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ABSTRACT 
 
This paper describes two parts of the environment termed a 
Partitioner. The Partitioner is utilised for partitioning a 
functional designs (software modules) onto heterogeneous 
hardware platforms. In this study the heterogeneous 
platform is presented by three different commercially 
available development environments representing a RISC 
processor, DSP and FPGA. The Partitioner is designed to 
take a set of basic code modules and in the process of 
reconfiguring an SDR based terminal find a partitioning 
(assignment to different processing units) and schedule for 
these modules that will optimised the performance of the 
unit. 
 Parts of the Partitioner presented here are a Threading 
analyser, which analyses the threadability of a module of 
non-threaded code and a tool that performs analysis of the 
power consumption on each of the available platforms. 
 
 

1. INTRODUCTION 
 
Mobile computing in the future will demand processing 
platforms that provide high-performance computation at 
low power consumption and which support multi-standard 
wireless protocols. One of the enablers for fulfilling these 
requirements is an entity that maps software onto 
heterogeneous hardware platform in an optimal way. In this 
study that entity is termed the Partitioner. 
 The Partitioner is designed to take a set of basic code 
modules and in the process of reconfiguring an SDR based 
terminal find a partitioning (assignment to different 
processing units) and schedule for these modules that will 
optimised the performance of the unit. There is a GUI that 
allows entering the information on all the software 
(functional) modules, their dependencies and different 
mappings. Several different mappings, even onto the same 
hardware part, can take place for each module in the design. 
The GUI also allows hardware and design parameters to be 
set, such as the clock speed, for each hardware module. 

 Respective hardware platforms are represented by their 
development environments, which provide support for 
running a simulation of the partitioned code on the vendor-
supplied simulators. The RISC processor platform is 
represented by the Armulator, a cycle-accurate simulator for 
the ARM cores available from ARM Ltd. The DSP platform 
is represented by VisualDSP++, the integrated development 
environment from Analog Devices for a cycle-accurate 
simulator for the TigerSHARC processor. The FPGA 
platform was represented by ModelSim, Xilinx simulation 
environment for Virtex II. 
 Parts of the Partitioner presented in this paper are a 
Threading analyser and a tool for Timing and Power 
analysis. 
 

2. THREADING ANALYSER 
 
The purpose of the “Threading Analyser” is to take input in 
the shape of a C file and produce output of a number of 
“modules” as understood by the rest of the Partitioner 
environment consisting of C files with associated 
dependency and communication channel information. There 
is no conditional control flow between these modules, and 
each module needs to be executed only once.  
 
2.1. Target Environment 
 
The target environment for the threading efforts is the 
existing Partitioner environment as described in [1], which 
consists of an emulation environment and a partitioning tool 
with scheduling support. 
 The environment is illustrated to show what 
requirements it imposes on the threading code. 
 
2.2. Partitioning Tool 
 
The partitioning tool is designed to take a set of basic code 
modules and find a partitioning (assignment to different 
processing units, such a processors/FPGAs) and schedule 
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for these modules that will optimise the performance of the 
unit.  
 
