed only once.

2.1. Target Environment

The target environment for the threading efforts is the
existing Partitioner environment as described in [1], which
consists of an emulation environment and a partitioning tool
with scheduling support.
 The environment is illustrated to show what
requirements it imposes on the threading code.

2.2. Partitioning Tool

The partitioning tool is designed to take a set of basic code
modules and find a partitioning (assignment to different
processing units, such a processors/FPGAs) and schedule

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

mailto:Mirsad.Halimic@eu.panasonic.com
mailto:Adnan@eu.panasonic.com
mailto:Yasuo.Harada@jp.panasonic.com
mailto:dka@dcs.ed.ac.uk
mailto:janekm@gmail.com

for these modules that will optimise the performance of the
unit.

2.3. Emulation Environment

The emulation environment provides support for running a
simulation of the partitioned code on the vendor-supplied
simulators for the different kinds of processing units
supported. It was decided early in the project that it was
desirable to use the vendor-supplied simulators in
preference to a custom or third-party simulation
environment.
 While investigating the different simulators to be used
it was determined that they did not universally provide
support for the degree of access to the internal simulation
state, or the possibility of integrating their memory models
that would be required to allow parallel simulation of code
on several of these simulators at the same time. It would
also not be possible to allow the code running on one of the
simulators, such as the armulator, to influence the execution
of code running on one of the other simulators.
 As a result, it was necessary to create a framework that
would allow the parallel schedule determined for the
different modules of code to be simulated sequentially on
the different simulators, executing one module at a time on
the simulators but keeping track of the global time in the
overall simulation framework to simulate parallel execution.
 The model used for exposing parallelism to the
Partitioner is essentially a data-flow model between blocks
of code that contain sequential code within them. This
model was chosen as it provided the only feasible way of
allowing parallel code to be written for the simulation
environment that can be supported on the simulators we use,
as we can support neither shared-memory, message passing
or other forms of synchronisation. The only time we can
allow the passing of data, as well as synchronisation
between blocks of code, is between executions of the
simulators.
 This model is reminiscent of HeNCE [2], which
provides a graphical environment for specifying procedures
as the nodes of a graph with the edges between them
signifying their dependencies.
 The task of the threading analysis is to extract such
blocks of code from a sequential program and identify the
data-flow between these blocks.
 This is in marked contrast to the traditional task of
parallelising sequential code, which targets conventional
parallel computer systems. These tend to be either shared-
memory or distributed-memory systems [3].
 While a data-flow model of parallel computation has
been used extensively in the literature, especially as an
intermediate stage in the parallelisation of functional
programming languages (a data-flow model can be seen as
analogous to a functional model, and the translation

between them is easy), this has been traditionally at much
finer granularity rather than as data-flow between bigger
blocks of sequential code.

2.4. Compiler Framework

The threading analysis requires a compiler framework that
supports source-to-source translation, since we are required
to use the compilers provided by the vendors of the different
execution environments. Providing backends for all the
different CPUs used currently or in the future would have
been unfeasible. Further it was desired to have access to a
framework that allows compiler passes to be written in a
high-level language to allow rapid development of such
passes.
 A number of compiler frameworks where considered
for the threading analysis:

● GCC
● LCC [4]
● SUIF [5]

GCC is perhaps the most popular compiler framework
available today as it is supported on every common platform
and has a very large number of backends. However, GCC
does not support source-to-source translation well as most
of its transformations take place on very low-level
representations of the code. GCC is also written in C and is
of such complexity that any significant changes to its
codebase would take considerable time to implement.
 SUIF was designed as an environment for compiler
research. It is written in pre-ISO C++ and supports a wide
range of analyses. However, the only C frontend available
for SUIF is a commercial one which requires a special
license to be obtained for commercial use, and in fact it has
lately been very difficult to obtain this frontend at all. Also,
it appears that SUIF has not been updated since 2001 and
there are strong doubts about its future viability [6].
 LCC is a relatively simple compiler framework written
in Ansi-C. While by itself it does not support the features
we required, it has in recent versions gained support for
writing out the intermediate representation in ASDL format
[7] which allowed it to be imported into our own compiler
framework, allowing LCC to be used as a compiler
frontend.
 It was decided to implement our own compiler
framework in python, using the LCCs ASDL output to gain
access to the intermediate representation. This allowed
progress to be made relatively quickly, however some
limitations in LCCs intermediate representation have been
identified that make extension to more complete support of
the C language difficult.

2.5. Parallelisation

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

A large body of work exists on the problem of
parallelisation of sequential programs [8, 9, 3]. However,
traditionally most of this work has focused on the problem
of extracting fine-grained parallelism, such as vectorization,
as it was thought that the biggest scope for extracting
parallelism was in the parallelization of inner loops [3].
Recently the focus has shifted somewhat to the problem of
coarse-grained parallelization [8].
 The algorithm designed for this study operates as
follows:
 The entire program is read into the compiler framework
(currently only a single .c file is supported). The main
function in the program is identified and all function calls
are inlined where possible. This allows the following
analysis steps to be carried out across function-call
boundaries.
 The code of the program is analysed in a sequential
manner. First each access to a variable is investigated to
decide whether it is a write or read access (a define or a
use). In the intermediate representation currently used, only
an ASGN node represents a write access to a variable.
 Next the program is analysed to find basic blocks (a
common compiler analysis step [10]), that is a block of code
that does not contain any branches to other blocks other
than at its end, and that has no branches from other parts of
the code terminating inside it. This analysis is performed by
starting a new basic block wherever a label is encountered
or a previous block was closed and ended wherever a
branching instruction is encountered.
 In the next step, Zones are formed from these basic
blocks. A Zone is a set of basic blocks that has no control
flow with the basic blocks contained in any other Zone
other than basic sequential flow, that is no loops or
conditional branches. Such a Zone is formed by merging
any blocks with those blocks already in a Zone that can
reach a block in the Zone by such a loop or branch. This is
repeated until there are no further blocks that can be added
to the Zone.
 As a final analysis step, Zones can be combined in
order to generate fewer Zones (each Zone is translated into
a separate module for consideration by the Partitioner at the
end of the analysis).
 After all analysis steps have been completed, each Zone
is written into a separate module for consideration by the
Partitioner and is passed to the Partitioner together with
information about its communication channels and
dependencies.

2.6. Limitations

Currently only a subset of C is understood by the Threading
Analyser. Understood are the int type, functions without
returns, all the basic arithmetic operations and conditional
operations. External function calls are not implemented yet

but will be implemented next, as will the return statement.
Some of the other data types, in particular structures, arrays
and pointers may take some extra time to implement.

3. TIMING AND POWER ANALYSIS

In general, power analysis requires estimates of power
consumption of the individual component parts of the
architecture, such as ISA Processor, Digital Signal
Processor, FPGA and buses, to be calculated either during
or after a simulation run. Different approaches have been
proposed in the literature depending on the type of
architectural components and the simulation environment.

3.1. Processor

Two approaches have been proposed for estimating the
energy consumption in processors, other than the
prohibitively expensive (in terms of processing and memory
requirements) circuit-level simulations at the netlist level
using SPICE-like tools.

3.1.1. Instruction-Level
Where a cycle accurate simulation of the processor with
tracing or plugin support is available, then it can be used to
look up pre-determined energy values on a per-instruction
basis. This approach was first applied to simulations of a
486DX2 and Fujitsu SPARClite 934 by Tiwari et al. [11,
12]. It has since been applied successfully to a number of
other processor designs including ARM7 [13], StrongARM
[14], and an unspecified Fujitsu DSP [15]. Although Tiwari
et al. applied their analysis statically, this technique can be
readily adapted to simulation traces.

3.1.2. Architectural-Level
In an architectural power analysis approach, the system is
decomposed into a set of architectural units with individual
power models. Such decomposition for a processor could
consist of array structures, memories, combinational
logic/wires, and clocking [16]. A big improvement over
previous results has been claimed for approaches based on
the dual bit type method [17]. In this approach, the energy
contribution of the most significant bits in each word is
considered separately from that of the least significant bits.
This takes account of the considerable impact of the most
significant bits when using two's complement arithmetic (as
the most significant bits can be seen as indicating the
probability of a change in sign). An architectural-level
power analysis framework for use with the SimpleScalar
simulation framework is available [16], and the approach
has also been applied to simulation of the energy costs of
co-processors in ARM-based SOC designs [18].

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 Architectural-level power analysis requires an
architectural model of the processor as well as detailed
power models for each component of the processor. While
this information can be obtained for custom designs using
circuit-level simulation tools such as SPICE it is generally
not possible to obtain this information or simulation models
for off-the-shelf processors.

3.2. Memory and Caches

Memory is usually modelled using a per-access cost model
[16]. Where detailed information about the memory chips
used is available, it is possible to consider the impact of
page faults. The dual bit type method can also be applied to
memory if a sufficiently detailed model of the memory is
available [17].