2.3. Emulation Environment 
 
The emulation environment provides support for running a 
simulation of the partitioned code on the vendor-supplied 
simulators for the different kinds of processing units 
supported. It was decided early in the project that it was 
desirable to use the vendor-supplied simulators in 
preference to a custom or third-party simulation 
environment.  
 While investigating the different simulators to be used 
it was determined that they did not universally provide 
support for the degree of access to the internal simulation 
state, or the possibility of integrating their memory models 
that would be required to allow parallel simulation of code 
on several of these simulators at the same time. It would 
also not be possible to allow the code running on one of the 
simulators, such as the armulator, to influence the execution 
of code running on one of the other simulators. 
 As a result, it was necessary to create a framework that 
would allow the parallel schedule determined for the 
different modules of code to be simulated sequentially on 
the different simulators, executing one module at a time on 
the simulators but keeping track of the global time in the 
overall simulation framework to simulate parallel execution. 
 The model used for exposing parallelism to the 
Partitioner is essentially a data-flow model between blocks 
of code that contain sequential code within them. This 
model was chosen as it provided the only feasible way of 
allowing parallel code to be written for the simulation 
environment that can be supported on the simulators we use, 
as we can support neither shared-memory, message passing 
or other forms of synchronisation. The only time we can 
allow the passing of data, as well as synchronisation 
between blocks of code, is between executions of the 
simulators.  
 This model is reminiscent of HeNCE [2], which 
provides a graphical environment for specifying procedures 
as the nodes of a graph with the edges between them 
signifying their dependencies. 
 The task of the threading analysis is to extract such 
blocks of code from a sequential program and identify the 
data-flow between these blocks. 
 This is in marked contrast to the traditional task of 
parallelising sequential code, which targets conventional 
parallel computer systems. These tend to be either shared-
memory or distributed-memory systems [3]. 
 While a data-flow model of parallel computation has 
been used extensively in the literature, especially as an 
intermediate stage in the parallelisation of functional 
programming languages (a data-flow model can be seen as 
analogous to a functional model, and the translation 

between them is easy), this has been traditionally at much 
finer granularity rather than as data-flow between bigger 
blocks of sequential code. 
 
2.4. Compiler Framework 
 
The threading analysis requires a compiler framework that 
supports source-to-source translation, since we are required 
to use the compilers provided by the vendors of the different 
execution environments. Providing backends for all the 
different CPUs used currently or in the future would have 
been unfeasible. Further it was desired to have access to a 
framework that allows compiler passes to be written in a 
high-level language to allow rapid development of such 
passes. 
 A number of compiler frameworks where considered 
for the threading analysis: 

● GCC 
● LCC [4] 
● SUIF [5] 

GCC is perhaps the most popular compiler framework 
available today as it is supported on every common platform 
and has a very large number of backends. However, GCC 
does not support source-to-source translation well as most 
of its transformations take place on very low-level 
representations of the code. GCC is also written in C and is 
of such complexity that any significant changes to its 
codebase would take considerable time to implement. 
 SUIF was designed as an environment for compiler 
research. It is written in pre-ISO C++ and supports a wide 
range of analyses. However, the only C frontend available 
for SUIF is a commercial one which requires a special 
license to be obtained for commercial use, and in fact it has 
lately been very difficult to obtain this frontend at all. Also, 
it appears that SUIF has not been updated since 2001 and 
there are strong doubts about its future viability [6]. 
 LCC is a relatively simple compiler framework written 
in Ansi-C. While by itself it does not support the features 
we required, it has in recent versions gained support for 
writing out the intermediate representation in ASDL format 
[7] which allowed it to be imported into our own compiler 
framework, allowing LCC to be used as a compiler 
frontend. 
 It was decided to implement our own compiler 
framework in python, using the LCCs ASDL output to gain 
access to the intermediate representation. This allowed 
progress to be made relatively quickly, however some 
limitations in LCCs intermediate representation have been 
identified that make extension to more complete support of 
the C language difficult. 
 
2.5. Parallelisation 
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A large body of work exists on the problem of 
parallelisation of sequential programs [8, 9, 3]. However, 
traditionally most of this work has focused on the problem 
of extracting fine-grained parallelism, such as vectorization, 
as it was thought that the biggest scope for extracting 
parallelism was in the parallelization of inner loops [3]. 
Recently the focus has shifted somewhat to the problem of 
coarse-grained parallelization [8].  
 The algorithm designed for this study operates as 
follows: 
 The entire program is read into the compiler framework 
(currently only a single .c file is supported). The main 
function in the program is identified and all function calls 
are inlined where possible. This allows the following 
analysis steps to be carried out across function-call 
boundaries. 
 The code of the program is analysed in a sequential 
manner. First each access to a variable is investigated to 
decide whether it is a write or read access (a define or a 
use). In the intermediate representation currently used, only 
an ASGN node represents a write access to a variable. 
 Next the program is analysed to find basic blocks (a 
common compiler analysis step [10]), that is a block of code 
that does not contain any branches to other blocks other 
than at its end, and that has no branches from other parts of 
the code terminating inside it. This analysis is performed by 
starting a new basic block wherever a label is encountered 
or a previous block was closed and ended wherever a 
branching instruction is encountered. 
 In the next step, Zones are formed from these basic 
blocks. A Zone is a set of basic blocks that has no control 
flow with the basic blocks contained in any other Zone 
other than basic sequential flow, that is no loops or 
conditional branches. Such a Zone is formed by merging 
any blocks with those blocks already in a Zone that can 
reach a block in the Zone by such a loop or branch. This is 
repeated until there are no further blocks that can be added 
to the Zone. 
 As a final analysis step, Zones can be combined in 
order to generate fewer Zones (each Zone is translated into 
a separate module for consideration by the Partitioner at the 
end of the analysis). 
 After all analysis steps have been completed, each Zone 
is written into a separate module for consideration by the 
Partitioner and is passed to the Partitioner together with 
information about its communication channels and 
dependencies. 
 
2.6. Limitations 
 
Currently only a subset of C is understood by the Threading 
Analyser. Understood are the int type, functions without 
returns, all the basic arithmetic operations and conditional 
operations. External function calls are not implemented yet 

but will be implemented next, as will the return statement. 
Some of the other data types, in particular structures, arrays 
and pointers may take some extra time to implement. 
 
 

3. TIMING AND POWER ANALYSIS 
 
In general, power analysis requires estimates of power 
consumption of the individual component parts of the 
architecture, such as ISA Processor, Digital Signal 
Processor, FPGA and  buses, to be calculated either during 
or after a simulation run. Different approaches have been 
proposed  in the literature depending on the type of 
architectural components and the simulation environment. 
 
3.1. Processor 
 
Two approaches have been proposed for estimating the 
energy consumption in processors, other than the 
prohibitively expensive (in terms of processing and memory 
requirements) circuit-level simulations at the netlist level 
using SPICE-like tools. 
 
3.1.1. Instruction-Level 
Where a cycle accurate simulation of the processor with 
tracing or plugin support is available, then it can be used to 
look up pre-determined energy values on a per-instruction 
basis. This approach was first applied to simulations of a 
486DX2 and Fujitsu SPARClite 934 by Tiwari et al. [11, 
12]. It has since been applied successfully to a number of 
other processor designs including ARM7 [13], StrongARM 
[14], and an unspecified Fujitsu DSP [15]. Although Tiwari 
et al. applied their analysis statically, this technique can be 
readily adapted to simulation traces. 
 
3.1.2. Architectural-Level 
In an architectural power analysis approach, the system is 
decomposed into a set of architectural units with individual 
power models. Such decomposition for a processor could 
consist of array structures, memories, combinational 
logic/wires, and clocking [16]. A big improvement over 
previous results has been claimed for approaches based on 
the dual bit type method [17]. In this approach, the energy 
contribution of the most significant bits in each word is 
considered separately from that of the least significant bits. 
This takes account of the considerable impact of the most 
significant bits when using two's complement arithmetic (as 
the most significant bits can be seen as indicating the 
probability of a change in sign). An architectural-level 
power analysis framework for use with the SimpleScalar 
simulation framework is available [16], and the approach 
has also been applied to simulation of the energy costs of 
co-processors in ARM-based SOC designs [18]. 
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 Architectural-level power analysis requires an 
architectural model of the processor as well as detailed 
power models for each component of the processor. While 
this information can be obtained for custom designs using 
circuit-level simulation tools such as SPICE it is generally 
not possible to obtain this information or simulation models 
for off-the-shelf processors. 
 