3.3. Buses

Buses can be modelled on the basis of the number of
capacitance switches on the lines involved during each bus
transaction [14]. If the necessary information about the data
transferred and the design of the buses are not available
during power analysis, then a per-access power model can
be used with limited accuracy.

3.4. Conclusions

An instruction-level simulation approach based on Tiwari et
al's method was chosen for the Partitioner as it is a good
match for the simulators and architectural information
available for the processors used in the project.
 This approach is also easy to adapt to any alternative
processor architectures that may be chosen in the future.
 Per-access models were chosen for memory and bus
accesses as no detailed information for these components
was available.

3.5. Timing and Power Analysis in Partitioner

Timing and Power analysis is performed differently
depending on processing unit architecture, due to
differences in development methodology and simulation
environments. For the Xilinx architecture, a combination of
cycle counting and extraction of power data from the
XPower tool is used. For the ARM an analysis of the
simulator trace is performed, combined with stop-
instructions to distinguish the code under test from
testbench code. For the TigerSharc architecture a test
harness that uses the (simulated by the VisualDSP
simulator) processor cycle counter is used, together with an
estimate of average current draw.

3.5.1. Xilinx

As the Xilinx architecture is a FPGA architecture, a
common timing method is not assumed but it is common to
use a clock signal to time a design. However, there is no
instruction trace (as there are not generally any instructions
executed) and the clock signal is not easily identifiable. To
nonetheless provide an environment for gathering timing
statistics from the simulated design, a counter needs to be
set up in the testbench for the design and cycle counts are
extracted using this counter.
 Power Analysis for the Xilinx architecture is performed
by the XPower tool that is part of the Xilinx toolsuite. The
current draw for the device is automatically extracted from
the output file of this tool.

3.5.2. ARM
The ARM processor architecture is based around single-
pipeline processors. The ARM7TDMI processor design was
studied during this work, but the methodology can be easily
adopted to other ARM processor designs as they share a
common development environment and simulator design.
 The ARM simulator (ARMULATOR) has a provision
for writing a simulation trace file during simulation of the
module under test. This file provides a trace of all
instructions executed during the simulation run and further
provides information on all the memory accesses performed.
Unfortunately, no cycle counts are provided for the
instructions executed, however the cycle duration of
virtually all ARM instructions is constrained by the memory
accesses involved during the instruction execution. In the
case where an instructions cycle count is not thus
constrained an average number of extra cycles executed can
be provided to the Partitioner environment through the
“arminst.txt” file.
 Current draw for the different instructions encountered
during the simulation needs to be provided by the user of
the Partitioner environment in the “arminst.txt” file.
 The format of the “arminst.txt” file is as follows:

I default 0.32 0
I skipped 0.12 0
I MUL 0.62 3
I MOV 0.20 0

where I indicates a line providing information about an
instruction, followed by the name of the instruction or one
of a small number of special code words, followed by the
average current draw during execution of this instruction
and further an estimate of the “extra” cycles likely to be
encountered during execution of this instruction. For the
MUL instruction a conservative estimate of 3 extra cycles
was used, though in actual code it is unlikely that 3 extra
cycles would be encountered as this number of extra cycles
would only occur during uncommon boundary conditions.
Nonetheless it may be appropriate to provide a pessimistic
estimate of the cycle count.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 The special code words implemented currently are
“default” and “skipped”, providing the information for an
instruction for which no specific information was provided
(appropriate for instructions that do not occur in the inner
loops of a design) and for an instruction that was skipped
(conditionally not executed) respectively.
 In order to distinguish instructions in the trace that
belong to the code under test from those that are part of the
testbench, “stop instructions” are inserted into the
assembled code for the module under test. These “stop
instructions” are constructed as effectively noop instructions
built up from a combination of arithmetic operations using
integer constants that can be identified by the Partitioner but
are very unlikely to occur in the code under test.

3.5.3. TigerSharc
The TigerSharc (TS101) processor has a 4-instruction
pipeline, meaning that it can execute up to 4 instructions in
parallel. Parallelisation across the 4 pipelines is performed
statically at compile time by the VisualDSP compiler. The
VisualDSP framework provides a graphical view of the
execution flow of instructions through the processor
pipelines during simulation. Unfortunately it has not been
possible to find an automatic method for extracting this
information in text form from the VisualDSP framework.
However as it is possible that such a method may be found /
made available by the VisualDSP designers an analysis of
the possible use of this information for power and timing
analysis was performed.
 The pipeline view in the VisualDSP framework
provides two views on the information, either as a
decompiled instruction trace showing the arithmetic-style
assembly codes for each instruction or in the binary
instruction coding as used within the processor. The
assembly format of the TigerSharc architecture does not
easily lend itself to analysis as a fairly complex parsing
would be required. It is suggested that the (easily
decodable) binary instruction representation be used
instead.
 The EX bit specifies whether the instruction is last in an
instruction line. This is used in case fewer than 4
instructions are scheduled in one instruction line by the
compiler to indicate a shorter than maximum instruction line
and avoid the use of extraneous NOP instructions.
 The CC bit specifies that the instruction is conditional.
In the TS101 instruction set nearly all instructions can be
specified as being conditional in execution on the state of a
conditional execution flag that can be set by one of a
number of evaluative instructions. The X and Y bits specify
whether the X and Y compute block or both of the
processor are used by the instruction. The remaining bits of
the instructions header specify a multiply instruction, and
the header is followed by a specification of the operands of