3.2. Memory and Caches 
 
Memory is usually modelled using a per-access cost model 
[16]. Where detailed information about the memory chips 
used is available, it is possible to consider the impact of 
page faults. The dual bit type method can also be applied to 
memory if a sufficiently detailed model of the memory is 
available [17]. 
 
3.3. Buses 
 
Buses can be modelled on the basis of the number of 
capacitance switches on the lines involved during each bus 
transaction [14]. If the necessary information about the data 
transferred and the design of the buses are not available 
during power analysis, then a per-access power model can 
be used with limited accuracy. 
 
3.4. Conclusions 
 
An instruction-level simulation approach based on Tiwari et 
al's method was chosen for the Partitioner as it is a good 
match for the simulators and architectural information 
available for the processors used in the project. 
 This approach is also easy to adapt to any alternative 
processor architectures that may be chosen in the future. 
 Per-access models were chosen for memory and bus 
accesses as no detailed information for these components 
was available. 
 
3.5. Timing and Power Analysis in Partitioner 
 
Timing and Power analysis is performed differently 
depending on processing unit architecture, due to 
differences in development methodology and simulation 
environments. For the Xilinx architecture, a combination of 
cycle counting and extraction of power data from the 
XPower tool is used. For the ARM an analysis of the 
simulator trace is performed, combined with stop-
instructions to distinguish the code under test from 
testbench code. For the TigerSharc architecture a test 
harness that uses the (simulated by the VisualDSP 
simulator) processor cycle counter is used, together with an 
estimate of average current draw. 
 
3.5.1. Xilinx 

As the Xilinx architecture is a FPGA architecture, a 
common timing method is not assumed but it is common to 
use a clock signal to time a design. However, there is no 
instruction trace (as there are not generally any instructions 
executed) and the clock signal is not easily identifiable. To 
nonetheless provide an environment for gathering timing 
statistics from the simulated design, a counter needs to be 
set up in the testbench for the design and cycle counts are 
extracted using this counter. 
 Power Analysis for the Xilinx architecture is performed 
by the XPower tool that is part of the Xilinx toolsuite. The 
current draw for the device is automatically extracted from 
the output file of this tool. 
 
3.5.2. ARM 
The ARM processor architecture is based around single-
pipeline processors. The ARM7TDMI processor design was 
studied during this work, but the methodology can be easily 
adopted to other ARM processor designs as they share a 
common development environment and simulator design. 
 The ARM simulator (ARMULATOR) has a provision 
for writing a simulation trace file during simulation of the 
module under test. This file provides a trace of all 
instructions executed during the simulation run and further 
provides information on all the memory accesses performed. 
Unfortunately, no cycle counts are provided for the 
instructions executed, however the cycle duration of 
virtually all ARM instructions is constrained by the memory 
accesses involved during the instruction execution. In the 
case where an instructions cycle count is not thus 
constrained an average number of extra cycles executed can 
be provided to the Partitioner environment through the 
“arminst.txt” file.  
 Current draw for the different instructions encountered 
during the simulation needs to be provided by the user of 
the Partitioner environment in the “arminst.txt” file. 
 The format of the “arminst.txt” file is as follows: 

I default 0.32 0 
I skipped 0.12 0 
I MUL 0.62 3 
I MOV 0.20 0 

where I indicates a line providing information about an 
instruction, followed by the name of the instruction or one 
of a small number of special code words, followed by the 
average current draw during execution of this instruction 
and further an estimate of the “extra” cycles likely to be 
encountered during execution of this instruction. For the 
MUL instruction a conservative estimate of 3 extra cycles 
was used, though in actual code it is unlikely that 3 extra 
cycles would be encountered as this number of extra cycles 
would only occur during uncommon boundary conditions. 
Nonetheless it may be appropriate to provide a pessimistic 
estimate of the cycle count.  
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 The special code words implemented currently are 
“default” and “skipped”, providing the information for an 
instruction for which no specific information was provided 
(appropriate for instructions that do not occur in the inner 
loops of a design) and for an instruction that was skipped 
(conditionally not executed) respectively.  
 In order to distinguish instructions in the trace that 
belong to the code under test from those that are part of the 
testbench, “stop instructions” are inserted into the 
assembled code for the module under test. These “stop 
instructions” are constructed as effectively noop instructions 
built up from a combination of arithmetic operations using 
integer constants that can be identified by the Partitioner but 
are very unlikely to occur in the code under test. 
 