the instruction which are of little use in timing and power
analysis.
 Should a method of extracting the pipeline trace from
the VisualDSP environment be found it should be possible
to trace the activity of each compute block of the processor
in each instruction cycle, thus providing a very detailed
power analysis.
 In the absence of an accessible pipeline trace a cycle
count for the TigerSharc architecture is obtained by taking
advantage of the cycle count register available in the
TigerSharc processors. Preprocessor macros are used to
insert code that calculates the number of cycles executed
within the regions of code under test. This methodology is
useful as it is very quickly adaptable to other processor
architectures as long as either a cycle count register or a
high resolution timer is simulated within the simulated
environment. This is the case for both the ARM and
TigerSharc simulators and is likely the case for most
industrial-strength simulators.

4. INTER-PROCESSOR COMMUNICATION

Inter-processor communication is simulated using a shared-
memory model. The shared memory is accessed by buses
from each of the processing units.
 The Partitioner can extract information about the
number of bytes exchanged through each of the channels
between modules. The channel name needs to be the same
in the Partitioner as well as in the testbench code.
 For each processing unit in the simulated system,
both an access time / energy draw for initiating a
transmission as well as a per-byte transfer time and energy
draw can be specified for its bus connection. Equally the
time and energy draw for accessing the memory can be
specified.
 The time required for a communication between two
modules on different processing units is the sum of the
access times for the two bus interfaces and the memory and
the per-byte transfer times for each component involved in
the communication multiplied by the number of bytes
transferred.

5. REFERENCES

[1] M. Halimic, D. Bourse, and E. Nicollet, “Optimal Functional

Mapping onto End-to-End Reconfigurable (E2R) Equipment
Hardware Platform,” SDR Forum Technical Conference
Proceedings, Orlando, USA, 2006.

[2] A. Beguelin et al. HeNCE: a heterogeneous network
computing environment. Scientific Programming , 3(1):49-60,
Spring 1994.

[3] T.G. Lewis et al. Introduction to Parallel Computing,
Prentice-Hall, 1992

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

[4] C.W. Fraser and D.R. Hanson. A retargetable compiler for
ANSI C. Technical Reports CS-TR-303-91, Princeton, N.J.,
1991.

[5] R. Wilson. An overview of the SUIF compiler system.
[6] S.I. Lee et al. Cetus – an extensible compiler infrastructure

for Source-To-Source Transformation. In L. Rauchwerger,
editor, Languages and compilers for Parallel Computing: 16th
International Workshop, LCPC 2003, volume 2958 of lecture
Notes in Computer Science, pages 539-553, College station,
TX, USA, 2 October 2003, Springer

[7] D.R. Hanson. Early experience with ASDL in lcc. Software –
Practice and Experience, 29(5):417-435, 1999.

[8] K. Kenedy. Compiler technology for machine-independent
parallel programming, International Journal of Parallel
Programming, 22(1):79-98, 1994.

[9] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 1996.

[10] A.W. Appel. Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition, November 2002.

[11] V. Tiwari et al. Power Analysis of Embedded Software: A
First Step Towards Software Power Minimisation.

[12] V. Tiwari et al. Instruction level power analysis and
optimization of software.

[13] F. Menichelli et al. A Simulation-Based Power-Aware
Architecture Exploration of a Multiprocessor System-on-Chip
Design

[14] T. Simunic et al. Cycle-accurate simulation of energy
consumption in embedded systems.

[15] M.T. Lee et al. Power analysis and minimization techniques
for embedded DSP software.

[16] D. Brooks et al. Wattch: a framework for architectural-level
power analysis and optimizations.

[17] P. Landman and J. Rabaey. Architectural Power Analysis:
The Dual Bit Type Method.

[18] D. Crisu et al. High-Level Energy Estimation for ARM-Based
SOCs.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