3.5.3. TigerSharc 
The TigerSharc (TS101) processor has a 4-instruction 
pipeline, meaning that it can execute up to 4 instructions in 
parallel. Parallelisation across the 4 pipelines is performed 
statically at compile time by the VisualDSP compiler. The 
VisualDSP framework provides a graphical view of the 
execution flow of instructions through the processor 
pipelines during simulation. Unfortunately it has not been 
possible to find an automatic method for extracting this 
information in text form from the VisualDSP framework. 
However as it is possible that such a method may be found / 
made available by the VisualDSP designers an analysis of 
the possible use of this information for power and timing 
analysis was performed. 
 The pipeline view in the VisualDSP framework 
provides two views on the information, either as a 
decompiled instruction trace showing the arithmetic-style 
assembly codes for each instruction or in the binary 
instruction coding as used within the processor. The 
assembly format of the TigerSharc architecture does not 
easily lend itself to analysis as a fairly complex parsing 
would be required. It is suggested that the (easily 
decodable) binary instruction representation be used 
instead. 
 The EX bit specifies whether the instruction is last in an 
instruction line. This is used in case fewer than 4 
instructions are scheduled in one instruction line by the 
compiler to indicate a shorter than maximum instruction line 
and avoid the use of extraneous NOP instructions. 
 The CC bit specifies that the instruction is conditional. 
In the TS101 instruction set nearly all instructions can be 
specified as being conditional in execution on the state of a 
conditional execution flag that can be set by one of a 
number of evaluative instructions. The X and Y bits specify 
whether the X and Y compute block or both of the 
processor are used by the instruction. The remaining bits of 
the instructions header specify a multiply instruction, and 
the header is followed by a specification of the operands of 

the instruction which are of little use in timing and power 
analysis. 
 Should a method of extracting the pipeline trace from 
the VisualDSP environment be found it should be possible 
to trace the activity of each compute block of the processor 
in each instruction cycle, thus providing a very detailed 
power analysis. 
 In the absence of an accessible pipeline trace a cycle 
count for the TigerSharc architecture is obtained by taking 
advantage of the cycle count register available in the 
TigerSharc processors. Preprocessor macros are used to 
insert code that calculates the number of cycles executed 
within the regions of code under test. This methodology is 
useful as it is very quickly adaptable to other processor 
architectures as long as either a cycle count register or a 
high resolution timer is simulated within the simulated 
environment. This is the case for both the ARM and 
TigerSharc simulators and is likely the case for most 
industrial-strength simulators. 
 

4. INTER-PROCESSOR COMMUNICATION 
 
Inter-processor communication is simulated using a shared-
memory model. The shared memory is accessed by buses 
from each of the processing units. 
 The Partitioner can extract information about the 
number of bytes exchanged through each of the channels 
between modules. The channel name needs to be the same 
in the Partitioner as well as in the testbench code.  
  For each processing unit in the simulated system, 
both an access time / energy draw for initiating a 
transmission as well as a per-byte transfer time and energy 
draw can be specified for its bus connection. Equally the 
time and energy draw for accessing the memory can be 
specified. 
 The time required for a communication between two 
modules on different processing units is the sum of the 
access times for the two bus interfaces and the memory and 
the per-byte transfer times for each component involved in 
the communication multiplied by the number of bytes 
transferred. 
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